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Abstract
In this paper, a class of quasilinear Schrödinger equations with discontinuous
nonlinearity is considered. After changing variables, by using nonsmooth critical
point theory, we obtain the existence and concentration of positive solutions for this
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these differentiable quasilinear Schrödinger problems.

MSC: 35J85; 47J30; 49J52

Keywords: Quasilinear Schrödinger equation; Variational method; Discontinuous
nonlinearity; Positive solution

1 Introduction
Recently many papers [1–5] have focused on studying the existence of solutions for the
following quasilinear Schrödinger equations:

iε
∂ψ

∂t
= –ε2�ψ + W (x)ψ – ε2k�

(
h
(|ψ |2))h′(|ψ |2)ψ – g

(|ψ |2)ψ , x ∈ R
N , (1.1)

where ε > 0, W is a given potential, k ∈ R, g and h are real functions. Equation (1.1)
with various types of h appears in several areas of physics. For example, in the case
h(s) = (1 + s) 1

2 , problem (1.1) models the self-channeling of a high-power ultra-short laser
in matter, the propagation of a high-irradiance laser in a plasma creates an optical index
depending nonlinearly on the light intensity and this leads to interesting new nonlinear
wave equations [6, 7]. For more applications, we can refer to [8–10] and the references
therein. Here, we are interested in studying the case h(s) = s, which is used to model a
superfluid film in plasma physics [4], especially the existence of standing wave solutions,
that is, solutions of type ψ = exp(–iEt/ε)u(x) with E ∈R and function u > 0 [11–13]. After
a direct computation, problem (1.1) is equivalent to

–�u + V (εx)u – k�
(
u2)u = g(u), x ∈R

N . (1.2)
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It is well known that there exist lots of results on discussing Eq. (1.2) with k = 0, i.e., the
following semilinear case:

–�u + V (εx)u = g(u), x ∈R
N . (1.3)

In [14] Rabinowitz used the mountain pass theorem to prove the existence of positive
solutions of (1.3) for ε > 0 and V satisfying

(V0) V∞ = lim inf|x|→∞ V (x) > infx∈RN V (x) = m > 0.
Later, Alves and Figueiredo [15] extended (1.3) to the p-Laplace case with 2 ≤ p < N and
proved that these solutions concentrate at global minimum points of V (εx) as ε → 0. More
results can be found in [16–20] and so on.

Compared to the semilinear case, the quasilinear case (k �= 0) becomes much more com-
plicated as there is no suitable space for the energy functional corresponding to problem
(1.2) for N ≥ 2. In order to overcome this difficulty, in [21], by changing of variables, the
authors reduced the quasilinear equation (1.2) into the semilinear case. Based on this fact,
problem (1.2) has been widely studied by assuming different hypotheses on V and f . Moa-
meni [22] obtained the existence of a positive solution by assuming that f is a nonnega-
tive function for N ≥ 2, and the potential function V is radially symmetric. Miyagaki and
Moreira [11] derived the existence and multiplicity of solutions for problem (1.2) when
the nonlinearity is indefinite in sign. Liu et al. [12, 13] developed a perturbation method,
the main idea of which is adding a regularizing term to recover the smoothness of the en-
ergy functional, so that the standard minimax theory can be used. Utilizing this method
and a constrained minimization argument, they proved that problem (1.2) has a positive
solution. Later, Wu [23] showed the existence of high energy solutions by employing the
perturbation method for a general quasilinear problem. Recently, Carrião et al. [1] inves-
tigated the existence of a least energy solution for a class of nonhomogeneous asymptot-
ically linear Schrödinger equations in R

N via the Pohozaev manifold. It is worth to point
out that different from semilinear problems, the critical exponent of problem (1.2) is 22∗,
not 2∗, where 22∗ = 4N

N–2 . This will lead to some difficulties. For example, some properties
in the usual Sobolev space cannot be used directly. The behavior of h at infinity plays an
important role when searching for a solution to problem (1.2), mainly supercritical, criti-
cal or subcritical cases, where h behaves at infinity as |s|r–1s, with r + 1 > 22∗, r + 1 = 22∗

or r + 1 < 22∗, respectively. The critical case of (1.2) was considered in [24–27]. The su-
percritical results can be found in [28–39] and the references therein.

However, there seems to be little progress on the existence of positive solutions for gen-
eral quasilinear elliptic equations with discontinuous nonlinearity. Based on this fact, we
will study the quasilinear Schrödinger Eq. (1.2) from a discontinuous point of view. To
some degree, the discontinuous case is more suitable to objective reality, and a smooth
situation is usually just an ideal case. Hence, we consider the existence and concentration
of solutions for the following problem:

⎧
⎨

⎩
–�u – �(u2)u + V (εx)u = H(u – a)up, x ∈R

N ,

u > 0,
(1.4)

where ε, β > 0 are positive parameters, p ∈ (3, 22∗ – 2) if N ≥ 3 or p ∈ (3, +∞) if N = 1, 2,
V ∈ C(RN ,R+) satisfying (V0).
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As is well known, the interest in studying nonlinear partial differential equations with
discontinuous nonlinearities has increased since many free boundary problems and obsta-
cle problems may be reduced to partial differential equations with nonsmooth potentials.
Among these problems, we have the seepage surface problem, the obstacle problem, and
the Elenbaas equation, see [40–42]. The area of nonsmooth analysis is closely related with
the development of critical point theory for nondifferentiable functionals, in particular,
for locally Lipschitz continuous functionals based on Clarke’s generalized gradient [43]. In
1981, Chang [40] extended the variational method to a class of nondifferentiable function-
als, and directly applied the variational method to prove some existence of theorems for
PDE with discontinuous nonlinearities. It provides an appropriate mathematical frame-
work to extend the classic critical point theory for C1-functionals in a natural way, and to
meet specific needs in applications, such as nonsmooth mechanics and engineering. For
a comprehensive understanding, we refer to Refs. [44–53].

This paper mainly discusses the existence of positive solutions to problem (1.4). Con-
trast to the previous results, our methods are totally different from those used in previous
papers, since we are dealing with a discontinuous and non-convex problem. The main
differences are the following:

(1) Unlike [1], the lack of differentiability of nonlinearities causes some technical
difficulties. This means that variational methods for C1 functionals are not suitable
in our case, since in our case, the energy functional is only locally Lipschitz
continuous. Therefore, we have to use another variational approach based on the
nonsmooth critical point theory due to Clarke [43] and Chang [54]. In contrast to
C1 variational methods, this method is not adequately developed, and we need to
improve it.

(2) In [1], if the energy functional associated to problem (1.2) is differentiable, it can be
discussed on the Nehari manifold and the mountain pass level is equal to the
minimum of the energy functional on Nehari manifolds, which is a key point in lots
of papers. However, all these properties are not true for nondifferentiable problems.
Hence, the arguments used in the above references cannot be directly repeated and
we need to develop some new techniques to get over these difficulties.

(3) Due to the appearance of the non-convex term �(u2)u, some arguments used in
standard semilinear problems cannot be used, therefore lots of estimates in this
paper need to be reestablished.

(4) Since H1(RN ) ↪→ Lp(RN ) (p ∈ [2, 2∗]) is not compact, and the compact embedding
is very crucial to deduce (PS) sequences in variational methods, we have to use
other means to overcome this difficulty.

The main result is the following.

Theorem 1.1 If hypothesis (V0) holds, then there exist ε∗, a∗ > 0 such that problem (1.4)
has a positive solution uε,a for ε ∈ (0, ε∗) and a ∈ (0, a∗). Furthermore, if yε,a ∈ R

N denotes
a maximum point of uε,a, we have

lim
(ε,a)→(0,0)

V (εyε,a) = m.

Our paper is organized as follows. In Sect. 2, we give some basic results involving locally
Lipschitz continuous functionals. In Sect. 3, we deal with the existence of solutions for an
auxiliary problem. Then we prove Theorem 1.1 in Sect. 4.
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2 Preliminary results
In the sequel, we will use the following basic notations.

• ⇀ means weak convergence while → means strong convergence.
• C and Ci (i = 1, 2, . . .) denote estimated constants (the exact value may be different

from line to line). on(1) denotes a sequence whose limit is 0 as n → ∞.
• (X,‖ · ‖) denotes a (real) Banach space and (X∗,‖ · ‖∗) denotes its topological dual,

| · |r denotes the norm of Lr(RN ).

Definition 2.1 ([43]) A function I : X → R is locally Lipschitz if for every u ∈ X there
exist a neighborhood U of u and L > 0 such that for every ν , η ∈ U

∣∣I(ν) – I(η)
∣∣ ≤ L‖ν – η‖.

Definition 2.2 ([43]) Let I : X → R be a locally Lipschitz function. The generalized
derivative of I in u along the direction ν is defined by

I0(u;ν) = lim sup
η→u,τ→0+

I(η + τν) – I(η)
τ

,

where u,ν ∈ X.

It is easy to see that the function ν �→ I0(u;ν) is sublinear, continuous and so is the
support function of a nonempty, convex and w∗-compact set ∂I(u) ⊂ X∗, defined by

∂I(u) =
{

u∗ ∈ X∗ :
〈
u∗,ν

〉
X ≤ I0(u;ν) for all v ∈ X

}
.

If I ∈ C1(X), then

∂I(u) =
{

I ′(u)
}

.

Clearly, these definitions extend those of the Gâteaux directional derivative and gradient.

Definition 2.3 ([46])
(i) I satisfies the nonsmooth (PS)c condition if every sequence {un} ⊂ X satisfying

I(un) → c and mI(un) → 0 as n → ∞,

has a strongly convergent subsequence, where mI(un) = infu∗
n∈∂I(un) ‖u∗

n‖X∗ .
(ii) I satisfies the nonsmooth C-condition if every sequence {un} ⊂ X satisfying

I(un) → c and
(
1 + ‖un‖

)
mI(un) → 0,

has a strongly convergent subsequence, where mI(un) = infu∗
n∈∂I(un) ‖u∗

n‖X∗ .

Proposition 2.1 ([43])
(i) (–h)0(u; z) = h0(u; –z) for all u, z ∈ X ;

(ii) h0(u; z) = max{〈u∗, z〉X : u∗ ∈ ∂h(u)} for all u, z ∈ X ;
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(iii) Let j : X →R be a continuously differentiable function. Then ∂j(u) = {j′(u)}, j0(u; z)
coincides with 〈j′(u), z〉X and (h + j)0(u; z) = h0(u; z) + 〈j′(u), z〉X for all u, z ∈ X ;

(iv) (Lebourg’s mean value theorem) Let u and v be two points in X . Then there exists a
point ξ in the open segment between u and v, and u∗

ξ ∈ ∂h(ω) such that

h(u) – h(v) =
〈
u∗

ξ , u – v
〉
X ;

(v) (Second chain rule) Let Y be a Banach space and j : Y → X be a continuously
differentiable function. Then h ◦ j is locally Lipschitz and

∂(h ◦ j)(y) ⊆ ∂h
(
j(y)

) ◦ j′(y) for all y ∈ Y ;

(vi) mh(u) = infu∗∈∂h(u) ‖u∗‖X∗ is lower semicontinuous.

Proposition 2.2 ([40, 42]) Let {un} ⊂ X and {u∗
n} ⊂ X∗ with u∗

n ∈ ∂I(un). If un → u in X
and u∗

n ⇀ u∗ in X∗, then u∗ ∈ ∂I(u).

Proposition 2.3 ([40, 42]) Let Ψ (u) =
∫
RN G(u) dx, where G(t) =

∫ t
0 g(s) ds. Then, Ψ ∈

Liploc(Lp+1(RN ),R), ∂Ψ (u) ⊂ L
p+1

p (RN ) and if ρ ∈ ∂Ψ (u), it satisfies

ρ(x) ∈ [
g
(
u(x)

)
, ḡ

(
u(x)

)]
a.e. in R

N .

Lemma 2.1 ([55]) Assume Φ ∈ Liploc(X,R). Let K be a compact metric space, K0 ⊂ K ,
with K0 �= ∅ and f0 ∈ C(K0, X). Set

Γ ≡ {
f ∈ C(K , X)|f |K0 = f0

}
,

c ≡ inf
f ∈Γ

max
t∈K

Φ
(
f (t)

)
.

Assume that for each f ∈ Γ , there is some tf ∈ K \ K0 such that

max
t∈K

Φ
(
f (t)

)
= Φ

(
f (tf )

)
.

Then there exists a sequence un ∈ X satisfying

Φ(un) → c and min
u∗

n∈∂Φ(un)

∥
∥u∗

n
∥
∥

X∗ → 0.

3 An auxiliary problem
In this section, we firstly discuss an auxiliary problem, which is very important in proving
Theorem 1.1. Note that weak solutions of (1.4) are critical points of the following func-
tional:

Iε,a(u) =
1
2

∫

RN

(
1 + 2|u|2)|∇u|2 dx +

1
2

∫

RN
V (εx)u2 dx –

∫

RN
G(u) dx, (3.1)



Yuan Boundary Value Problems         (2020) 2020:66 Page 6 of 24

where G(u) =
∫ t

0 g(s) ds, g(t) = H(t – a)tp. While, in order to find critical points of (3.1), we
need to study the existence of solutions to problem (1.4) with ε = 1, i.e.,

⎧
⎨

⎩
–�u – �(u2)u + V (x)u = H(u – a)up, x ∈R

N ,

u > 0.
(3.2)

The Euler–Lagrange functional corresponding to problem (3.2) Ia : E →R is given by

Ia(u) =
1
2

∫

RN

(
1 + 2|u|2)|∇u|2 dx +

1
2

∫

RN
V (x)u2 dx –

∫

RN
G(u) dx, (3.3)

where E = {u ∈ H1(RN ) :
∫
RN V (x)|u|2 dx < ∞} with the norm ‖u‖2 =

∫
RN (|∇u|2 +

V (x)u2) dx. However, from (3.3) we can see that Ia is not well defined in general in E.
In order to overcome this difficulty, we adopt an method developed by Liu et al. [56] and
Colin and Jeanjean [21]. Make the change of variables by u = f (v), where f is defined by

f ′(t) =
1

√
1 + 2f 2(t)

on [0, +∞)

and

f (–t) = –f (t) on (–∞, 0].

From [21], one has the following lemma.

Lemma 3.1 The function f (t) and its derivative satisfy the following properties:
(f 1) f is uniquely defined, C∞(R) and invertible.
(f 2) |f ′(t)| ≤ 1 for all t ∈R.
(f 3) |f (t)| ≤ |t| for all t ∈ R.
(f 4) f (t)

t → 1 as t → 0.
(f 5) f (t)√

t → 2 1
4 as t → +∞.

(f 6) f (t)
2 ≤ tf ′(t) ≤ f (t) for all t > 0.

(f 7) f 2(t)
2 ≤ tf ′(t)f (t) ≤ f 2(t) for all t ∈R.

(f 8) |f (t)| ≤ 2 1
4 |t| 1

2 for all t ≥ R.
(f 9) There exists a positive constant C such that

∣∣f (t)
∣∣ ≥

⎧
⎨

⎩
C|t|, |t| ≤ 1,

C|t| 1
2 , |t| ≥ 1.

(f 10) For each α > 0, there exists a positive constant C(α) such that

∣
∣f (αt)

∣
∣2 ≤ C(α)

∣
∣f (t)

∣
∣2.

(f 11) |f (t)f ′(t)| ≤ 1√
2 .

(f 12) For each λ > 1 and all t ∈R, f 2(λt) ≤ λ2f 2(t).
(f 13) For each λ < 1 and all t ∈R, f 2(λt) ≥ λ2f 2(t).
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Therefore, after the change of variable, from Ia(u) we have the following functional

Ja(v) =
1
2

∫

RN
|∇v|2 dx +

1
2

∫

RN
V (x)f 2(v) dx –

∫

RN
G

(
f (v)

)
dx, (3.4)

where Ja is well defined on the space E. Arguing as in [21], if v is a critical point of the
functional Ja, then u = f (v) is a critical point of the functional Ia, i.e., u = f (v) is a solution
of problem (3.2). Since we are looking for positive solutions to problem (3.2), we only need
to require f (v) > 0, i.e., v > 0.

Lemma 3.2 The functional Ja satisfies the mountain pass geometry.

Proof We introduce the following notations for the functional Ja:

Ja(v) = Q1(v) – Q2(v),

where Q1(v) = 1
2
∫
RN |∇v|2 dx + 1

2
∫
RN V (x)f 2(v) dx and Q2(v) =

∫
RN G(f (v)) dx. Since Q1(v)

is a smooth continuous functions, we only need to show that Q2(v) is locally Lipschitz. Let
v1, v2 ∈ E. Consider

∣∣Q2(v2) – Q2(v1)
∣∣ ≤

∫

RN

∣
∣∣∣

∫ v2

v1

f p(t)f ′(t)dt
∣
∣∣∣dx

≤
∫

RN

∣∣
∣∣

∫ v2

v1

f p(t)dt
∣∣
∣∣dx

≤
∫

RN

(
f p(v2) + f p(v1)

)∣∣v2(x) – v1(x)
∣∣dx

≤ 2
p+4

4

∫

RN

∣
∣w(x)

∣
∣

p
2
∣
∣v2(x) – v1(x)

∣
∣dx

≤ 2
p+4

4 |v2 – v1| p
2 +1|w|

p
2
p
2 +1

≤ 2
p+4

4 C‖w‖ p
2 ‖v2 – v1‖,

where w(x) = max{f p(v1(x)), f p(v2(x))}. Therefore, Q2 is locally Lipschitz on E.
Setting S(r) = {v ∈ E : ‖v‖ = r}, we now show that there exist r, β > 0 such that

J(v) ≥ β for all v ∈ S(r). (3.5)

By (f 3) in Lemma 3.1, we have

∫

RN

(|∇v|2 + V (x)f 2(v)
)

dx ≤
∫

RN

(|∇v|2 + V (x)v2)dx,

which means that ‖v‖2
0 =

∫
RN (|∇v|2 + V (x)f 2(v)) dx is bounded. Using this condition, from

Lemma [57, Lemma 2.4], we have

‖v‖2
0 ≥ C1‖v‖2. (3.6)
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Hence, for v ∈ S(r), it follows from the Sobolev embedding and (f 8) that

Ja(v) =
1
2

∫

RN

(|∇v|2 + V (x)f 2(v)
)

dx –
∫

RN
G

(
f (v)

)
dx

≥ C1

2
‖v‖2 –

1
p + 1

∫

RN
f p+1(v) dx

≥ C1

2
‖v‖2 –

2
p+1

4

p + 1

∫

RN
|v| p+1

2 dx

≥ C1

2
‖v‖2 – C2‖v‖ p+1

2 .

Noting that p > 3, there exist r, β > 0 such that

Ja(v) ≥ β for ‖v‖ = r, v ∈ E.

Now, set ϕ ∈ C∞
0 (RN ) with ϕ > 0 and K = sup tϕ ⊂R

N . Then, for t > 0,

Ja(tϕ) =
t2

2

∫

RN
|∇ϕ|2 dx +

1
2

∫

RN
V (x)f 2(tϕ) dx –

1
p + 1

∫

K∩[tϕ>a]
f p+1(tϕ) dx

+
1

p + 1

∫

K∩[tϕ>a]
ap+1 dx + C med(K)

≤ t2

2
‖ϕ‖2 –

1
p + 1

∫

K∩[tϕ>a]
f p+1(tϕ) dx +

1
p + 1

∫

K∩[tϕ>a]
ap+1 dx + C med(K)

≤ t2

2
‖ϕ‖2 –

C
p + 1

t
p+1

2

∫

K∩[tϕ>ϕ0]
ϕ

p+1
2

0 dx +
1

p + 1

∫

K∩[ϕ0>tϕ>a]
ϕ

p+1
0 dx + C med(K)

→ –∞ as t → +∞,

where ϕ0 = max{a, 1}. Hence for t0 > 0 sufficiently large, we obtain e = t0ϕ satisfying

Ja(e) < 0 with e ∈ E \ Sr(0).

Note that Ja(0) = 0, then Ja satisfies the mountain pass geometry. It follows from the above
lemma and Lemma 2.1 that there exists a sequence {vn} ⊂ E satisfying

Ja(vn) → ca and mJa (vn) → 0, (3.7)

where ca is the mountain pass level of the functional Ja. �

Next, we will prove that {vn} given in (3.7) is bounded in E.

Lemma 3.3 The sequence {vn} is bounded in E.

Proof By (3.7) we have

Ja(vn) → ca and mJa (vn) → 0.
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Let {v∗
n} ⊂ E∗ satisfying mJa (vn) = ‖v∗

n‖E∗ and

v∗
n = Q′

1(vn) – γn,

where γn ⊂ ∂Q2(vn). Then

〈
v∗

n + γn, vn
〉

=
〈
Q′

1(vn), vn
〉

=
∫

RN
|∇vn|2 dx +

∫

RN
V (x)f (vn)f ′(vn)vn dx. (3.8)

Once we have 0 ≤ (p + 1)G(f (v)) ≤ vg(f (v))f ′(v), it follows that

Q2(vn) =
∫

RN
G

(
f (vn)

)
dx ≤ 1

p + 1

∫

RN
vng

(
f (vn)

)
f ′(vn) dx.

By Proposition 2.2, one has

g
(
f (vn)

)
f ′(vn) ≤ γn(x) ≤ ḡ

(
f (vn)

)
f ′(vn) a.e. in R

N

leading to

g
(
f (vn)

)
f ′(vn)vn ≤ γn(x)vn a.e. in R

N ,

which means that

∫

RN
g
(
f (vn)

)
f ′(vn)vn dx ≤

∫

RN
γn(x)vn dx = 〈γn, vn〉.

Hence

Q2(vn) ≤ 1
p + 1

∫

RN
vng

(
f (vn)

)
f ′(vn) dx ≤ 1

p + 1
〈γn, vn〉. (3.9)

From (3.8) and (3.9) we have

ca + on(1) = Ja(vn) –
1

p + 1
〈
v∗

n, vn
〉

=
1
2

∫

RN
|∇vn|2 dx –

1
p + 1

∫

RN
|∇vn|2 dx

+
1
2

∫

RN
V (x)f 2(vn) dx –

1
p + 1

∫

RN
V (x)f (vn)f ′(vn)vn dx

–
∫

RN
G

(
f (vn)

)
dx +

1
p + 1

〈γn, vn〉

≥
(

1
2

–
1

p + 1

)∫

RN

(|∇vn|2 + V (x)f 2(vn)
)

dx,

which means that ‖vn‖0 is bounded. Using the same arguments used in [57, Lemma 2.1]
we can obtain that ‖vn‖ is bounded in E, which completes the proof. �
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The following lemma is a key point in our analysis because the functional Q2 is not
compact. For each R > 0, let Q2,R : Lp+1(BR(0)) → R be the function

Q2,R(v) =
∫

BR(0)
G

(
f (v)

)
dx.

Furthermore, for each ϕ ∈ Lp+1(BR(0)), define the function ϕ̃ ∈ Lp+1(RN ) by

ϕ̃(x) =

⎧
⎨

⎩
ϕ(x), x ∈ BR(0),

0, x ∈ Bc
R(0).

Lemma 3.4 Let {vn} ⊂ E with vn ⇀ v in E and γn ⊂ ∂Q2(vn) with γn ⇀ γ0 in L
p+1

p (RN ).
Then

γ0(x) ∈ [
g
(
f (v)

)
f ′(v), ḡ

(
f (v)

)
f ′(v)

]
a.e. in R

N .

Proof Firstly, we denote by vn,R, γn,R, vR and γ0,R the restriction of the functions vn, γn, v
and γ0 to BR(0). For ∀ϕ ∈ Lp+1(BR(0)), from a simple computation one has

∫

BR(0)
γn,Rϕ dx =

∫

RN
γnϕ̃ dx

and

Q0
2,R(vn,R,ϕ) = Q0

2(vn,R, ϕ̃).

Noting that

∫

RN
γnϕ̃ dx ≤ Q0

2(vn,R, ϕ̃),

we obtain
∫

BR(0)
γn,Rϕ dx ≤ Q0

2,R(vn,R,ϕ), ∀ϕ ∈ Lp+1(BR(0)
)
,

which means

γn,R ∈ ∂Q2,R(vn,R).

Recalling that vn,R → vR in Lp+1(BR(0)) and γn,R ⇀ γ0,R in L
p+1

p (BR(0)), from Proposition 2.2

γ0,R ∈ ∂Q2,R(vR)

and so, from Proposition 2.3

γ0,R(x) ∈ [
g
(
f
(
vR(x)

))
f ′(vR(x)

)
, ḡ

(
f
(
vR(x)

))
f ′(vR(x)

)]
a.e. in BR(0),
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or equivalently

γ0(x) ∈ [
g
(
f
(
v(x)

))
f ′(v(x)

)
, ḡ

(
f
(
v(x)

))
f ′(v(x)

)]
a.e. in BR(0).

Employing the fact that R > 0 is arbitrary, we have

γ0(x) ∈ [
g
(
f
(
v(x)

))
f ′(v(x)

)
, ḡ

(
f
(
v(x)

))
f ′(v(x)

)]
a.e. in RN . �

Theorem 3.1 Suppose that ca < c∞, where c∞ is the mountain pass level associated with
the functional

Ja(v) =
1
2

∫

RN
|∇v|2 dx +

1
2

∫

RN
V∞f 2(v) dx –

1
p + 1

∫

RN
f p+1(v) dx, ∀v ∈ E.

Then, problem (3.2) has at least one nontrivial solution.

Proof From Lemma 3.2 and Lemma 2.1, there exists a sequence {vn} ⊂ E satisfying

Ja(vn) → ca and mJa (vn) → 0.

By using standard arguments, we can assume, without loss of generality, that {vn} is
bounded in E and vn(x) ≥ 0 for all x ∈ R

N . Then there exists v ∈ E such that, passing to a
subsequence if necessary,

vn ⇀ v in E (3.10)

and

vn → v in Lq
loc

(
R

N)
for q ∈ [

1, 2∗). (3.11)

Claim 1 The weak limit v is nontrivial.

In fact, if v ≡ 0, the limit vn → 0 in E does not hold as ca > 0. From Lions lemma [58],
there exist {yn} ⊂R

N and α, r > 0 satisfying

lim inf
n→∞

∫

Br (yn)
|vn|2 dx ≥ α > 0.

Since we are assuming v = 0, from the Sobolev embedding theorem we obtain that {yn} is
unbounded. Now set

wn(x) = vn(x + yn). (3.12)

Employing the boundedness of {vn} in E, we infer that {wn} is bounded in E. Thus, there
exist w ∈ E \ {0} and subsequence of {wn}, still denote by itself, such that

wn ⇀ w in E (3.13)
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and

wn → w in Lq
loc

(
R

N)
,

1 ≤ s if N = 1, 2 and 1 ≤ q < 2∗ if N ≥ 3.
Set ψ ∈ C∞

0 (RN ) satisfying ψ(x) = 1 for x ∈ B1(0), ψ(x) = 0 for x ∈ Bc
2(0), 0 ≤ ψ(x) ≤ 1

and ψR(x) = ψ( x
R ) for R > 0. Then, there exists v∗

n ∈ ∂Ja(vn) such that

〈
v∗

n, (ψRwn)(· – yn)
〉

= on(1)

as the sequence {(ψRwn)(· – yn)} is bounded in E. Hence

∫

RN

(∇vn∇(ψRwn)(x – yn) + V (x)f (vn)f ′(vn)(ψRwn)(x – yn)
)

dx

=
∫

RN
γn(ψRwn)(x – yn) dx + on(1),

where γn ∈ ∂Q2(vn), and so

∫

B2R

(|∇wn|2ψR + V (x + yn)f (wn)f ′(wn)wnψR
)

dx

+
∫

B2R

wn∇wn∇ψR dx ≤
∫

B2R

f p(wn)f ′(wn)wnψR dx.

By Fatou’s lemma, we have

∫

B2R

(|∇w|2ψR
)

+ V∞f (w)f ′(w)wψR) dx

+
∫

B2R

w∇w∇ψR dx ≤
∫

B2R

f p(w)f ′(w)wψR dx.

Passing to the limit of R → +∞, from the above inequality one deduces that

∫

RN

(|∇w|2 + V∞f (w)f ′(w)w
)

dx ≤
∫

RN
f p(w)f ′(w)w dx. (3.14)

Once we have w �= 0, there exists t > 0 such that tw ∈ N∞, where N∞ is the Nehari mani-
fold associated with J∞ defined by

N∞ =
{

v ∈ E \ {0} : J ′
∞(v)v = 0

}
.

Then
∫

RN

(
t2|∇v|2 + V∞f (tv)f ′(tv)tv

)
dx =

∫

RN
f p(tv)f ′(tv)tv dx,

i.e.,

∫

RN

(
|∇v|2 + V∞

f (tv)f ′(tv)
tv

v2
)

dx =
∫

RN

f p(tv)f ′(tv)
tv

v2 dx. (3.15)
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Note that

[
f p(s)f ′(s)

s

]′
=

[pf p–1(s)f ′2(s) + f p(s)f ′′(s)]s – f p(s)f ′(s)
s2

=
[pf p–1(s)f ′2(s) – 2f p+1(s)f ′4(s)]s – f p(s)f ′(s)

s2

=
f p–1(s)f ′(s)[pf ′(s)s – 2f 2(s)f ′3(s)s – f (s)]

s2

≥ f p–1(s)f ′(s)
[
(p – 1)f ′(s)s – f (s)

]

≥ f p(s)f ′(s)
(

p – 1
2

– 1
)

> 0 for s > 0

and

[
f (s)f ′(s)

s

]′
=

sf ′2(s) + f (s)f ′′(s)s – f (s)f ′(s)
s2

=
f ′(s)ϕ1(s)

s2 ,

where ϕ1(s) = f ′(s)s – 2f 2(s)f ′3(s)s – f (s). Since

ϕ′
1(s) = f ′′(s)s + f ′(s) – 4f (s)f ′(s)s – 6f 2(s)f ′2(s)f ′′(s)s – 2f 2(s)f ′3(s) – f ′(s)

= f (s)f ′3(s)
[
–6f ′(s)s + 12f 2(s)f ′3(s)s – 2f (s)

]

= f (s)f ′3(s)
[

–6f ′(s)s +
12f 2(s)

1 + 2f 2(s)
f ′(s)s – 2f (s)

]

≤ –2f 2(s)f ′3(s)

< 0

for s > 0, it demonstrates ( f (s)f ′(s)
s )′ < 0 for s > 0. The above inequalities mean that f ′(tv)f (tv)

tv is
a decreasing function and f p(tv)f ′(tv)

tv is an increasing function. Then from (3.14) and (3.15)
we infer that t ≤ 1.

By virtue of a result found in Willem [59, Theorem 4.2] we have

c∞ ≤ inf
v∈N∞

J∞(v),

from which it follows that c∞ ≤ J∞(tv). Consequently

c∞ ≤ J∞(tv) –
1

p + 1
J ′
∞(tv)tv

=
t2

2

∫

RN
|∇v|2 dx +

1
2

∫

RN
V∞f 2(tv) dx –

1
p + 1

∫

RN
f p+1(tv) dx

–
t2

p + 1

∫

RN
|∇v|2 dx –

1
p + 1

∫

RN
V∞f (tv)f ′(tv)tv dx
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+
1

p + 1

∫

RN
f p(tv)f ′(tv)tv dx

≤
(

1
2

–
1

p + 1

)
t2

∫

RN
|∇v|2 dx +

1
2

∫

RN
V∞f 2(tv) dx

–
1

p + 1

∫

RN
V∞f (tv)f ′(tv)tv dx.

Set A(s) = 1
2 f 2(s) – 1

p+1 f (s)f ′(s)s. Then

A′(s) = f (s)f ′(s) –
1

p + 1
[
f ′2(s)s + f (s)f ′′(s)s + f (s)f ′(s)

]

= f (s)f ′(s) –
1

p + 1
[
f ′2(s)s – 2f 2(s)f ′4(s)s + f (s)f ′(s)

]

= f ′(s)
[

f (s) –
1

p + 1
(
f ′(s)s – 2f 2(s)f ′4(s)s + f (s)f ′(s)

)
]

≥ f ′(s)
[(

1 –
1

p + 1

)
f (s) –

1
p + 1

f ′(s)s
]

≥ f ′(s)f (s)
(

1 –
2

p + 1

)

> 0 for p > 3, s > 0.

Since t ≤ 1, we have

c∞ ≤
(

1
2

–
1

p + 1

)∫

RN
|∇v|2 dx

+
1
2

∫

RN
V∞f 2(v) dx –

1
p + 1

∫

RN
V∞f (v)f ′(v)v dx.

According to Fatou’s lemma and the inequality g(f (s))f ′(s)s ≥ (p + 1)G(f (s)) for all s ≥ 0,
we derive that

c∞ ≤ lim inf
n→∞

[(
1
2

–
1

p + 1

)∫

RN
|∇vn|2 dx +

1
2

∫

RN
V (x)f 2(vn) dx

–
1

p + 1

∫

RN
V (x)f (vn)f ′(vn)vn dx +

∫

RN

(g(f (vn))f ′(vn)vn

p + 1
– GH

(
f (vn)

))
dx

]

≤ lim inf
n→∞ [

(
1
2

–
1

p + 1

)∫

RN
|∇vn|2 dx +

1
2

∫

RN
V (x)f 2(vn) dx

–
1

p + 1

∫

RN
V (x)f (vn)f ′(vn)vn dx +

1
p + 1

∫

RN
γnvn dx –

∫

RN
G

(
f (vn)

)
dx,

that is,

c∞ ≤ lim inf
n→∞

[
Ja(vn) –

1
p + 1

〈γn, vn〉
]

= lim
n→+∞

[
Ja(vn) + on(1)

]
= ca,

which is a contraction. Hence v ≥ 0 and v �= 0.
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In the following, we will prove that v is a solution of problem (3.2). With this aim in
mind, we need to show

–�v(x) ∈ 1
√

1 + 2f 2(v)
([

g
(
f (v)

)
, ḡ

(
f (v)

)]
– V (x)f (v)

)
a.e. in R

N .

Noting that {vn} ⊂ E is a (PS)ca sequence, there exist v∗
n ∈ ∂Ja(vn) and γn ⊂ ∂Q2(vn) satis-

fying

∥
∥v∗

n
∥
∥

E∗ → 0 (3.16)

and

〈
v∗

n, y
〉

=
∫

RN

(∇vn∇y + V (x)f (vn)f ′(vn)y
)

dx –
∫

RN
γny dx, ∀y ∈ E, (3.17)

where γn(x) ∈ [g(f (vn))f ′(vn), ḡ(f (vn))f ′(vn)] a.e. in R
N . The boundedness of {vn} combined

with (3.17) means that {γn} is bounded in L
p+1

p (RN ). Hence, there exist γ0 ∈ L
p+1

p (RN ) and
a subsequence of {γn}, still denoted the same, such that

γn ⇀ γ0 in L
p+1

p
(
R

N)
. (3.18)

It follows from (3.13) and (3.18) that

∫

RN

(∇v∇y + V (x)f (v)f ′(v)y
)

dx =
∫

RN
γ0y dx ∀y ∈ E.

Furthermore, by Lemma 3.4 we have

γ0(x) ∈ [
g
(
f (v)

)
f ′(v), ḡ

(
f (v)

)
f ′(v)

]
a.e. in R

N , (3.19)

which means that v is a nonnegative weak solution of the following problem:

–�v(x) =
1

√
1 + 2f 2(v)

(
γ0 – V (x)f (v)

)
. (3.20)

Hence (3.19) and (3.20) mean that v is a weak solution of problem (3.2). �

Remark 3.1 Due to the fact that V (x) ≥ m for all x ∈ R
N , it is easily to verify, by using

the Stampacchia theorem, that {x ∈R
N : f (v(x)) = a} has null measure for a small enough.

Thus the weak solution v satisfies

–�v(x) =
1

√
1 + 2f 2(v)

(
H

(
f (v) – a

)
f p(v) – V (x)f (v)

)
a.e. in R

N .

This is very important in many applications.
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4 Existence and concentration of solution for (1.4)
In this part, we define the space

Eε =
{

u ∈ H1(
R

N)
:
∫

RN
V (εx)|u|2 dx < ∞

}

endowed with the norm

‖u‖2 =
∫

RN

(|∇u|2 + V (εx)u2)dx.

Similar to (3.2), the dual energy functional associated with (1.4) is defined by

Jε,a(v) =
1
2

∫

RN
|∇v|2 dx +

1
2

∫

RN
V (εx)f 2(v) dx –

∫

RN
G

(
f (v)

)
dx,

and cε,a denotes its mountain pass level. Now, we are ready to prove Theorem 1.1.

Proof of Theorem 1.1 Divide the proof into two steps.
Step 1. We firstly show the existence of solutions to problem (1.4). Let ṽ ∈ H1(RN ) be a

positive ground state solution of the problem

⎧
⎨

⎩

–�ṽ = 1√
1+2f 2(ṽ)

[f p(ṽ) – mf (ṽ)] in R
N ,

ṽ > 0.
(4.1)

If J0 : H1(RN ) →R is the energy functional associated with (4.1) given by

J0(v) =
1
2

∫

RN
|∇v|2 dx +

m
2

∫

RN
f 2(v) dx –

1
p + 1

∫

RN
f p(v) dx,

we have J0(ṽ) = c0 and J ′
0(ṽ) = 0, where c0 is the mountain pass level of J0. Define ϕ ∈

C∞
0 (RN ) satisfying

0 ≤ ϕ(x) ≤ 1, ϕ(x) = 1 for ∀x ∈ B1(0) and ϕ(x) = 0 for ∀x ∈ Bc
2(0).

For each R > 1, we denote by ϕR and ṽR the functions

ϕR(x) = ϕ

(
x
R

)
and ṽR(x) = ϕR(x)ṽ(x).

A direct computation shows that

ṽR → ṽ in H1(
R

N)
as R → +∞.

Thus ṽR �= 0 for R sufficiently large. By this, there exists tR > 0 such that

J0(tRṽR) = max
t≥0

J0(tṽR)
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and so
∫

B2R

[
|∇ ṽk|2 +

mf (tṽk)f ′(tṽk)ṽ2
k

tṽk

]
dx =

∫

B2R

f p(tṽk)f ′(tṽk)ṽ2
k

tṽk
dx

and

lim
R→∞ tR = 1.

These facts mean that

v̂k = ṽktk → ṽ in H1(
R

N)
as R → ∞.

Once that c0 < c∞ (see [14]), we can choose δ, R > 0 such that

c0 + δ < c∞ and J0(v̂k) < c0 +
δ

2
,

and t > 0 satisfying Jε,a(t∗v̂k) < 0 uniformly for ε, a > 0 small enough.
Next, we consider γ̂ (t) = t(t∗v̂k) for t ∈ [0, 1], where γ̂ ∈ Γ . By the definition of cε,a one

has

cε,a ≤ max
t∈[0,1]

Jε,a(tv̂k) = Jε,a(t̂v̂k)

for some t̂ = t̂(ε, a, R) > 0.
For each given R > 0, it is obvious that there exist positive constants A1 and A2 such that

A1 ≤ t̂ ≤ A2 for ε, a > 0 small enough. Note that m ≤ V (x) for all x ∈R
N . Then

c0 ≤ cε,a ≤ max
t≥0

Jε,a(tv̂k). (4.2)

Without loss of generality, we suppose that V (0) = m. Hence, for each ζ > 0, there exists
ε0 > 0 such that

0 < V (εx) – m < ζ for ε ∈ (0, ε0) and x ∈ sup tv̂k = B2R(0)

from which one deduces that
∫

RN
V (εx)f 2(v̂k) dx <

∫

RN
(m + ζ )f 2(v̂k) dx.

By the above inequality we have

cε,a ≤ J0(t̂v̂k) +
ζ

2

∫

B2R

f 2(t̂v̂k) dx +
1

p + 1

∫

B2k∩[t̂v̂k≤a]
f p+1(t̂v̂k) dx

+
1

p + 1

∫

B2k∩[t̂v̂k >a]
ap+1 dx,

which implies

cε,a ≤ c0 + ζC1 +
δ

2
+ C2ap+1,
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where C1, C2 do not depend on ε, a > 0. Hence for ε, a > 0 small enough we have

cε,a ≤ c0 +
δ

4
+

δ

2
+

δ

4
≤ c0 + δ < c∞. (4.3)

It follows from Theorem 3.1 that problem (1.4) has at least one nontrivial solution for ε,
a > 0 sufficiently small.

Step 2. Now, we begin to prove the concentration of the solution. Denote by vε,a the
solution given by step 1. Thus, there is γε,a ∈ L

p+1
p (RN ) such that

–�vε,a(x) =
1

√
1 + 2f 2(vε,a)

(
γε,a – V (x)f

(
vε,a(x)

))
a.e. in R

N (4.4)

with γε,a(x) ∈ [g(f (vε,a(x)))f ′(vε,a(x)), ḡ(f (vε,a(x)))f ′(vε,a(x))] a.e. in R
N .

Now, fix εn → 0, an → 0. vn = vεn ,an and γn = γεn ,an . We are ready to discuss the behavior
of the maximum points related to {vn}, more precisely, if yn ∈ R

N denotes a maximum
point of vn, we will show that

lim
n→∞ V (εnyn) = m.

By just the same method as used in (4.2) and (4.3), we obtain

lim
n→∞ cεn ,an = c0 > 0. (4.5)

Claim 2 There exist {zn} ⊂R
N and η, r > 0 such that

lim inf
n→∞

∫

Br (zn)
|vn|2 dx ≥ η > 0.

In fact, if the claim does not hold, from a result due to Lions, one has

lim
n→∞

∫

RN
|vn|q dx = 0

for q ∈ (2, 2∗). This limit combined with the fact that vn is a solution of (1.4) with ε = εn

and a = an means that

lim
n→∞ cεn ,an = lim

n→∞ Jεn ,an (vn) = 0,

which contradicts (4.5).

Claim 3 The sequence wn = vn(· – zn) is strongly convergent in H1(RN ). Furthermore,

lim|x|→∞ wn(x) = 0

uniformly in n ∈N, that is, for ∀η > 0, there exists R > 0 such that

∣
∣wn(x)

∣
∣ < η ∀x ∈R

N \ BR(0).
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Using the same arguments in Claim 1, we can assume that {εnzn} is a convergent se-
quence in R

N with εnzn → z∗ ∈ V –1(m). Moreover, we obtain that if w is the weak limit of
{wn}, then

wn → w in H1(
R

N)
.

In the following, we prove that

lim|x|→∞ wn(x) = 0. (4.6)

The main idea is borrowed from [15]. For ∀R > 0, 0 < r ≤ R
2 . Set ϕ ∈ C∞(RN ), ϕ ∈ [0, 1]

with ϕ(x) = 1 if |x| ≥ R and ϕ = 0 if |x| ≤ R – r and |∇ϕ| ≤ 2
r . Note that

∣∣g
(
f (v)

)
f ′(v)

∣∣ ≤ ∣∣f (v)
∣∣p ≤ 2

p
4 |v| p

2 ≤ ξ |v|2 + Cξ |v|2∗–1. (4.7)

For each n ∈N and L > 0, set

vL,n(x) =

⎧
⎨

⎩
vn(x), vn(x) ≤ L,

L, vn(x) ≥ L,

yL,n = ϕ2v2(β–1)
L,n vn and wL,n = ϕvnvβ–1

L,n ,

where β > 1 is to be determined later.
Take yL,n as a test function in (4.4), then

∫

RN
ϕ2v2(β–1)

L,n |∇vn|2 dx = –2(β – 1)
∫

RN
ϕ2vnv2β–3

L,n ∇vn∇vL,n dx

– 2
∫

RN
ϕv2(β–1)

L,n vn∇vn∇ϕ dx +
∫

RN
γnϕ

2v2(β–1)
L,n vn dx

–
∫

RN
V (x)f (vn)f ′(vn)ϕ2v2(β–1)

L,n vn dx.

For ξ sufficiently small, (4.7) and γn(x) ≤ f p(vn)f ′(vn) yield that

∫

RN
ϕv2(β–1)

L,n |∇vn|2 dx ≤ –2
∫

RN
ϕv2(β–1)

L,n vn∇vn∇ϕ dx

+
∫

RN
f p(vn)f ′(vn)ϕ2v2(β–1)

L,n vn dx

≤ –2
∫

RN
ϕv2(β–1)

L,n vn∇vn∇ϕ dx + C3

∫

RN
ϕ2v2(β–1)

L,n v2∗
n dx.

For each ε > 0, by Young’s inequality we have

∫

RN
ϕ2v2(β–1)

L,n |∇vn|2 dx ≤ Cξ

∫

RN
ϕ2v2(β–1)

L,n v2∗
n dx + 2ξ

∫

RN
ϕ2v2(β–1)

L,n |∇vn|2 dx

+ 2Cξ

∫

RN
v2

nv2(β–1)
L,n |∇ϕ|2 dx.
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Taking ξ > 0 sufficiently small, the above inequality becomes

∫

RN
ϕ2v2(β–1)

L,n |∇vn|2 dx ≤ C
∫

RN
v2∗

n ϕ2v2(β–1)
L,n dx + C

∫

RN
v2

nv2(β–1)
L,n |∇ϕ|2 dx. (4.8)

By Hölder’s inequality and a Sobolev embedding, we conclude that

|wL,n|22∗ ≤ C|∇wL,n|22
= C

∫

RN

(∇ϕvnvβ–1
L,n + ϕ∇vnvβ–1

L,n + (β – 1)ϕvnvβ–2
L,n ∇vL,n

)2 dx

≤ Cβ2
[∫

RN
v2

n|∇ϕ|2v2(β–1)
L,n dx +

∫

RN
ϕ2v2(β–1)

L,n |∇vn|2 dx
]

. (4.9)

It follows from (4.8) and (4.9) that

|wL,n|22∗ ≤ Cβ2
[∫

RN
v2

n|∇ϕ|2v2(β–1)
L,n dx +

∫

RN
ϕ2v2(β–1)

L,n v2∗
n dx

]
. (4.10)

We assert that vn ∈ L 2∗2
2 (|x| ≥ R) for R large enough and uniformly in n. In fact, set β = 2∗

2 .
By virtue of (4.10) one has

|wL,n|22∗ ≤ Cβ2
[∫

RN
v2

n|∇ϕ|2v(2∗–2)
L,n dx +

∫

RN
ϕ2v(2∗–2)

L,n v2∗
n dx

]
,

or equivalently

|wL,n|22∗ ≤ Cβ2
[∫

RN
v2

n|∇ϕ|2v(2∗–2)
L,n dx +

∫

RN
v2

nϕ
2v(2∗–2)

L,n v(2∗–2)
n dx

]
.

Using Hölder’s inequality with the exponent 2∗
2 and 2∗

2∗–2 , we see that

|wL,n|22∗ ≤ Cβ2
[∫

RN
v2

n|∇ϕ|2v(2∗–2)
L,n dx

+
(∫

RN

(
vnϕv

2∗–2
2

L,n
)2∗

dx
) 2

2∗ (∫

|x|≥R/2
v2∗

n dx
) 2∗–2

2∗ ]
.

From the definition of wL,n, we obtain

(∫

RN

(
vnϕv

2∗–2
2

L,n
)2∗

dx
) 2

2∗

≤ Cβ2
[∫

RN
v2

n|∇ϕ|2v(2∗–2)
L,n dx +

(∫

RN

(
vnϕv

2∗–2
2

L,n
)2∗

dx
) 2

2∗ (∫

|x|≥R/2
v2∗

n dx
) 2∗–2

2∗ ]
.

Observing that vn → v in H1(RN ), for R sufficiently large, we infer that

∫

|x|≥R/2
v2∗

n dx ≤ ε uniformly in n.
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Hence

(∫

|x|≥R

(
vnv

2∗–2
2

L,n
)2∗

dx
) 2

2∗
≤ Cβ2

∫

RN
v2

nv(2∗–2)
L,n dx,

or equivalently

(∫

|x|≥R

(
vnv

2∗–2
2

L,n
)2∗

dx
) 2

2∗
≤ Cβ2

∫

RN
v2∗

n dx ≤ M < ∞.

By Fatou’s lemma in the variable L, one derives

∫

|x|≥R
v

2∗2
2

n dx < ∞,

which proves the claim.
Notice that if β = 2∗(t–1)

2t with t = 2∗2

2(2∗–2) , then β > 1, 2t
t–1 < 2∗ and vn ∈ L

2βt
t–1 (|x| ≥ R – r).

By (4.10) one has

|wL,n|22∗ ≤ cβ2
(∫

R–r≤|x|≤R
v2

nv2(β–1)
L,n dx +

∫

R–r≤|x|
v2∗

n v2(β–1)
L,n dx

)
,

or equivalently

|wL,n|22∗ ≤ cβ2
(∫

R–r≤|x|≤R
v2β

n dx +
∫

R–r≤|x|
v2∗–2

n v2β

L,n dx
)

.

Hölder’s inequality with exponent t
t–1 and t shows that

|wL,n|22∗ ≤ cβ2
(∫

R–r≤|x|≤R
v

2βt
t–1
n dx

) t–1
t

(∫

R–r≤|x|≤R
1 dx

) 1
t

+ cβ2
(∫

R–r≤|x|
v(2∗–2)t

n dx
) 1

t
(∫

R–r≤|x|
v

2βt
t–1
n dx

) t–1
t

.

Since (2∗ – 2)t = 2∗2, we infer that

|wL,n|22∗ ≤ Cβ2
(∫

R–r≤|x|
v

2βt
t–1
n dx

) t–1
t

.

Note that

|vL,n|2β

2∗β(|x|≥R) ≤
(∫

|x|≥R–r
v2∗β

L,n dx
) 2

2∗
≤

(∫

RN
ϕ2v2∗

n v2∗(β–1)
L,n dx

) 2
2∗

= |wL,n|22∗ ≤ cβ2
(∫

|x|≥R–r
v

2βt
t–1
n

) t–1
t

= Cβ2|vn|2β
2βt
t–1 (|x|≥R–r)

,

and therefore, from Fatou’s lemma, we obtain

|vn|2β

2∗β(|x|≥R) ≤ Cβ2|vn|2β
2βt
t–1 (|x|≥R–r)

.
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Choosing θ = 2∗(t–1)
2t , s = 2t

t–1 , we can show that

|vn|θm+1s(|x|≥R) ≤ C
∑m

i=1 θ–i
θ

∑m
i=1 iθ–i |vn|2∗

(|x| ≥ R – r
)
,

which means ‖vn‖L∞ (|x| ≥ R) ≤ C|vn|2∗(|x|≥R–r). Applying the convergence of vn → v in H ,
given ε > 0, there is R > 0 such that

‖vn‖L∞(|x|≥R) < ε ∀n ∈N.

Hence

lim|x|→∞ wn(x) = 0 uniformly in n.

Furthermore, from (4.5) we infer that limn→∞ ‖wn‖∞,RN > 0 and there exist δ∗ > 0 and
n0 ∈ N such that

‖wn‖∞,RN ≥ δ∗, ∀n ≥ n0.

Choose η = δ∗
2 and R > 0 such that

wn(x) <
δ∗

2
∀x ∈R

N \ BR(0) and n ∈N,

and so, if yn denotes a maximum point of wn, we derive

wn(yn) ≥ δ∗ and yn ∈ BR(0).

Setting ŷn to be the maximum point of vn, we have ŷn = yn + zn, which means εŷn = εnyn +
εnzn → z∗. From the continuity of the function V one derives

lim
n→∞ V (εnŷn) = V

(
z∗) = m.

Thus the proof is completed. �
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