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Abstract
The aim of this article is to consider the semi-linear fractional system with Sobolev
exponents q = n+α

n–β and p = n+β
n–α (α �= β):

{
(–�)α/2u(x) = k(x)vq(x) + f (v(x)),
(–�)β/2v(x) = j(x)up(x) + g(u(x)),

where 0 < α,β < 2. We first establish two maximum principles for narrow regions in
the ball and out of the ball by the iteration technique, respectively. Based on these
principles, we use the direct method of moving spheres to prove the non-existence of
positive solutions to the above system in the whole space and bounded star-shaped
domain. As a consequence, the monotonic decreasing properties ofW(x) = |x| n–α2 u(x)

andW1(x) = |x| n–β2 v(x) along the radial direction in the whole space are obtained.

Keywords: Semi-linear fractional system; Non-existence; Maximum principle;
Narrow region; The direct method of moving spheres

1 Introduction
In recent years, the fractional Laplacian has been frequently used in the simulation of var-
ious physical phenomena, such as anomalous diffusions and quasi-geotropic flows, tur-
bulence and water waves, molecular dynamics, and relativistic quantum mechanics (see
[1–4]). Typically, the standard linear evolution equation involving fractional Laplacian is

∂u
∂t

+ (–�)α/2u = 0,

which is a model of anomalous diffusion and has been widely used in physics, probability,
and finance [5–7]. The fractional Laplacian can be also used to handle Lévy flight, such
as the so-called SIS flow progress [8, 9], to derive the well-known Kolmogorov–Fisher
equation. At present, the study on the fractional Laplace equations has made many im-
portant achievements, including the blow up of positive solutions, Liouville theorems, a
priori estimates, and so on [10, 11].
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The fractional Laplacian in R
n is a nonlocal pseudo-differential operator, which is of the

form

(–�)
α
2 u(x) = Cn,αP.V .

∫
Rn

u(x) – u(y)
|x – y|n+α

dy,

where 0 < α < 2 and P.V . stands for the Cauchy principal value. Letting

Lα =
{

u : Rn →R

∣∣∣
∫
Rn

|u(x)|
|x – y|n+α

dx < ∞
}

,

it is easy to see that, for u ∈ Lα ∩ C1,1
loc , the integral in the expression of (–�) α

2 u(x) is well
defined.

Different from the integer order Laplacian, the fractional Laplacian has the so-called
nonlocality, which has brought new difficulties in the treatment to equations involving
this kind of operators. To circumvent these difficulties, Caffarelli and Silvestre [12] intro-
duced the extension method that reduced the nonlocal problem into a local one in higher
dimensions. This method has been extensively applied in the fractional Laplace equations,
and a series of results have been obtained (see [13, 14]). But by using this method one needs
to require 1 ≤ α < 2. One can also consider the method of moving plane in integral forms
to investigate the fractional Laplace equations, and this method has been proved to be a
powerful tool (see [15–20]). However, for some equations including fully nonlinear non-
local operators, neither the extension method nor the method of moving plane in integral
forms can be applied [21, 22], and this inspires one to use the direct method of moving
plane to inspect these equations. Lately, some success on the direct approach was achieved
by Jorohs and Weth in [23], where they raised antisymmetric maximum principles and ap-
plied them to show the symmetry of solutions to nonlocal problems by using the direct
method of moving planes. It needs to note that their maximum principles are only suitable
for bounded regions. Chen, Li, and Li [24] have developed a systematic method of moving
plane to nonlocal problems either on bounded or unbounded domains. At the same time,
Chen, Li, and Zhang [25], Li and Zhu [26] also used the direct method of moving spheres
to the fractional Laplace equations, which is sometimes more convenient than the mov-
ing planes in some problems. It is noted that in the method of moving planes, one moves
parallel planes along a chosen direction to the limiting position to derive symmetry of
the solutions about the limiting plane, while in the method of moving spheres, one fixes
a center and increases or decreases the radius of the spheres to conclude monotonicity or
symmetry of the solutions along the radial directions of the spheres.

In this paper, we use the direct method of moving spheres to establish non-existence
of positive solutions to the following semi-linear fractional Laplace system with Sobolev
exponents q and p:

⎧⎨
⎩

(–�)α/2u(x) = k(x)vq(x) + f (v(x)),

(–�)β/2v(x) = j(x)up(x) + g(u(x))
(1.1)

in the whole space Rn and the bounded star-shaped domain in Rn, where

q =
n + α

n – β
, p =

n + β

n – α
(0 < α,β < 2,α �= β).
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Recall that an open set Ω is called star-shaped with respect to origin provided that, for
each x ∈ Ω , the line segment {λx|0 ≤ λ ≤ 1} lies in Ω .

The elliptic equation with Sobolev exponent n+2
n–2

–�u(x) = k(x)u
n+2
n–2 (x), x ∈ Rn (1.2)

has been extensively researched [27–36]. As we all know, the properties of solutions to
(1.2) closely rely on the coefficient k(x). Ding-Ni in [37] derived the properties of solutions
to (1.2) when k(x) = 1 – η, k(x) = 1, and k(x) = 1 + η respectively, where η(x) is a rotational
symmetric function about the region. Lin in [38] proved non-existence of smooth positive
solutions to the semi-linear elliptic equation with Sobolev exponent

�u(x) + k(x)u
n+2
n–2 + f (u) = 0, x ∈ Rn, (1.3)

where it is required that
(1) k(x) is a positive C1 function with k(∞) = lim|x|→∞ k(x) > 0, and k(x) �= constant is

non-decreasing along each ray {tξ |t ≥ 0} for any unit vector ξ ∈ Rn;
(2) if t > 0, then f (t) is a positive C1 function with lim|t|→∞ f (t)t– n+2

n–2 = 0, and if p = n+α
n–α

,
then f (r)

rp is non-increasing about r.
The conclusions to semi-linear Laplace equations have been extended to fractional

Laplace equations. Chen, Li, and Zhang in [25] discussed the fractional describing cur-
vature equation

(–�)α/2u(x) = Q(x)up(x), x ∈ Rn,

where p = n+α
n–α

. Via the direct method of moving plane, the Liouville theorem to the frac-
tional Lane–Emden system

⎧⎨
⎩

(–�)α/2u(x) = vp(x),

(–�)α/2v(x) = uq(x),

where 0 < α < 2, 1 < p, q ≤ n+α
n–α

, was obtained by Cai and Mei [39]. Using the method of
moving plane in integral forms, Dou and Zhou in [40] proved the Liouville theorem of the
positive solutions to the following fractional Henon system in Rn:

⎧⎨
⎩

(–�)α/2u(x) = |x|βvp(x),

(–�)α/2v(x) = |x|γ uq(x),

where 0 < α < 2, β ,γ > 0, 1 ≤ p, q < ∞.
In this paper, we apply the direct method of moving sphere to obtain non-existence

of (1.1). Before describing the main results, let us state some assumptions that are more
general than those in the papers mentioned above.

In Rn, we assume that
(i) f (v(x)) and g(u(x)) are locally bounded positive functions in x, and for r ≥ 0, f (r)

and g(r) are non-decreasing in r;
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(ii) f (r)
rq and g(r)

rp are non-increasing in r;
(iii) k(x) and j(x) are locally bounded positive functions and non-decreasing along each

ray {tξ |t ≥ 0} for any unit vector ξ ∈ Rn.

Theorem 1.1 Assume that (i), (ii), and (iii) are satisfied. If u ∈ Lα ∩ C1,1
loc , v ∈ Lβ ∩ C1,1

loc ,
then system (1.1) has no positive solutions, unless k(x) and j(x) are constants.

Theorem 1.1 has the following consequence.

Corollary 1.2 Assume that the conditions of Theorem 1.1 are valid, and let

W (x) = |x| n–α
2 u(x), W1(x) = |x| n–β

2 v(x),

then W (x) and W1(x) are monotonically decreasing along the ray {tξ |t ≥ 0} (|ξ | = 1).
For the bounded star-shaped domain about origin, we need that
(iv) f (v(x)) and g(u(x)) are locally bounded positive functions in x, and for r ≥ 0, f (r)

and g(r) are non-increasing in r;
(v) f (r)

rq and g(r)
rp are non-decreasing in r;

(vi) k(x) and j(x) are locally bounded positive functions and are non-increasing along
each ray {tξ |t ≥ 0} for any unit vector ξ ∈ Rn.

Theorem 1.3 Let Ω ⊂ Rn (n ≥ 3) be a bounded star-shaped domain about the origin and
assume that (iv), (v), and (vi) are satisfied. If u ∈ Lα ∩ C1,1

loc and v ∈ Lβ ∩ C1,1
loc , then system

(1.1) has no positive solution in Ω , unless k(x) and j(x) are constants.

The paper is organized as follows: In Sect. 2, we offer two maximum principles for nar-
row regions in the ball and out of the ball, respectively, which play important roles in the
proofs of main results. It is worth stressing that the iterating technique in the proofs of
maximum principles is employed since (1.1) involves two equations. Section 3 is devoted
to proving Theorem 1.1 by the Kelvin transform, the maximum principle for the narrow
region in the ball, and the direct method of moving spheres. The process in the proof of
Theorem 1.1 leads immediately to Corollary 1.2. In Sect. 4, we prove Theorem 1.3 by the
maximum principle for the narrow region out of the ball and the direct method of moving
spheres.

Throughout the paper, we denote by c a positive constant depending on n, α, and β ,
which can be different from line to line.

2 Two narrow region principles
Denote by Bλ(0) (λ > 0) a ball centered at the origin and radius λ, and for u(x) and v(x)
satisfying (1.1), let

xλ =
λ2x
|x|2 ,

uλ(x) =
(

λ

|x|
)n–α

u
(
xλ

)
,

vλ(x) =
(

λ

|x|
)n–β

v
(
xλ

)
.
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Denote

U(x) = u(x) – uλ(x),

V (x) = v(x) – vλ(x),

and

Uλ(x) = uλ(x) – u(x),

Vλ(x) = vλ(x) – v(x).

Then

uλ

(
xλ

)
=

(
λ

|xλ|
)n–α

u
[(

xλ
)λ]

=
(

λ

| λ2x
|x|2 |

)n–α

u
[λ2( λ2x

|x|2 )

| λ2x
|x|2 |2

]

=
( |x|

λ

)n–α

u(x),

and hence,

Uλ(x) = uλ(x) – u(x)

=
(

λ

|x|
)n–α

u
(
xλ

)
– u(x)

=
(

λ

|x|
)n–α

u
(
xλ

)
–

(
λ

|x|
)n–α

uλ

(
xλ

)

=
(

λ

|x|
)n–α[

u
(
xλ

)
– uλ

(
xλ

)]

=
(

λ

|x|
)n–α

U
(
xλ

)
.

Similarly,

vλ

(
xλ

)
=

( |x|
β

)n–α

v(x), Vλ(x) =
(

λ

|x|
)n–β

V
(
xλ

)
.

Lemma 2.1 ([25, Theorem 2.2]) Let w ∈ Lα ∩ C1,1
loc(Ω) be lower semi-continuous on Ω . If

c(x) < 0 is bounded from below in Ω and

⎧⎪⎨
⎪⎩

(–�)α/2w(x) + c(x)w(x) ≥ 0, x ∈ Ω ⊂ Bλ(0),
w(x) ≥ 0, x ∈ Bλ(0) \ Ω ,
w(x) = –wλ(x), x ∈ Bλ(0),

then there exists some sufficiently small δ > 0 such that if

Ω ⊂ Aλ–δ,λ(0) ≡ {
x ∈ Rn|λ – δ < |x| < λ

}
,
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then

inf
x∈Ω

w(x) ≥ 0.

Furthermore, if w(x) = 0 for some x ∈ Ω , then w(x) = 0 for almost every x ∈ Rn.

Lemma 2.2 Fix λ > 0 small, we have, for 0 < δ � λ,

Uλ(x) > 1, Vλ(x) > 1, x ∈ Bδ(0) \ {0}.

Proof For |x| large, there exists a positive constant c such that

u(x) =
∫

Rn

k(x)vq(x) + f (v(x))
|x – y|n–α dy

≥
∫

B1(0)

k(x)vq(x) + f (v(x))
|x – y|n–α

dy

≥
∫

B1(0)

c
|x – y|n–α

dy

∼ c
|x|n–α

.

For 0 < δ � λ and x ∈ Bδ(0) \ {0}, it is easy to see that |xλ| takes large values and hence

uλ(x) =
(

λ

|x|
)n–α

u
(
xλ

) ≥
(

λ

|x|
)n–α c

|xλ|n–α =
1

λn–α
.

Choosing λ sufficiently small, it holds

Uλ(x) = uλ(x) – u(x) ≥ 1
λn–α

– c > 1.

Similarly, we can prove that Vλ(x) > 1 and the proof of Lemma 2.2 is completed. �

For a bounded narrow region Ω in Bλ(0), we have the following.

Lemma 2.3 Let Ω ⊂ Aλ–δ,λ(0) ≡ {x ∈ Rn|λ – δ < |x| < λ} for 0δ > 0 sufficiently small. As-
sume that U ∈ Lα ∩ C1,1

loc(Ω) and V ∈ Lβ ∩ C1,1
loc(Ω) are lower semi-continuous on Ω . If

ci(x) < 0 (i = 1, 2) is bounded from below on Ω and

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(–�)α/2U(x) + c1(x)V (x) ≥ 0,

(–�)β/2V (x) + c2(x)U(x) ≥ 0, x ∈ Ω ⊂ Bλ(0),

U(x), V (x) ≥ 0, x ∈ Bλ(0) \ Ω ,

U(x) = –Uλ(x), V (x) = –Vλ(x), x ∈ Bλ(0),

(2.1)

then

U(x), V (x) ≥ 0, x ∈ Ω . (2.2)
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Furthermore, if U(x) or V (x) equals to 0 at some point in Ω , then

U(x) ≡ V (x) ≡ 0, x ∈ Rn. (2.3)

Proof We use the contradiction. If U(x) ≥ 0 (x ∈ Ω) in (2.2) does not hold, then from the
lower semi-continuity of U(x) on Ω , there exists some x̃ ∈ Ω such that

U (̃x) = min
x∈Ω

U(x) < 0.

Due to U(x) ≥ 0 (x ∈ Bλ(0) \Ω) in (2.1), it implies U(x) ≥ 0 (x ∈ ∂Ω), so x̃ is in the interior
of Ω .

From the proof process in Lemma 2.2, we have

(–�)α/2U (̃x) ≤ c
δα

1
U (̃x). (2.4)

Combining it with the first inequality of (2.1), it follows that cU (̃x)
δα

1
+ c1(̃x)V (̃x) ≥ 0, and by

c1(̃x) < 0, we have

V (̃x) ≤ –
cU (̃x)
δα

1 c1(̃x)
< 0. (2.5)

Using (2.5) and the lower semi-continuity of V (x), there exists some x̂ such that

V (̂x) = min
x∈Ω

V (x) < 0.

Similar to the process of obtaining (2.4), we have

(–�)β/2V (̂x) ≤ c
δ

β
2

V (̂x) < 0. (2.6)

For δ < min{δ1, δ2} sufficiently small, from the second inequality of (2.1), (2.6), U (̂x) ≥ U(x̃),
(2.5), and V (̂x) < 0, we have

0 ≤ (–�)β/2V (̂x) + c2(̂x)U (̂x)

≤ c
δ

β
2

V (̂x) + c2(̂x)U (̃x)

≤ cV (̂x)
δ

β
2

–
δα

1 c1(̃x)c2(̂x)V (̃x)
c

≤ cV (̂x)
δ

β
2

(
1 – c1(̃x)c2(̂x)δα+β

)

< 0.

It is a contradiction, and hence U(x) ≥ 0 (x ∈ Ω). Similarly, V (x) ≥ 0 (x ∈ Ω), so (2.2) is
proved.
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To prove (2.3), we also apply the contradiction and assume that there exists some η′ ∈ Ω

such that

V
(
η′) = 0.

The proof process for Lemma 2.1 (see [25]) shows

(–�)β/2V
(
η′) =

∫
Bλ(0)

(
1

| |z|η′
λ

– λz
|z| |

n+β
–

1
|η′ – z|n+β

)
V (z) dz. (2.7)

Because for z ∈ Bλ(0) it leads to

∣∣∣∣ |z|η
′

λ
–

λz
|z|

∣∣∣∣
2

–
∣∣η′ – z

∣∣2 =
(|η′|2 – λ2)(|z|2 – λ2)

λ2 > 0,

so

1

| |z|η′
λ

– λz
|z| |

n+β
–

1
|η′ – z|n+β

< 0.

Hence, if V (z) is not identically 0 in Bλ(0), then (2.7) implies

(–�)β/2V
(
η′) < 0.

Combining it with the second inequality of (2.1), it follows c2(η′)U(η′) > 0 and

U
(
η′) < 0,

since c2(η′) < 0. This is a contradiction to (2.2) and then V (x) is identically 0 in Bλ(0).
Thanks to

V (x) = –Vλ(x), x ∈ Bλ(0),

it gives

V (x) ≡ 0, x ∈ Rn. (2.8)

From the second inequality of (2.1) and c2(x) < 0, we know

U(x) ≤ 0, x ∈ Ω .

But noting

U(x) ≥ 0, x ∈ Ω ,

it implies

U(x) = 0, x ∈ Ω .
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Similar to the process of obtaining (2.8), we attain

U(x) = 0, x ∈ Rn.

Now (2.3) is proved.
Similarly, if we first assume that there exists some η′ ∈ Ω such that U(η′) = 0, then one

can also check (2.3) following the previous proof. Now Lemma 2.3 is proved. �

For a bounded narrow region Ω out of Bλ(0), we have the following.

Lemma 2.4 Let Ω ⊂ Aλ–δ,λ(0) ≡ {x ∈ Rn|λ – δ < |x| < λ} for 0 < δ < λ sufficiently small.
Assume that U ∈ Lα ∩ C1,1

loc(Ω) and V ∈ Lβ ∩ C1,1
loc(Ω) are lower semi-continuous on Ω . If

ci(x) < 0 (i = 1, 2) is bounded from below on Ω and

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(–�)α/2U(x) + c3(x)V (x) ≥ 0,

(–�)β/2V (x) + c4(x)U(x) ≥ 0, x ∈ Ω ⊂ Rn \ Bλ(0),

U(x), V (x) ≥ 0, x ∈ Rn \ (Bλ(0) ∪ Ω),

U(x) = –Uλ(x), V (x) = –Vλ(x), x ∈ Rn \ Bλ(0),

(2.9)

then

U(x), V (x) ≥ 0, x ∈ Ω . (2.10)

Furthermore, if U(x) or V (x) equals to 0 at some point in Ω , then

U(x) = V (x) = 0, x ∈ Rn. (2.11)

Proof: We note that U(x) = –Uλ(x) and V (x) = –Vλ(x), since U(x) and V (x) satisfy the
anti-symmetry. If U(x) ≥ 0 (x ∈ Ω) in (2.10) does not hold, then from the lower semi-
continuity of U(x) on Ω , there exists some x̄ ∈ Ω such that

U(x̄) = min
x∈Ω

U(x) < 0. (2.12)

By virtue of the third inequality of (2.9), we see further that x̄ is in the interior of Ω .
Let Ũ(x) = U(x) – U(x̄), then Ũ(x̄) = 0 and

(–�)α/2Ũ(x) = (–�)α/2U(x). (2.13)

It follows from the anti-symmetry of U(x) that

Uλ(x) =
(

λ

|x|
)n–α

U
(
xλ

)
= –U(x),

then

U
(
xλ

)
= –

( |x|
λ

)n–α

U(x)
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and
(

λ

|x|
)n–α

Ũ
(
xλ

)
=

(
λ

|x|
)n–α(

U
(
xλ

)
– U(x̄)

)

=
(

λ

|x|
)n–α[

–
( |x|

λ

)n–α

U(x) – U(x̄)
]

= –U(x) + U(x̄) – U(x̄) –
(

λ

|x|
)n–α

U(x̄)

= –Ũ(x) –
[

1 +
(

λ

|x|
)n–α]

U(x̄),

i.e.,

–Ũ(x) =
(

λ

|x|
)n–α

Ũ
(
xλ

)
+

[
1 +

(
λ

|x|
)n–α]

U(x̄). (2.14)

Together with Ũ(x̄) = 0 and (2.14), we give

(–�)α/2Ũ(x̄) =
∫

Rn

Ũ(x̄) – Ũ(y)
|x̄ – y|n+α dy

=
∫

Bλ(0)

–Ũ(y)
|x̄ – y|n+α dy +

∫
Rn\Bλ(0)

–Ũ(y)
|x̄ – y|n+α dy

=
∫

Bλ(0)

( λ
|y| )

n–αŨ(yλ)
|x̄ – y|n+α dy +

∫
Bλ(0)

(1 + λ
|y| )

n–αU(x̄)
|x̄ – y|n+α dy

+
∫

Rn\Bλ(0)

–Ũ(y)
|x̄ – y|n+α dy

:= J1 + J2 + J3.

In J1, letting y = λ2z
|z|2 , so |y| = λ2

|z| , yλ = λ2y
|y|2 = z, and λ

|y| = λ
λ2
|z|

= |z|
λ

, it shows from y ∈ Bλ(0) that

|z| > λ, i.e., z ∈ Rn \ Bλ(0), hence

J1 =
∫

Bλ(0)

( λ
|y| )

n–αŨ(yλ)
|x̄ – y|n+α dy

=
∫

Rn\Bλ(0)

( |z|
λ

)n–αŨ(z)

|x̄ – λ2z
|z|2 |n+α

(
λ2|z|
|z|2

)n

dz

=
∫

Rn\Bλ(0)

( |z|
λ

)n–αŨ(z)

|x̄ – λ2z
|z|2 |n+α

(
λ

|z|
)n–α(

λ

|z|
)n+α

dz

=
∫

Rn\Bλ(0)

1
| x̄|z|

λ
– λz

|z| |
n+α Ũ(z) dz, (2.15)

and so

J1 + J3 =
∫

Rn\Bλ(0)

(
1

| |z|x̄
λ

– λz
|z| |

n+α –
1

|x̄ – z|n+α

)
Ũ(z) dz.
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For z ∈ Rn \ Bλ(0), it observes

∣∣∣∣ |z|x̄λ
–

λz
|z|

∣∣∣∣
2

– |x̄ – z| =
(|x̄|2 – λ2)(|z|2 – λ2)

λ2 > 0,

and then

1
| |z|x̄

λ
– λz

|z| |
n+α –

1
|x̄ – z|n+α < 0. (2.16)

In Ω , we know by (2.12) that Ũ(z) = U(z) – U(x̄) ≥ 0. In Rn \ (Bλ(0) ∪ Ω), it follows from
(2.9) that Ũ(z) = U(z) – U(x̄) ≥ 0. Noting Rn \ (Bλ(0)) = [Rn \ (Bλ(0) ∪ Ω)] ∪ Ω , we obtain
Ũ(z) ≥ 0 for every z ∈ Rn \ (Bλ(0)), and so J1 + J3 ≤ 0. Using U(x̄) < 0 and (2.13), it infers

(–�)α/2U(x̄) = J1 + J2 + J3 ≤ J2 ≤ U(x̄)
∫

Bλ(0)

1
|x̄ – y|n+α dy. (2.17)

Now we will estimate
∫

Bλ(0)
1

|x̄–y|n+α dy in (2.17). Obviously, it follows from Ω ⊂
Aλ–δ,λ(0) ≡ {x ∈ Rn|λ – δ < |x| < λ} that dist(x̄, ∂Bλ(0)) < δ, and for δ ≤ λ,

∫
Bλ(0)

1
|x̄ – y|n+α dy

≥
∫

Bλ(0)∩[B2λ+δ (x̄)\Bδ (x̄)]

1
|x̄ – y|n+α dy

≥ V (Bλ/2(x̄))
V (B3λ(x̄))

∫
B2λ+δ (x̄)\Bδ (x̄)

1
|x̄ – y|n+α dy

≥ c
∫

B2λ+δ (x̄)\Bδ (x̄)

1
|x̄ – y|n+α dy

= c
∫ 2λ+δ

δ

∫
∂Bs(x̄)

1
|x̄ – y|n+α ds

= c
∫ 2λ+δ

δ

∫
∂Bs(x̄)

1
sn+α

ds

= c
∫ 2λ+δ

δ

sn–1

sn+α
ds

= c
∫ 2λ+δ

δ

s–α–1 ds

= –cs–α|2λ+δ
δ

= c
(

1
δα

–
1

(2λ + δ)α

)

≥ c
(

1
δα

–
1

(3δ)α

)

=
c
δα

.
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Using it into (2.17) and recalling (2.12), we have

(–�)α/2U(x̄) ≤ U(x̄)
∫

Bλ(0)

1
|x̄ – y|n+α dy ≤ c

δn+α
U(x̄). (2.18)

Combining the first inequality in (2.9), it means

cU(x̄)
δn+α

+ c3(x̄)V (x̄) ≥ 0,

and from c3(x̄) < 0,

V (x̄) ≤ –
cU(x̄)

δn+αc3(x̄)
< 0. (2.19)

In terms of (2.19) and the lower semi-continuity of v, there exists some point x0 such that

V
(
x0) = min

x∈Ω
V (x) < 0.

Similar to the process of obtaining (2.18), we have

(–�)β/2V
(
x0) ≤ c

δn+β
V

(
x0) < 0. (2.20)

By the second inequality in (2.9), (2.18), U(x0) ≥ U(x̄), (2.19), (2.20), and V (x0) < 0, it de-
rives that, for δ sufficiently small,

0 ≤ (–�)β/2V
(
x0) + c4

(
x0)U

(
x0)

≤ c
δn+β

V
(
x0) + c4

(
x0)U(x̄)

≤ cV (x0)
δn+β

–
δn+αc3(x̄)c4(x0)V (x̄)

c

≤ cV (x0)
δn+β

(
1 – c3(x̄)c4

(
x0)δα+β+2n)

< 0.

This is a contradiction and then U(x) ≥ 0 (x ∈ Ω). Similarly, we can verify V (x) ≥ 0
(x ∈ Ω), and (2.10) is proved.

To prove (2.11), assume that there exists some ξ ′ ∈ Ω such that

V
(
ξ ′) = 0.

Letting ξ = λ2z
|z|2 , it gives by a similar way to (2.15) that

(–�)β/2V
(
ξ ′) =

∫
Rn

V (ξ ′) – V (ξ )
|ξ ′ – ξ |n+β

dξ

=
∫

Bλ(0)

–V (ξ )
|ξ ′ – ξ |n+β

dξ +
∫

Rn\Bλ(0)

–V (ξ )
|ξ ′ – ξ |n+β

dξ
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=
∫

Bλ(0)

( λ
|y| )

n–βV (ξλ)

|ξ ′ – ξ |n+β
dξ +

∫
Bλ(0)

(1 + λ
|y| )

n+βV (ξ ′)

|ξ ′ – ξ |n+β
dξ

+
∫

Rn\Bλ(0)

–V (ξ )
|ξ ′ – ξ |n+β

dξ . (2.21)

If V (x) is not identically 0 in Rn \ Bλ(0), then using (2.16) to (2.21) implies

(–�)β/2V
(
ξ ′) < 0.

Using the second inequality of (2.9) together with c4(x) < 0, we gain

U
(
ξ ′) < 0,

but it contradicts (2.10). Hence

V (x) = 0, x ∈ Rn \ Bλ(0). (2.22)

Since V (x) is symmetric in Rn \ Bλ(0), i.e.,

V (x) = –V (x), x ∈ Rn \ Bλ(0),

it shows

V (x) = 0, x ∈ Rn. (2.23)

From the second inequality of (2.9) and c4(x) < 0, we know

U(x) ≤ 0, x ∈ Ω .

Noting

U(x) ≥ 0, x ∈ Ω ,

we see

U(x) = 0, x ∈ Ω .

Similar to (2.23), we achieve

U(x) = 0, x ∈ Rn.

At this moment, (2.11) is proved. Similarly, if one assumes that there exists some point
ξ̃ ∈ Ω such that U(ξ̃ ) = 0, we can also get (2.11). Lemma 2.4 is proved.

Lemma 2.3 will be used to (1.1) in the whole space Rn, while Lemma 2.4 to (1.1) in the
bounded star-shaped domain.
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3 Proof of Theorem 1.1
The following result is needed in the proof of Theorem 1.1.

Lemma 3.1 Let

λ0 ≡ sup
{
λ > 0|Uλ0 (x) ≥ 0,Vλ0 (x) ≥ 0, x ∈ Bμ(0) \ {0}, 0 < μ ≤ λ

}
.

If Uλ0 (x) �= 0 or Vλ0 (x) �= 0, x ∈ Bλ0 (0) \ {0}, then for ε > 0 sufficiently small, there is a con-
stant c such that

Uλ0 (x) ≥ c > 0, Vλ0 (x) ≥ c > 0, x ∈ Bε(0) \ {0}. (3.1)

Proof Assuming

Uλ0 (x) �= 0, x ∈ Bλ0 (0) \ {0},

there exists some point y′′ ∈ Bλ0 (0) \ {0} such that

Uλ0

(
y′′) > 0. (3.2)

Because of Uλ0 ∈ C1,1
loc , there exists small δ > 0 such that

Uλ0 (y) > 0, x ∈ Bδ

(
y′′).

The integral solution to equation

( – �)β/2v(x) = j(x)up(x) + g
(
u(x)

)
, x ∈ Rn

is of the form

v(x) =
∫

Rn

1
|x – y|n–β

[
j(x)up(x) + g

(
u(x)

)]
dy.

With the similar way to treating J1 in the proof of Lemma 2.2, we get

v(x) =
∫

Bλ0 (0)

1
|x – y|n–β

[
j(x)up(x) + g

(
u(x)

)]
dy

+
∫

Rn\Bλ0 (0)

1
|x – y|n–β

[
j(x)up(x) + g

(
u(x)

)]
dy

=
∫

Bλ0 (0)

1
|x – y|n–β

[
j(x)up(x) + g

(
u(x)

)]
dy

+
∫

Bλ0 (0)

1

|x – λ2
0y

|y|2 |
n–β

[
j
(

λ2
0x

|x|2
)

up
(

λ2
0x

|x|2
)

+ g
(

u
(

λ2
0x

|x|2
))](

λ0

|y|
)2n

dy

=
∫

Bλ0 (0)

1
|x – y|n–β

[
j(x)up(x) + g

(
u(x)

)]
dy

+
∫

Bλ0 (0)

1

| x|y|
λ0

– λ0y
|y| |n–β

[
j
(

λ2
0x

|x|2
)

up
(

λ2
0x

|x|2
)

+ g
(

u
(

λ2
0x

|x|2
))](

λ0

|y|
)n+β

dy.
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It follows

(–�)β/2vλ0 (x) =
(

λ0

|x|
)n+β(

(–�)β/2v
)(λ2

0x
|x|2

)

=
(

λ0

|x|
)n+β[

j
(

λ2
0x

|x|2
)

up
(

λ2
0x

|x|2
)

+ g
(

u
(

λ2
0x

|x|2
))]

,

and

vλ0 (x) =
∫

Rn

1
|x – y|n–β

(
λ0

|y|
)n+β[

j
(

λ2
0y

|y|2
)

up
(

λ2
0y

|y|2
)

+ g
(

u
(

λ2
0y

|y|2
))]

dy

=
∫

Bλ0 (0)

1
|x – y|n–β

(
λ0

|y|
)n+β[

j
(

λ2
0y

|y|2
)

up
(

λ2
0y

|y|2
)

+ g
(

u
(

λ2
0y

|y|2
))]

dy

+
∫

Rn\Bλ0 (0)

1
|x – y|n–β

(
λ0

|y|
)n+β[

j
(

λ2
0y

|y|2
)

up
(

λ2
0y

|y|2
)

+ g
(

u
(

λ2
0y

|y|2
))]

dy

=
∫

Bλ0 (0)

1
|x – y|n–β

(
λ0

|y|
)n+β[

j
(

λ2
0y

|y|2
)

up
(

λ2
0y

|y|2
)

+ g
(

u
(

λ2
0y

|y|2
))]

dy

+
∫

Bλ0 (0)

1

|x – λ2
0y

|y|2 |
n–β

( |y|
λ0

)n+β[
j(y)up(y) + g

(
u(y)

)](λ0

|y|
)2n

dy

=
∫

Bλ0 (0)

1
|x – y|n–β

(
λ0

|y|
)n+β[

j
(

λ2
0y

|y|2
)

up
(

λ2
0y

|y|2
)

+ g
(

u
(

λ2
0y

|y|2
))]

dy

+
∫

Bλ0 (0)

1

| x|y|
λ0

– λ0y
|y| |n–β

[
j(y)up(y) + g

(
u(y)

)]
dy.

Using uλ0 (y) = ( λ
|y| )

n–αu(yλ0 ), we know

u
(

λ2
0y

|y|2
)

= u
(
yλ0

)
=

( |y|
λ0

)n–α

uλ0 (y),

(
λ0

|y|
)n+β

up
(

λ2
0y

|y|2
)

=
(

λ0

|y|
)n+β[( |y|

λ0

)n–α]p

up
λ0

(y) = up
λ0

(y)

and

(
λ0

|y|
)n+β

g
(

u
(

λ2
0y

|y|2
))

=
(

λ0

|y|
)n+β

g
(( |y|

λ0

)n–α

uλ0 (y)
)

,

=
g(( |y|

λ0
)
n–α

uλ0 (y))

(( |y|
λ0

)
n–α

up
λ0

(y))
p up

λ0
(y).

It gives by y ∈ Bλ0 (0) that λ0
|y| ≥ 1, |y|

λ0
≤ 1, and j( λ2

0y
|y|2 ) ≥ j(y) from the monotonicity of

j(x) along each ray tξ |t ≥ 0 for any unit vector ξ ∈ Rn. If x ∈ Bε(0) \ {0}, y ∈ Bδ(y′′), and
(Bε(0) \ {0}) ∩ (Bδ(y′′)) = ∅, then

c11 ≤ |x – y| <
∣∣∣∣x –

λ2
0y

|y|2
∣∣∣∣ ≤ c12,
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and so

1
|x – y|n–β

–
1

|x – λ2
0y

|y|2 |
n–β

≥ c5 > 0,

where c11, c12, and c5 are positive constants. Using assumptions (i) and (ii), we have by
(3.2) that

Vλ0 (x) = vλ0 (x) – v(x)

=
∫

Bλ0 (0)

(
1

|x – y|n–β
–

1

|x – λ2
0y

|y|2 |
n–β

)

·
{(

λ0

|y|
)n+β[

j
(

λ2
0y

|y|2
)

up
(

λ2
0y

|y|2
)

+ g
(

u
(

λ2
0y

|y|2
))]

–
[
j(y)up(y) + g

(
u(y)

)]}
dy

≥
∫

Bλ0 (0)

(
1

|x – y|n–β
–

1

|x – λ2
0y

|y|2 |
n–β

)

·
[

j(y)up
λ0

(y) – j(y)up(y) +
g(( |y|

λ0
)
n–α

uλ0 (y))

(( |y|
λ0

)
n–α

uλ0 (y))
p up

λ0
(y) – g

(
u(y)

)]
dy

≥
∫

Bλ0 (0)

(
1

|x – y|n–β
–

1

|x – λ2
0y

|y|2 |
n–β

)

·
[

j(y)up
λ0

(y) – j(y)up(y) +
g(uλ0 (y))
(uλ0 (y))p up

λ0
(y) – g

(
u(y)

)]
dy

≥
∫

Bλ0 (0)

(
1

|x – y|n–β
–

1

|x – λ2
0y

|y|2 |
n–β

)
j(y)up–1(y)Uλ0 (y) dy

≥
∫

Bδ (y′′)
c5c6 dy > c > 0.

Then

Vλ0 (x) > c > 0, x ∈ Bε(0) \ {0}

and

Vλ0 (x) �= 0, x ∈ Bλ0 (0) \ {0}.

Repeating a similar process from Vλ0 (x) �= 0, x ∈ Bλ0 (0) \ {0}, we have

Uλ0 (x) > c > 0, x ∈ Bε(0) \ {0},

and (3.1) is checked. �

Next, let us prove Theorem 1.1.
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Proof of Theorem 1.1 Step 1. For λ > 0, let

B–
λ(0) =

{
x ∈ Bλ(0) \ {0}|Uλ(x) < 0 or Vλ(x) < 0

}
.

We will show that, for λ > 0 sufficiently small,

Uλ(x), Vλ(x) ≥ 0, x ∈ Bλ(0) \ {0}, (3.3)

that is to say, for λ > 0 sufficiently small,

B–
λ(0) = Φ , x ∈ Bλ(0) \ {0}. (3.4)

To prove (3.4), we first know from Lemma 2.2 that, for λ > 0 sufficiently small, there exists
0 < δ � λ such that

Uλ(x), Vλ(x) ≥ c > 0, x ∈ Bδ(0) \ {0},

which shows

B–
λ(0) = Φ , x ∈ Bδ(0) \ {0}. (3.5)

In the sequel, we will prove B–
λ(0) = Φ , x ∈ Bδ(0)\{0}. A straightforward computation gives

(–�)α/2uλ(x) =
(

λ

|x|
)n+α(

(–�)α/2u
)(

xλ
)

=
(

λ

|x|
)n+α[

k
(

λ2x
|x|2

)
vq(xλ

)
+ f

(
v
(
xλ

))]
.

From vλ(x) = ( λ
|x| )

n–βv(xλ), we have v(xλ) = ( |x|
λ

)n–βvλ(x) and so

(–�)α/2Uλ(x) = (–�)α/2uλ(x) – (–�)α/2u(x)

=
(

λ

|x|
)n+α[

k
(

λ2x
|x|2

)
vq(xλ

)
+ f

(
v
(
xλ

))]

– k(x)vq(x) – f
(
v(x)

)

=
(

λ

|x|
)n+α

k
(

λ2x
|x|2

)[( |x|
λ

)n–β

vλ(x)
]q

+
(

λ

|x|
)n+α

f
(
v
(
xλ

))

– k(x)vq(x) – f
(
v(x)

)

= k
(

λ2x
|x|2

)
vq
λ(x) +

(
λ

|x|
)n+α

f (v
(
xλ

)

– k(x)vq(x) – f
(
v(x)

)

= k
(

λ2x
|x|2

)
vq
λ(x) – k(x)vq(x)

+
f (( |x|

λ
)n–βvλ(x))

(( |x|
λ

)n–βvλ(x))
q vq

λ(x) – f
(
v(x)

)
. (3.6)
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Similarly, it implies

(–�)α/2Vλ(x) = j
(

λ2x
|x|2

)
up

λ(x) – j(x)up(x) +
g(( |x|

λ
)n–αuλ(x))

(( |x|
λ

)n–αuλ(x))
p up

λ(x) – g
(
u(x)

)
. (3.7)

By assumptions (ii) and (iii), we see that g(r)
rp and f (r)

rq are non-increasing, k(x) and j(x) are
non-decreasing along each ray tξ |t ≥ 0 for any unit vector ξ ∈ Rn, so

k
(

λ2x
|x|2

)
≥ k(x), (3.8)

j
(

λ2x
|x|2

)
≥ j(x), (3.9)

g(( |x|
λ

)n–αuλ(x))

(( |x|
λ

)n–αuλ(x))
p up

λ(x) –
g(uλ(x))

up
λ(x)

up
λ(x) ≥ 0, (3.10)

f (( |x|
λ

)n–βvλ(x))

(( |x|
λ

)n–βvλ(x))
q vq

λ(x) –
f (vλ(x))

vq
λ(x)

vq
λ(x) ≥ 0. (3.11)

If Uλ(x) < 0, then uλ(x) < u(x). From |x|
λ

≤ 1, it follows

( |x|
λ

)n–α

uλ(x) < u(x),

and therefore,

g(( |x|
λ

)n–αuλ(x))

(( |x|
λ

)n–βuλ(x))
p –

g(u(x))
up(x)

≥ 0. (3.12)

If Vλ(x) < 0, similar to (3.12), it yields

f (( |x|
λ

)n–βvλ(x))

(( |x|
λ

)n–βvλ(x))
q –

f (v(x))
vq(x)

≥ 0. (3.13)

If Uλ(x) ≥ 0, by assumption (i), g(r) is non-decreasing, and so

g
(
uλ(x)

) ≥ g
(
u(x)

)
. (3.14)

If Uλ(x) ≥ 0, similar to (3.14), we achieve

f
(
vλ(x)

) ≥ f
(
v(x)

)
. (3.15)

After these preparations, let us consider cases for x ∈ B–
λ(0): (a) Uλ(x) ≥ 0, Vλ(x) < 0; (b)

Uλ(x) < 0, Vλ(x) ≥ 0; (c) Uλ(x) < 0, Vλ(x) < 0.
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(a) If Uλ(x) ≥ 0, Vλ(x) < 0, then from (3.6)–(3.10), (3.13), and (3.14), we obtain

(–�)α/2Vλ(x) ≥ j(x)
[
up

λ(x) – up(x)
]

+
g(uλ(x))

up
λ(x)

up
λ(x) – g

(
u(x)

)

≥ j(x)
[
up

λ(x) – up(x)
]

= pj(x)ηp–1
1 (x)Uλ(x), (3.16)

where u(x) < η1(x) < uλ(x), and

(–�)α/2Uλ(x) ≥ k(x)
[
vq
λ(x) – vq(x)

]
+

f (v(x))
vq(x)

vq
λ(x) – f

(
v(x)

)

≥
[

k(x) +
f (v(x))
vq(x)

][
vq
λ(x) – vq(x)

]

= q
[

k(x) +
f (v(x))
vq(x)

]
ξ

q–1
1 (x)Vλ(x), (3.17)

where vλ(x) < ξ1(x) < v(x).
(b) If Uλ(x) < 0, Vλ(x) ≥ 0, then from (3.6)–(3.9), (3.11), (3.12), and (3.15), it follows

(–�)α/2Vλ(x) ≥
[

j(x) +
g(u(x))
up(x)

][
up

λ(x) – up(x)
]

= p
[

j(x) +
g(u(x))
up(x)

]
ξ

p–1
2 (x)Uλ(x), (3.18)

where uλ(x) < η2(x) < u(x), and

(–�)α/2Uλ(x) ≥ k(x)
[
vq
λ(x) – vq(x)

]
+

f (vλ(x))
vq
λ(x)

vq
λ(x) – f

(
v(x)

)

≥ k(x)
[
vq
λ(x) – vq(x)

]
= qk(x)ξ q–1

2 (x)Vλ(x), (3.19)

where v(x) < ξ2(x) < vλ(x).
(c) If Uλ(x) < 0, Vλ(x) < 0, then from (3.6)–(3.9), (3.12), and (3.13), it gives (3.18) and

(3.17).
Summing up the above analysis, we have

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(–�)α/2Uλ(x) + c1(x)Vλ(x) ≥ 0,

(–�)β/2Vλ(x) + c2(x)Uλ(x) ≥ 0, x ∈ B–
λ(0) \ {0},

Uλ(x), Vλ(x) ≥ 0, x ∈ Bλ(0) \ (B–
λ(0) ∪ {0}),

U(x) = –Uλ(x), V (x) = –Vλ(x), x ∈ Bλ(0) \ {0},

(3.20)

where ci(x) < 0 (i = 1, 2). Using Lemma 2.3 and the continuity of Uλ and Vλ, we get that,
for λ sufficiently small,

B–
λ(0) = φ, x ∈ Bλ(0) \ Bδ(0).

Combining it with (3.5), we derive (3.4). This completes the proof of Step 1.
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In fact, Step 1 provides a starting point for moving spheres.
Step 2. Keep moving the sphere Bλ until the limiting scale

λ0 = sup
{
λ ≥ 0|Uμ(x) ≥ 0, Vμ(x) ≥ 0, x ∈ Bμ(0) \ {0},∀μ < λ

}
.

We point out that

λ0 = ∞. (3.21)

First, let us prove the following.

Claim 1 If λ0 < ∞, then for every x ∈ Bλ0 (0) \ {0},

uλ0 (x) = u(x), vλ0 (x) = v(x).

Proof We use the contradiction. In Lemma 3.1, we have proved if Uλ0 (x) �= 0 or Vλ0 (x) �= 0,
then for ε > 0 sufficiently small,

Uλ0 (x) ≥ c > 0, Vλ0 (x) ≥ c > 0, x ∈ Bε(0) \ (0). (3.22)

By the definition of λ0,

Uλ0 (x) ≥ 0, Vλ0 (x) ≥ 0, x ∈ Bλ0 (0) \ {0}. (3.23)

It follows from (3.22) that there exist points x0 ∈ Bλ0 (0)\ {0} and y0 ∈ Bλ0 (0)\ {0} such that

Uλ0

(
x0) > 0, Vλ0

(
y0) > 0, (3.24)

hence,

Uλ0 (x) > 0, Vλ0 (x) > 0, x ∈ Bλ0 (0) \ {0}. (3.25)
�

To prove (3.25), suppose that (3.25) does not hold, then there exists some point x1 ∈
Bλ0 (0) \ {0} such that

0 = Uλ0

(
x1) = min

x∈Bλ0 (0)\{0}
Uλ0 (x),

that is to say, uλ0 (x1) = u(x1). By the proof process of Lemma 2.1, we know

(–�)α/2Uλ0

(
x1) =

∫
Bλ0 (0)

(
1

| |z|x1

λ0
– λ0z

|z| |n+α –
1

|x1 – z|n+α

)
Uλ0 (z) dz. (3.26)

Gathering (2.16) and (3.23), it implies

(–�)α/2Uλ0

(
x1) ≤ 0. (3.27)



Ji and Niu Boundary Value Problems         (2020) 2020:65 Page 21 of 26

From (3.16), we get

(–�)α/2Uλ0

(
x1) ≥ 0. (3.28)

Combining (3.27) and (3.28) gives

(–�)α/2Uλ0

(
x1) = 0.

Therefore, we have from (3.26) that

Uλ0 (x) ≡ 0, x ∈ Bλ0 (0) \ {0},

which is a contradiction to (3.24). Hence,

Uλ0 (x) > 0, x ∈ Bλ0 (0) \ {0}.

Similarly, we can prove

Vλ0 (x) > 0, x ∈ Bλ0 (0) \ {0}.

Thus (3.25) is proved.
Using (3.25), we can show that, for δ0 > 0 sufficiently small, it holds that, for any λ ∈

[λ0,λ0 + δ0),

Uλ(x) ≥ 0, Vλ(x) ≥ 0, x ∈ Bλ(0) \ {0}. (3.29)

It will contradict the definition of λ0 and Claim 1 will be proved.
To verify (3.29), we see from (3.25) that, for ε > 0 sufficiently small,

min
x∈Bλ0–ε(0)\{0}

Uλ0 (x) := m0 > 0, min
x∈Bλ0–ε(0)\{0}

Vλ0 (x) := n0 > 0.

By the continuity of Uλ and Vλ in λ, it implies

Uλ(x) ≥ m0

2
> 0, Vλ(x) ≥ n0

2
> 0, x ∈ Bλ0–ε(0) \ {0}. (3.30)

Noting computations similar to those in Step 1, Lemma 2.3, and the local boundedness of
g and f , we arrive at

Uλ(x) ≥ 0, Vλ(x) ≥ 0, x ∈ Bλ(0) \ Bλ0–ε(0).

Combining it with (3.30), we derive (3.29). Hence Claim 1 is true.
We continue to prove (3.21). Actually, if λ0 is finite, then from Claim 1 we get

uλ0 (x) = u(x), vλ0 (x) = v(x). (3.31)
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Owing to (3.6) and (3.7), we have

0 = (–�)α/2Uλ0 (x)

=
(

k
(

λ2
0x

|x|2
)

– k(x)
)

vq(x) +
[ f (( |x|

λ0
)n–βvλ0 (x))

(( |x|
λ0

)n–βvλ0 (x))
q –

f (v(x))
vq(x)

]
vq(x) (3.32)

and

0 = (–�)α/2Vλ0 (x)

=
(

j
(

λ2
0x

|x|2
)

– j(x)
)

up(x) +
[g(( |x|

λ0
)n–αuλ0 (x))

(( |x|
λ0

)n–αuλ0 (x))
p –

g(u(x))
up(x)

]
up(x). (3.33)

By assumptions (ii), (iii), it gives that f (r)
rq and g(r)

rp are non-increasing in r, k(x) and j(x) are
non-decreasing. Together with (3.32) and (3.33), it follows

k
(

λ2
0x

|x|2
)

= k(x), |x| < λ0

and

j
(

λ2
0x

|x|2
)

= j(x), |x| < λ0,

which imply that k(x) and j(x) are constants. This is a contradiction, and we arrive at (3.21).
Since λ0 = ∞, from Lemma 5.7 in [41] (Proposition 3.3 in [25]) (also see [26] and [42]),

we know u = c and v = c are constants. Taking this results into system (1.1), we know
“u = v = 0”.

Thus we get a contradiction to the positivity of solutions. The proof of Theorem 1.1 is
finished. �

Remark 3.1 When k(x) and j(x) are constants, we find from (3.32) and (3.33) that if f (v) =
C1vq and g(u) = C2up, then u(x) and v(x) are nonnegative solutions of (1.1).

Proof of Corollary 1.2 The proof of Theorem 1.1 implies, for all λ ∈ (0,∞),

(
λ

|x|
)n–α

u
(

λ2x
|x|2

)
≥ u(x),

so

∣∣∣∣λ
2x

|x|2
∣∣∣∣

n–α
2

u
(
xλ

)
=

λn–α

|x| n–α
2

u
(

λ2x
|x|2

)
≥ |x| n–α

2 u(x),

i.e.,

∣∣xλ
∣∣ n–α

2 u
(
xλ

) ≥ |x| n–α
2 u(x).

It shows that W (x) is monotone decreasing along {tξ |t ≥ 0} (|ξ | = 1).
The proof to W1(x) is similar. The statement is proved. �
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4 Proof of Theorem 1.3

Proof of Theorem 1.3 Let BR(0) be the smallest ball centered at the origin containing Ω .
For any λ ∈ (0, R), we denote the set

∑
λ

= Ω \ Bλ(O).

Because of the star-shapedness of Ω , we know that uλ(x) and vλ(x) obtained by the Kelvin-
transforms of u(x) and v(x) are well defined on

∑
λ.

Step 1. We will show that for ε > 0 (0 < ε < R) sufficiently small, if λ ∈ [R – ε, R), then

Uλ(x) ≥ 0, Vλ(x) ≥ 0, x ∈
∑

λ

. (4.1)

To view (4.1), denote

–∑
λ

=
{

x ∈
∑

λ

∣∣∣Uλ(x) < 0 or Vλ(x) < 0
}

.

Similar to the process of proving (3.13), we have

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(–�)α/2Uλ(x) + c3(x)Vλ(x) ≥ 0,

(–�)β/2Vλ(x) + c4(x)Uλ(x) ≥ 0, x ∈ ∑–
λ ,

Uλ(x), Vλ(x) ≥ 0, x ∈ Rn \ (Bλ(0) ∪ ∑–
λ),

U(x) = –Uλ(x), V (x) = –Vλ(x), x ∈ Rn \ Bλ(0),

where ci(x) < 0 (i = 3, 4). For ε > 0 sufficiently small,
∑–

λ is a narrow region for λ ∈ [R–ε, R).
Lemma 2.4 ensures

Uλ(x) ≥ 0, Vλ(x) ≥ 0, x ∈
–∑
λ

.

Now (4.1) is proved.
This provides a starting point for moving spheres. Next we continue to move the spheres.
Step 2. Keep shrinking the sphere Bλ until the limiting scale

λ0 = inf

{
λ ≥ 0

∣∣∣Uμ(x) ≥ 0, Vμ(x) ≥ 0, x ∈
∑

μ

,∀λ ≤ μ < R
}

.

We will show

λ0 = 0. (4.2)

Before proving (4.2), let us note by the definition of λ0 that

Uλ0 (x) ≥ 0, Vλ0 (x) ≥ 0, x ∈
∑
λ0

.
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It follows from (2.10) that either

Uλ0 (x) > 0, Vλ0 (x) > 0, x ∈
∑
λ0

, (4.3)

or

Uλ0 (x) ≡ 0, Vλ0 (x) ≡ 0, x ∈
∑
λ0

. (4.4)

Because Ω is a star-shaped domain, there exists some point y0 ∈ ∂Ω such that

Uλ0

(
y0) > 0, Vλ0

(
y0) > 0,

and the continuity of Uλ0 (x), Vλ0 (x) implies (4.3).
To prove (4.2), we use the contradiction and assume λ0 > 0. It allows us to move contin-

uously the sphere ∂Bλ0 and conclude that, for τ > 0 sufficiently small,

Uλ0–τ (x) ≥ 0, Vλ0–τ (x) ≥ 0, x ∈
∑
λ0–τ

. (4.5)

But this contradicts the definition of λ0 and it thus proves (4.2).
The remaining is to check (4.5). In fact, it is evident that Uλ(x), Vλ(x) > 0 in Rn \ Ω̄ for

all λ > 0. Note that the positivity of u(x) and v(x) does not necessarily imply the positivity
of Uλ and Vλ on ∂

∑
λ \∂Bλ(0), since Ω is not assumed to be strictly star-shaped. But, for

each connected component Zλ of
∑

λ, we can choose δ > 0 small as in Lemma 2.4 and cut
a closed set Kλ in Zλ such that meas(Zλ \ Kλ) = |Zλ \ Kλ| < δ/2 and dist(∂Zλ, ∂Kλ) < δ. It
follows by (4.3) that, for δ > 0 sufficiently small,

Uλ0 ≥ c > 0, Vλ0 ≥ c > 0, x ∈ Kλ0 . (4.6)

Since Uλ and Vλ depend continuously on λ, there exists ε > 0 sufficiently small, δ/2 > ε > 0,
such that for all λ ∈ (λ0 – ε,λ0),

Uλ(x) ≥ 0, Vλ(x) ≥ 0, x ∈ Kλ0 (4.7)

and

|Zλ \ Kλ0 | < δ.

Noting ∂(Zλ \ Kλ0 ) ⊂ ∂Zλ ∪ Kλ0 , we see that

Uλ(x) ≥ 0, Vλ(x) ≥ 0, x ∈ ∂(Zλ \ Kλ0 ),
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and so Uλ(x) and Vλ(x) satisfy

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(–�)α/2Uλ(x) + c5(x)Vλ(x) ≥ 0,

(–�)β/2Vλ(x) + c6(x)Uλ(x) ≥ 0, x ∈ Zλ \ Kλ0 ,

Uλ(x), Vλ(x) ≥ 0, x ∈ Rn \ ((Zλ \ Kλ0 ) ∪ Bλ(0)),

U(x) = –Uλ(x), V (x) = –Vλ(x), x ∈ Rn \ Bλ(0),

where ci(x) < 0 (i = 5, 6). It follows from Lemma 2.4 that

Uλ ≥ 0, Vλ ≥ 0, x ∈ Zλ \ Kλ0 . (4.8)

By (4.7) and (4.8), we have that, for all λ ∈ (λ0 – ε,λ0),

Uλ(x) ≥ 0, Vλ(x) ≥ 0, x ∈
∑

λ

,

which yields (4.5).
Step 3. Using (4.2) means that, for any fixed x ∈ Ω ,

(
λ

|x|
)n–α

u
(

λ2x
|x|2

)
≥ u(x),

(
λ

|x|
)n–α

v
(

λ2x
|x|2

)
≥ v(x) for all λ ∈ (

0, |x|).

Letting λ → 0, we obtain u(x) = 0 and v(x) = 0. It contradicts the positivity of u(x) and v(x),
and the conclusion of Theorem 1.3 is derived. �
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