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1 Introduction
The quasilinear viscoelastic wave equation of the following form:

⎧
⎪⎪⎨

⎪⎪⎩

|ut|ρutt – �u +
∫ t

0 g(t – s)�u(s) ds + h(ut) = f (u), (x, t) ∈ D × (0, T),

u(x, t) = 0, (x, t) ∈ ∂D × (0, T),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ D,

(1.1)

describes a viscoelastic material, with u(x, t) giving the position of material particle x at
time t, where D is a bounded domain in R

d with a smooth boundary ∂D, ρ > 0, g is the
relaxation function, f denotes the body force, and h is the damping term. The properties
of the solution to (1.1) have been studied by many authors (see [1–7]). For instance, in
[1], Cavalcanti et al. considered (1.1) for h(ut) = –γ�ut and f (u) = 0, where 0 < ρ ≤ 2/(d –
2) if d ≥ 3 or ρ > 0 if d = 1, 2. They proved a global existence result when the constant
γ ≥ 0 and an exponential decay result for the case γ > 0. Messaoudi et al. [4] studied
(1.1) for h(ut) = –�utt and f (u) = 0, they proved an explicit and general decay rate result
with some properties of the convex functions. Liu [5] considered (1.1) for h(ut) = 0 and
f (u) = b|u|p–2u, where b > 0, p > 2. The author proved that, for a certain class of relaxation
functions and certain initial data in the stable set, the decay rate of the solution energy is
similar to that of the relaxation function. Conversely, he also obtained for certain initial

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13661-020-01359-8
http://crossmark.crossref.org/dialog/?doi=10.1186/s13661-020-01359-8&domain=pdf
mailto:fliangmath@126.com
mailto:liangfei@xust.edu.cn


Yang et al. Boundary Value Problems         (2020) 2020:62 Page 2 of 16

data in the unstable set that there are solutions that blow up in finite time. In [6], Song
investigated (1.1) for h(ut) = |ut|q–2ut and f (u) = |u|p–2u, where q > 2, and ρ, p satisfy

⎧
⎨

⎩

2 < p < ∞, 2 < ρ < ∞, if d = 1, 2,

2 < p < 2(d – 1)/(d – 2), 2 < ρ ≤ d/(d – 2), if d ≥ 3.

He proved the global nonexistence of the positive initial energy solutions of the quasilin-
ear viscoelastic wave equation. Cavalcanti et al. [7] also studied (1.1) with h(ut) = a(x)ut

and f (u) = b|u|p–2u, where a(x) can be null on a part of the boundary, they obtained an
exponential rate of decay of solutions.

In fact, the driving force may be affected by the random environment. In view of this,
we consider the following stochastic quasilinear viscoelastic wave equations:

⎧
⎪⎪⎨

⎪⎪⎩

|ut|ρutt – �u – �utt +
∫ t

0 g(t – s)�u ds = σ (x, t)∂tW (t, x), in D × (0,∞),

u(x, t) = 0, on Γ × (0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), in D,

(1.2)

where g is a positive function satisfying some conditions to be specified later, σ is local Lip-
schitz continuous, W (t, x) is an infinite dimensional Wiener random field, and the initial
data u0(x) and u1(x) are F0-measurable given functions.

To motivate our work, let us firstly recall some results regarding ρ = 0 and g ≡ 0, then
(1.2) can be rewritten as the following stochastic wave equation:

utt – �u + h(ut) = f (u) + σ (x, t)∂tW (t, x), x ∈ D, t ∈ (0, T). (1.3)

In [8, 9], Chow considered the large-time asymptotic properties of solutions to a class of
semi-linear stochastic wave equations with linear damping in a bounded domain. Under
appropriate conditions, the author obtained the exponential stability of an equilibrium
solution in mean-square and the almost sure sense by energy inequality. Using Lyapunov
function techniques, Brzeźniak et al. [10] proved global existence and stability of solutions
for the stochastic nonlinear beam equations. In [11], Brzeźniak and Zhu studied a type of
stochastic nonlinear beam equation with locally Lipschitz coefficients. Using a suitable
Lyapunov function and applying the Khasminskii test they showed the nonexplosion of
the mild solutions. In addition, under some additional assumptions they proved the expo-
nential stability of the solution. Kim [12] and Barbu et al. [13] investigated initial boundary
value stochastic wave equations with nonlinear damping and dissipative damping, respec-
tively. There are also many results on the stochastic wave equations, see the references in
[10, 14–20].

When ρ = 0 and g �= 0, (1.2) can be rewritten as the following stochastic viscoelastic wave
equation:

utt – �u +
∫ t

0
g(t – s)�u ds + h(ut) = f (u) + εσ (x, t)∂tW (t, x), x ∈ D, t ∈ (0, T). (1.4)

For the current equation (1.4), the memory part makes it difficult to estimate the energy
by using these methods which are used in stochastic wave equation. Hence, Wei and Jiang
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[21] studied (1.4) with σ ≡ 1 and q = 2 in another way. They showed the existence and
uniqueness of solution for (1.4) and obtained the decay estimate of the energy function of
the solution under some appropriate assumption on g . In [22], Liang and Gao extended the
existence and uniqueness results of [21] with σ = σ (u,∇u, x, t). In the case of σ = σ (x, t),
they proved that the solution either blows up in finite time with positive probability or is
explosive in L2 using the energy inequality. Furthermore, Liang and Gao [23] considered
(1.4) driven by Lévy noise, they proved the global existence and uniqueness of the mild
solution with the appropriate energy function and obtained the exponential stability of
the solutions. Liang and Guo [24] studied (1.4) driven by multiplicative noise, the authors
proved the global existence and asymptotic stability of the mild solution by the Lyapunov
function.

Furthermore, Kim et al. [25] considered (1.2) with ρ �= 0 and g �= 0 driven by an additive
noise, i.e., σ = σ (x, t). By an appropriate energy inequality, they proved that finite time
blow-up is possible for equation (1.2) if p > {q,ρ + 2} and the initial energy is sufficiently
negative.

We note that in the above literature, Messaoudi et al. [4], Liang and Gao [23], Chen
et al. [24], and Kim et al. [25] did not discuss the optimality of the decay rate of (1.2)
under the influence of random environment. We prove the stability of solutions to (1.2)
by modifying the convex functions. The result of this paper provides an explicit energy
decay formula that allows a larger class of functions g from which the energy decay rates
are not necessarily of exponential or polynomial types.

This paper is organized as follows. In Sect. 2, we present some assumptions and defini-
tions needed for our work. Section 3 shows the statement and proof of our main result.

2 Preliminaries
Firstly, let us introduce some notations used throughout this paper. We set H = L2(D) with
the inner product and norm denoted by (·, ·) and ‖ · ‖2, respectively. Denote by ‖∇ · ‖2 the
Dirichlet norm in V = H1

0 (D). We consider the following hypotheses.
(A1) ρ, p, q satisfy

⎧
⎨

⎩

0 < ρ ≤ 2
d–2 , if d ≥ 3,

ρ > 0, if d = 1, 2.
(2.1)

(A2) g ∈ C1[0,∞) is a nonnegative and nonincreasing function satisfying

1 –
∫ ∞

0
g(s) ds = l > 0. (2.2)

(A3) There exists a positive function H ∈ C1(R+), with H(0) = 0, and H is a linear or
strictly increasing and strictly convex C2 function on (0, r] for some r < 1 such that

g ′(t) ≤ –H
(
g(t)

)
, ∀t ≥ 0. (2.3)

Definition 2.1 Assume that (u0, u1) ∈ H1
0 (D)×L2(D) and E

∫ T
0 ‖σ (t)‖2 dt < ∞, u is said to

be the solution of (1.2) on the interval [0, T], if (u, ut) is H1
0 (D)×L2(D)-valued progressively

measurable, (u, ut) ∈ L2(Ω ; C([0, T]; H1
0 (D) × L2(D))), ut ∈ Lq((0, T) × D), and such that

(1.2) holds in the sense of distributions over (0, T) × D for almost all ω.
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Theorem 2.1 Assume that (u0, u1) ∈ H1
0 (D) × L2(D), E

∫ T
0 ‖σ (t)‖2 dt < ∞, and condition

(2.1) holds. ut is a solution of (1.2) with initial data (u0, u1) ∈ H1
0 (D) × L2(D), according to

Definition 2.1 on the interval [0, T], for any T > 0, we have

E sup
0≤t≤T

e
(
u(t)

)
< ∞.

Similar to Theorem 4.1 of [25], we can explicitly drive the proof of the above theorem.
Now, we introduce the “modified” energy associated with problem (1.2):

E(t) =
1

ρ + 2
∥
∥ut(t)

∥
∥ρ+2

ρ+2 +
1
2

l
∥
∥∇u(t)

∥
∥2

2 +
1
2
∥
∥∇ut(t)

∥
∥2

2 +
1
2

(g ◦ ∇u)(t), (2.4)

where, for any w ∈ L2(D),

(g ◦ w)(t) =
∫ t

0
g(t – s)

∥
∥w(t) – w(s)

∥
∥2

2 ds.

Let (Ω , P,F ) be a complete probability space for which {Ft , t ≥ 0} of sub-σ -fields of F
is given. A point of D will be denoted by D and E(·) stands for expectation with respect to
probability measure P. When O is a topological space, B denotes the Borel σ -algebra over
O. Suppose that {W (t, x) : t ≥ 0} is a H-value Q-Wiener process on the probability space
with the variance operator Q satisfying Tr Q < ∞. Moreover, we can assume that Q has the
following form: Qei = λiei, i = 1, 2, . . . , where λi are eigenvalues of Q satisfying

∑∞
i=1 λi < ∞

and {ei} are the corresponding eigenfunctions with c0 := supi≥1 ‖ei‖∞ < ∞ (‖ · ‖∞ denotes
the super-norm). To simplify the computations, we assume that the covariance operator
Q and –� with homogeneous Dirichlet boundary condition have a common set of eigen-
functions, i.e., {ei}∞i=1 satisfy

⎧
⎨

⎩

–�ei = μiei, x ∈ D,

ei = 0, x ∈ ∂D,
(2.5)

and form an orthonormal base of H . In this case, W (t, x) =
∑∞

i=1
√

λiBi(t)ei, where {Bi(t)}
is a sequence of independent copies of standard Brownian motions in one dimension. In
addition, {W (t, x) : t ≥ 0} is an H-valued Q-Wiener process. For more details about the
infinite-dimensional Wiener process and the stochastic integral, see in [26, 27].

3 Stability properties of solutions
In this section, we state and prove our main stability result. Throughout this section, we
suppose that σ (x, t, w) = σ (x, t) such that

∫ ∞

0

∫

D
σ 2(x, t) dx dt < ∞. (3.1)

As is well known, equation (1.2) is equivalent to the following Itô system:

⎧
⎨

⎩

du = v dt,

d( 1
ρ+1 |v|ρv) = (�u + �utt –

∫ t
0 g(t – s)�u(s) ds) dt + σ (x, t) dW (t, x).

(3.2)
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In order to prove our stability result, we need the following lemmas.

Lemma 3.1 Let u0(x) and u1(x) be F0-measurable with u0(x) ∈ H1
0 (D) and u1(x) ∈ L2(D).

Assume (2.1) holds. Let (u, v) be a solution of system (3.2). Then we have

d
dt

EE(t) =
1
2

∞∑

i=1

E
∫

D
λie2

i (x)σ 2(x, t) dx –
1
2

E
(
–g ′ ◦ ∇u

)
(t) –

1
2

g(t)E
∥
∥∇u(t)

∥
∥2

2

≤ 1
2

∞∑

i=1

E
∫

D
λie2

i (x)σ 2(x, t) dx +
1
2

E
(
g ′ ◦ ∇u

)
(t). (3.3)

Proof Applying Itô’s formula to 2
ρ+2‖v‖ρ+2

ρ+2, we get

2
ρ + 2

‖v‖ρ+2
ρ+2 =

2
ρ + 2

‖v0‖ρ+2
ρ+2 – 2

∫ t

0
(∇u,∇v) ds + 2

∫

D

(∫ t

0
g(t – s)∇u(s) ds,∇v(t)

)

dx

– 2
∫ t

0
(∇utt ,∇v) ds + 2

∫ t

0

(
v,σ (x, s) dWs

)
+

∫ t

0

∥
∥σ (x, s)

∥
∥2

L0
2

ds

= 2EE(0) –
∥
∥∇u(t)

∥
∥2

2 –
∥
∥∇ut(t)

∥
∥2

2 + 2
∫

D

(∫ t

0
g(t – s)∇u(s) ds,∇v(t)

)

dx

+ 2
∫ t

0

(
v,σ (x, s) dWs

)
+

∫ t

0

∥
∥σ (x, s)

∥
∥2

L0
2

ds. (3.4)

For the third term on the right-hand side of (3.4), we obtain

2
(∫ t

0
g(t – s)∇u(s) ds, v(t)

)

= 2
∫ t

0
g(t – s)

∫

D
∇v(t)

(∇u(s) – ∇u(t)
)

dx ds + 2
∫ t

0
g(t – s)

∫

D
∇v(t)∇u(t) dx ds

= –
∫ t

0
g(t – s)

d
dt

∫

D

∣
∣∇u(s) – ∇u(t)

∣
∣2 dx ds +

∫ t

0
g(s)

d
dt

∫

D

∣
∣∇u(t)

∣
∣2 dx ds

=
d
dt

(∫ t

0
g(s) ds

∥
∥∇u(t)

∥
∥2

2 – (g ◦ ∇u)(t)
)

+
(
g ′ ◦ ∇u

)
(t) – g(t)

∥
∥∇u(t)

∥
∥2

2. (3.5)

Inserting (3.5) into (3.4) and taking the expectation for (3.4), we get (3.3). �

Let

S(t) =
1
2

∞∑

i=1

E
∫ t

0

∫

D
λie2

i (x)σ 2(x, s) dx ds.

From (3.1), we have

S(∞) =
1
2

∞∑

i=1

E
∫ ∞

0

∫

D
λie2

i (x)σ 2(x, s) dx ds

≤ 1
2

c2
0 Tr RE

∫ ∞

0

∫

D
σ 2(x, s) dx ds

= E1 < ∞. (3.6)
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Then we integrate (3.3) on (0, T), which yields

EE(t) ≤ EE(0) + E1. (3.7)

Lemma 3.2 Let u be a solution of (1.2). The functional

Ψ (t) :=
1

ρ + 1

∫

D
|ut|ρutu dx +

∫

D
∇u · ∇ut dx

satisfies, along the solution of (1.2), the estimate

EΨ ′(t) ≤ –
l
2

E
∫

D
|∇u|2 dx + E

∫

D
|∇ut|2 dx +

1
ρ + 1

E
∫

D
|ut|ρ+2 dx

+
1 – l

2l
E(g ◦ ∇u)(t). (3.8)

Proof Direct differentiation of Ψ , using (1.2), yields

Ψ ′(t) = –
∫

D
|∇u|2 dx +

∫

D
∇u(t) ·

∫ t

0
g(t – s)∇u(s) ds dx +

∫

D
|∇ut|2 dx

+
1

ρ + 1

∫

D
|ut|ρ+2 dx +

∫

D

(
σ (x, s) dWs, u

)
dx.

We take the expectation of the above formula to get the following result:

EΨ ′(t) = –E
∫

D
|∇u|2 dx + E

∫

D
∇u(t) ·

∫ t

0
g(t – s)∇u(s) ds dx

+ E
∫

D
|∇ut|2 dx +

1
ρ + 1

E
∫

D
|ut|ρ+2 dx (3.9)

for any general solution. With simple density parameters, this estimate is still applicable
for weak solutions. Then we estimate that the second item on the right-hand side of (3.9)
is as follows:

∫

D
∇u(t) ·

∫ t

0
g(t – s)∇u(s) ds dx

≤ 1
2

∫

D
|∇u|2 dx +

1
2

∫

D

(∫ t

0
g(t – s)

(∣
∣∇u(t) – ∇u(s)

∣
∣ +

∣
∣∇u(t)

∣
∣
)

ds
)2

dx.

By using

∫ t

0
g(s) ds <

∫ ∞

0
g(s) ds = 1 – l (3.10)

and

(a + b)2 ≤ (1 + η)a2 +
(

1 +
1
η

)

b2, ∀η > 0,

we arrive at
∫

D
∇u(t) ·

∫ t

0
g(t – s)∇u(s) ds dx
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≤ 1
2

∫

D
|∇u|2 dx +

1
2

(1 + η)(1 – l)2
∫

D
|∇u|2 dx

+
1
2

(

1 +
1
η

)∫

D

(∫ t

0
g(t – s)

∣
∣∇u(t) – ∇u(s)

∣
∣ds

)2

dx

≤ 1
2
[
1 + (1 + η)(1 – l)2]

∫

D
|∇u|2 dx +

1
2

(

1 +
1
η

)

(1 – l)(g ◦ ∇u)(t).

By taking η = l
1–l , we obtain

∫

D
∇u(t) ·

∫ t

0
g(t – s)∇u(s) ds dx ≤ 2 – l

2

∫

D
|∇u|2 dx +

1 – l
2l

(g ◦ ∇u)(t). (3.11)

Inserting (3.11) in (3.9), we get (3.8). �

Lemma 3.3 Let u be a solution of (1.2). The functional

χ (t) :=
∫

D

(

�ut –
|ut|ρut

ρ + 1

)∫ t

0
g(t – s)

(
u(t) – u(s)

)
ds dx (3.12)

satisfies the solution of equation (1.2) and, for any δ1, δ2 > 0, the estimate

Eχ ′(t) ≤ (
1 + 2(1 – l)2)δ1E

∫

D
|∇u|2 dx –

1
ρ + 1

(∫ t

0
g(s) ds

)

E
∫

D
|ut|ρ+2 dx

+ (1 – l)
(

2δ1 +
1

2δ1

)

E(g ◦ ∇u)(t) +
g(0)
4δ2

(

1 +
Cp

ρ + 1

)

E
(
–g ′ ◦ ∇u

)
(t)

+
[

δ2 + c
δ2

ρ + 1
(
2
(
E(0) + E1

))ρ –
∫ t

0
g(s) ds

]

E
∫

D
|∇ut|2 dx. (3.13)

Proof Differentiating (3.12) with respect to t and making use of (1.2), we arrive at

χ ′(t) =
∫

D
∇u(t) ·

∫ t

0
g(t – s)

(∇u(t) – ∇u(s)
)

ds dx

–
∫

D

(∫ t

0
g(t – s)∇u(s) ds

)

·
(∫ t

0
g(t – s)

(∇u(t) – ∇u(s)
)

ds
)

dx

–
(∫ t

0
g(s) ds

)∫

D
|∇ut|2 dx –

∫

D
∇ut ·

∫ t

0
g ′(t – s)

(∇u(t) – ∇u(s)
)

ds dx

–
1

ρ + 1

∫

D
|ut|ρut

∫ t

0
g ′(t – s)

(
u(t) – u(s)

)
ds dx

–
∫

D
σ (x, s) dWs

∫ t

0
g(t – s)

(
u(t) – u(s)

)
ds dx

–
1

ρ + 1

(∫ t

0
g(s) ds

)∫

D
|ut|ρ+2 dx.

We take the expectation of the above formula to get the following result:

Eχ ′(t) = E
∫

D
∇u(t) ·

∫ t

0
g(t – s)

(∇u(t) – ∇u(s)
)

ds dx



Yang et al. Boundary Value Problems         (2020) 2020:62 Page 8 of 16

– E
∫

D

(∫ t

0
g(t – s)∇u(s) ds

)

·
(∫ t

0
g(t – s)

(∇u(t) – ∇u(s)
)

ds
)

dx

– E
(∫ t

0
g(s) ds

)∫

D
|∇ut|2 dx – E

∫

D
∇ut ·

∫ t

0
g ′(t – s)

(∇u(t) – ∇u(s)
)

ds dx

–
1

ρ + 1
E

∫

D
|ut|ρut

∫ t

0
g ′(t – s)

(
u(t) – u(s)

)
ds dx

–
1

ρ + 1
E
(∫ t

0
g(s) ds

)∫

D
|ut|ρ+2 dx. (3.14)

Now we repeat the Cauchy–Schwarz inequality, Hölder’s inequality and Young’s inequal-
ity, to estimate each term on the right-hand side of equation (3.14).

The first item on the right can be estimated as follows:

∫

D
∇u(t) ·

∫ t

0
g(t – s)

(∇u(t) – ∇u(s)
)

ds dx

≤ δ1

∫

D
|∇u|2 dx +

1 – l
4δ1

(g ◦ ∇u)(t), δ1 > 0. (3.15)

As for the second item, we can get the following result from the previously obtained for-
mula (3.10) and (a + b)2 ≤ 2(a2 + b2):

∫

D

(∫ t

0
g(t – s)∇u(s) ds

)

·
(∫ t

0
g(t – s)

(∇u(t) – ∇u(s)
)

ds
)

dx

≤ δ1

∫

D

∣
∣
∣
∣

∫ t

0
g(t – s)∇u(s) ds

∣
∣
∣
∣

2

dx +
1

4δ1

∫

D

∣
∣
∣
∣

∫ t

0
g(t – s)

(∇u(t) – ∇u(s)
)

ds
∣
∣
∣
∣

2

dx

≤ δ1

∫

D

(∫ t

0
g(t – s)

(∣
∣∇u(t) – ∇u(s)

∣
∣ +

∣
∣∇u(t)

∣
∣
)

ds
)2

dx

+
1

4δ1

(∫ t

0
g(t – s) ds

)∫

D

∫ t

0
g(t – s)

∣
∣∇u(t) – ∇u(s)

∣
∣2 ds dx

≤ 2δ1

∫

D

(∫ t

0
g(t – s)

∣
∣∇u(t) – ∇u(s)

∣
∣ds

)2

dx

+ 2δ1

(∫ t

0
g(s) ds

)2 ∫

D
|∇u|2 dx +

1
4δ1

(∫ t

0
g(s) ds

)

(g ◦ ∇u)(t)

≤
(

2δ1 +
1

4δ1

)

(1 – l)(g ◦ ∇u)(t) + 2δ1(1 – l)2
∫

D
|∇u|2 dx. (3.16)

For the fourth term on the right-hand side of (3.14), it is easy to draw, ∀δ2 > 0,

∫

D
∇ut(t) ·

∫ t

0
g ′(t – s)

(∇u(t) – ∇u(s)
)

ds dx

≤ δ2

∫

D
|∇ut|2 dx +

g(0)
4δ2

∫

D

∫ t

0
–g ′(t – s)

∣
∣∇u(t) – ∇u(s)

∣
∣2 ds dx. (3.17)

For the fifth item, we can similarly get the following results:

1
ρ + 1

∫

D
|ut|ρut

∫ t

0
g ′(t – s)

(
u(t) – u(s)

)
ds dx
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≤ 1
ρ + 1

[

δ2

∫

D
|ut|2(ρ+1) dx

+
g(0)
4δ2

Cp

∫

D

∫ t

0
–g ′(t – s)

∣
∣∇u(t) – ∇u(s)

∣
∣2 ds dx

]

, (3.18)

where Cp is the Poincaré constant and δ2 > 0. By using the Sobolev embedding

H1
0 (D) ↪→ L2(ρ+1)(D) for 0 < ρ ≤ 2/(n – 2) if n ≥ 3 and ρ > 0 if n = 1, 2, (3.19)

and by (3.7), ∀t ≥ 0, we get
∫

D
|ut|2(ρ+1) dx ≤ c

(
2
(
E(0) + E1

))ρ

∫

D
|∇ut|2 dx. (3.20)

Then (3.18) has the following form:

1
ρ + 1

∫

D
|ut|ρut

∫ t

0
g ′(t – s)

(
u(t) – u(s)

)
ds dx

≤ cδ2
(
2
(
E(0) + E1

))ρ

∫

D
|∇ut|2 dx +

g(0)Cp

4δ2(ρ + 1)
(
–g ′ ◦ ∇u

)
(t). (3.21)

Combining (3.14)–(3.17) and (3.21), we get (3.13). The proof is completed. �

Theorem 3.4 Let u0(x) and u1(x) be F0-measurable with u0(x) ∈ L2(Ω ; H1
0 (D)) and

u1(x) ∈ L2(Ω ; L2(D)). Assume that (A1)–(A3) hold. Then there exist positive constants
k1, k2, k3, and ε0 such that the solution of (1.2) satisfies

EE(t) ≤ k3H–1
1 (k1t + k2) ∀t ≥ 0, (3.22)

where

H1(t) =
∫ 1

t

1
sH ′

0(ε0s)
ds and H0(t) = H

(
J(t)

)

provided that J is a positive C1 function, with J(0) = 0, for which H0 is a strictly increasing
and convex C2 function on (0, r] and

∫ +∞

t

g(s)
H–1

0 (–g ′(s))
ds < +∞, (3.23)

H(t) = ctp, for 1 < p < 3
2 . Moreover, if

∫ t
0 H1(t) dt < +∞ for some choice of J , then we have the

improved estimate:

EE(t) ≤ k3G–1(k1t + k2) where G(t) =
∫ 1

t

1
sH ′(ε0s)

ds. (3.24)

Remark 3.1
1. By using the property of H , we can show that the H1 function is strictly decremented

and raised on (0, 1], with limt→0 H1(t) = +∞. So Theorem 3.4 ensures

lim
t→0

E(t) = 0.
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2. Our result is obtained under the very general assumption of the relaxation function
g , which allows the processing of the larger class function g , which guarantees
uniform stability of (1.2) and has a decay rate explicit formula energy.

3. The usual exponential and polynomial decay rate estimates have proven that g is
satisfied (2.2) and g ′ ≤ –kgp, 1 ≤ p < 3/2, it is a special case of our results. For these
special cases, we will prove that this is a “simple” proof.

4. Our results allow the relaxation function to not necessarily exhibit exponential decay
or polynomial decay. For example, if

g(t) = ae–tq

for 0 < q < 1 and a is chosen so that g satisfies (2.2), then g ′(t) = –H(g(t)) where, for
t ∈ (0, r], r < a,

H(t) =
qt

[ln(a/t)]
1
q –1

,

which satisfies hypothesis (A3). Also, by taking J(t) = tα , (3.23) is satisfied with any
α > 1. For this reason, we can use Theorem 3.4 and perform some calculations to
infer that the energy is attenuated by the same g , i.e.,

EE(t) ≤ ce–ktq
.

5. With (A2) and (A3), we can easily infer limt→∞ g(t) = 0. This means that
limt→+∞(–g ′(t)) cannot be equal to a positive number, so it is natural to assume
limt→+∞(–g ′(t)) = 0. Therefore, there is t1 > 0 big enough so that g(t1) > 0 and

max
{

g(t), –g ′(t)
}

< min
{

r, H(r), H0(r)
}

, ∀t ≥ t1. (3.25)

As g is nonincreasing, g(0) > 0 and g(t1) > 0, then g(t) > 0 for any t ∈ [0, t1] and

0 < g(t1) ≤ g(t) ≤ g(0), ∀t ∈ [0, t1].

Hence, since H is a positive continuous function, then

a ≤ H
(
g(t)

) ≤ b, ∀t ∈ [0, t1]

for some positive constants a and b. Consequently, for all t ∈ [0, t1],

g ′(t) ≤ –H
(
g(t)

) ≤ –a = –
a

g(0)
g(0) ≤ –

a
g(0)

g(t),

which gives, for some positive constant d, we have

g ′(t) ≤ –dg(t), ∀t ∈ [0, t1]. (3.26)

Now let us prove Theorem 3.4.
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Proof We consider the functional

L(t) = E
(
ME(t) + εΨ (t) + χ (t)

)
,

where M and ε are to be specified later. Let g0 =
∫ t1

0 g(s) ds, where t1 > 0 was introduced in
(3.25). Using (3.3), (3.8), (3.13), and

∫ t
0 g(s) ds ≥ g0, t ≥ t1, we obtain

L′(t) ≤ E

([
M
2

–
g(0)
4δ2

(

1 +
Cp

ρ + 1

)]
(
g ′ ◦ ∇u

)
(t) +

ε – g0

ρ + 1

∫

D
|ut|ρ+2 dx

–
[

l
2
ε –

(
1 + 2(1 – l)2)δ1

]∫

D
|∇u|2 dx

–
[
g0 – ε – δ2 – cδ2

(
2
(
E(0) + E1

))ρ]
∫

D
|∇ut|2 dx

+ (1 – l)
(

ε

2l
+ 2δ1 +

1
2δ1

)

(g ◦ ∇u)(t)

+
M
2

∞∑

i=1

∫

D
λie2

i (x)σ 2(x, t) dx

)

. (3.27)

At this point, we choose our constant carefully. First, we choose ε < g0, then δ1 and δ2 are
small enough so that

l
2
ε –

(
1 + 2(1 – l)2)δ1 > 0, g0 – ε – δ2 – cδ2

(
2
(
E(0) + E1

))ρ > 0.

Finally, we take M sufficiently large so that

M
2

–
g(0)
4δ2

(

1 +
Cp

ρ + 1

)

≥ 0.

Therefore, (3.27) reduces to

L′(t) ≤ –kEE(t) + cE(g ◦ ∇u)(t) +
M
2

∞∑

i=1

E
∫

D
λie2

i (x)σ 2(x, t) dx, ∀t ≥ t1. (3.28)

On the other hand, we can choose M even larger (if needed) so that

L ∼ EE . (3.29)

Now,we use (3.3) and (3.26), for any t ≥ t1,

E
∫ t1

0
g(s)

∫

D

∣
∣∇u(t) – ∇u(t – s)

∣
∣2 dx ds

≤ –
1
d

E
∫ t1

0
g ′(s)

∫

D

∣
∣∇u(t) – ∇u(t – s)

∣
∣2 dx ds

≤ –c

(

EE ′(t) –
∞∑

i=1

E
∫

D
λie2

i (x)σ 2(x, t) dx

)

. (3.30)
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Next, we take F(t) = L(t) + cEE(t) – (M + 2c)S(t), here M was mentioned in (3.27), S(t) =
1
2
∑∞

i=1 E
∫ t

0
∫

D λie2
i (x)σ 2(x, s) dx ds, we assume that σ (x, t) satisfies

(A4) S(t) ≤ 1
Mγ ,γ > 1.

This means that F(t) is equivalent to EE(t), therefore, using (3.28)–(3.30), for all t ≥ t1, we
get

F ′(t) ≤ –mEE(t) + cE
∫ t

t1

g(s)
∫

D

∣
∣∇u(t) – ∇u(t – s)

∣
∣2 dx ds. (3.31)

In the case of p = 1, we use estimate (3.31) to get the following result:

F ′(t) ≤ –mEE(t) + cE(g ◦ ∇u)(t)

≤ –mEE(t) – cEE ′(t), ∀t ≥ t1,

which gives

(F + cEE)′(t) ≤ –mEE(t), ∀t ≥ t1.

Hence, using the fact that F + cEE ∼ EE , we easily obtain

EE(t) ≤ c′e–ct = cG–1(t).

In the case of 1 < p < 3
2 , one can easily show that

∫ +∞
0 g1–δ0 (s) ds < +∞ for any δ0 < 2 – p.

Using (3.3) and (3.7), and choosing t1 even larger if needed, we deduce that, for all t ≥ t1,

η(t) :=
∫ t

t1

g1–δ0 (s)
∫

D

∣
∣∇u(t) – ∇u(t – s)

∣
∣2 dx ds

≤ 2
∫ t

t1

g1–δ0 (s)
∫

D

(∣
∣∇u(t)

∣
∣2 +

∣
∣∇u(t – s)

∣
∣2)dx ds

≤ c
(
E(0) + E1

)
∫ t

t1

g1–δ0 (s) ds < 1. (3.32)

Then, Jensen’s inequality, (3.3), hypotheses (A2) and (A3), and (3.32) altogether lead to

E
∫ t

t1

g(s)
∫

D

∣
∣∇u(t) – ∇u(t – s)

∣
∣2 dx ds

= E
∫ t

t1

gδ0 (s)g1–δ0 (s)
∫

D

∣
∣∇u(t) – ∇u(t – s)

∣
∣2 dx ds

= E
∫ t

t1

g(p–1+δ0)( δ0
p–1+δ0

)(s)g1–δ0 (s)
∫

D

∣
∣∇u(t) – ∇u(t – s)

∣
∣2 dx ds

≤ E
(

η(t)
[

1
η(t)

∫ t

t1

g(s)(p–1+δ0)g1–δ0 (s)
∫

D

∣
∣∇u(t) – ∇u(t – s)

∣
∣2 dx ds

] δ0
p–1+δ0

)

≤ E
[∫ t

t1

g(s)p
∫

D

∣
∣∇u(t) – ∇u(t – s)

∣
∣2 dx ds

] δ0
p–1+δ0
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≤ cE
[∫ t

t1

–g ′(s)
∫

D

∣
∣∇u(t) – ∇u(t – s)

∣
∣2 dx ds

] δ0
p–1+δ0

≤ c

[

–EE ′(t) +
∞∑

i=1

E
∫

D
λie2

i (x)σ 2(x, t) dx

] δ0
p–1+δ0

.

Then, in particular, for δ0 = 1
2 we conclude that (3.31) becomes

F ′(t) ≤ –mEE(t) + c

[

–EE ′(t) +
∞∑

i=1

E
∫

D
λie2

i (x)σ 2(x, t) dx

] 1
2p–1

+
M
2

∞∑

i=1

E
∫

D
λie2

i (x)σ 2(x, t) dx.

Now, we multiply both sides by (EE(t))α , using α = 2p – 2 and (3.3) to get

(
F(t)

(
EE(t)

)α)′

= F ′(t)
(
EE(t)

)α + αF(t)
(
EE(t)

)α–1(EE(t)
)′

≤ –m
(
EE(t)

)1+α + c
(
EE(t)

)α

[

–EE ′(t) +
∞∑

i=1

E
∫

D
λie2

i (x)σ 2(x, t) dx

] 1
1+α

+
M
2

∞∑

i=1

E
∫

D
λie2

i (x)σ 2(x, t) dx
(
EE(t)

)α + αF(t)
(
EE(t)

)α–1(EE(t)
)′.

Then, applying Young’s inequality, q = 1 + α, and q′ = 1+α
α

, we get

(
F(t)

(
EE(t)

)α)′

≤ –m
(
EE(t)

)1+α + ε
(
EE(t)

)1+α – CεEE ′(t) + Cε

∞∑

i=1

E
∫

D
λie2

i (x)σ 2(x, t) dx

+ αF(t)
(
EE(t)

)α–1EE ′(t) +
M
2

∞∑

i=1

E
∫

D
λie2

i (x)σ 2(x, t) dx
(
EE(t)

)α

≤ –m
(
EE(t)

)1+α + ε
(
EE(t)

)1+α – CεEE ′(t) + Cε

∞∑

i=1

E
∫

D
λie2

i (x)σ 2(x, t) dx

+
α

1 + α

((
EE(t)

)1+α)′ +
M
2

∞∑

i=1

E
∫

D
λie2

i (x)σ 2(x, t) dx
(
EE(t)

)α .

Let F0(t) = F(t)(EE(t))α – α
1+α

(EE(t))1+α +CεEE(t)–2CεS(t)–M(EE(0)+E1)αS(t). So choose
ε < m so that

F ′
0(t) ≤ –m′(EE(t)

)1+α .
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It can be known from (A4) that it is obviously equivalent to EE(t). Therefore we have, for
some a0 > 0,

F ′
0(t) ≤ –a0F1+α

0 (t),

from which we easily infer that

EE(t) ≤ c

(c′t + c′′)
1

2p–2
. (3.33)

By recalling that p < 3
2 and using (3.33), we find that

∫ +∞
0 E(s) ds < +∞. Therefore, noting

that
∫ t

0

∫

D

∣
∣∇u(t) – ∇u(t – s)

∣
∣2 dx ds ≤ c

∫ t

0
E(s) ds,

estimate (3.31) gives

F ′(t) ≤ –mEE(t) + cE
(
gp· 1

p ◦ ∇u
)
(t) ≤ –mEE(t) + c

[
E
(
gp ◦ ∇u

)
(t)

] 1
p

≤ –mEE(t) + c
[
E
(
–g ′ ◦ ∇u

)
(t)

] 1
p ≤ –mEE(t) + c

[
–EE ′(t)

] 1
p .

Hence, repeating the above steps, with α = p – 1, we obtain

EE(t) ≤ c

(c′t + c′′)
1

p–1
= cG–1(c′t + c′′).

Thus the proof of Theorem 3.4 is completed. �

Remark 3.2 In particular, when p = 1, we also need not assume (A4). That is, taking F(t) =
L(t) + cEE(t), which is clearly equivalent to EE(t), and using (3.28)–(3.30), for all t ≥ t1, we
have

F ′(t) ≤ – mEE(t) + cE
∫ t

t1

g(s)
∫

D

∣
∣∇u(t) – ∇u(t – s)

∣
∣2 dx ds

+
(

M
2

+ c
) ∞∑

i=1

E
∫

D
λie2

i (x)σ 2(x, t) dx. (3.34)

Estimate (3.31) yields

F ′(t) ≤ –mEE(t) + cE(g ◦ ∇u)(t) +
(

M
2

+ c
) ∞∑

i=1

E
∫

D
λie2

i (x)σ 2(x, t) dx

≤ –mEE(t) – cEE ′(t) +
(

M
2

+ c
) ∞∑

i=1

E
∫

D
λie2

i (x)σ 2(x, t) dx, ∀t ≥ t1,

which gives

(F + cEE)′(t) ≤ –mEE(t) +
(

M
2

+ c
) ∞∑

i=1

E
∫

D
λie2

i (x)σ 2(x, t) dx, ∀t ≥ t1.
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Hence, using the fact that F + cEE ∼ EE , it is easy to obtain

EE(t) ≤ c′e–ct + (M + 2c)E1.

This means that it is progressively stable and degenerates to (M + 2c)E1.
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