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Abstract
In the paper, we investigate global and blow-up solutions for a class of nonlinear
reaction diffusion equations with Robin boundary conditions. By using auxiliary
functions and a first-order differential inequality technique, we establish conditions
on the data to prove the existence of global solution. Moreover, based on maximum
principles, we obtain a criterion that guarantees the occurrence of the blow-up.
When blow-up occurs, we discuss an upper bound and a lower bound on blow-up
time. At last, we apply two examples to illustrate our main results.
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1 Introduction
In recent years, there has been a great deal of literature on the global and blow-up solutions
for nonlinear partial differential equations, for instance, in [1–8]. These works have con-
tained a lot of interesting results about the global solutions, blow-up of solutions, bounds
for the blow-up time, blow-up rates, and so on. A variety of physical, chemical, and bio-
logical applications are discussed in [9, 10].

As far as we know, reaction-diffusion equation is an important part of partial differential
equation. There have been many research papers devoted to the nonlinear reaction diffu-
sion equations under various boundary conditions, such as Dirichlet boundary conditions
[11, 12], Neumann boundary conditions [13–16], nonlocal boundary conditions [17, 18],
and nonlinear boundary conditions [19, 20]. At the same time, the blow-up problems for
reaction diffusion equations under Robin boundary conditions have been also studied (see
[21–24]). The authors in [22] considered the following equation:

ut = ∇ · (ρ(|∇u|2)∇u
)

+ f (u), (x, t) ∈ Ω × (0, T),

where Ω ⊂ Rn(n ≥ 2) is a smooth bounded domain. By making appropriate restrictions
and using a differential inequality technique, a lower bound for the blow-up time was
investigated in a three-dimensional space if blow-up occurs. When Ω ⊂ Rn(n ≥ 2), the
authors demonstrated a criterion which guarantees the solution to remain global. [23]
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was concerned with a more complicated case:

(
g(u)

)
t = ∇ · (ρ(|∇u|2)∇u

)
+ k(t)f (u), (x, t) ∈ Ω × (0, T).

According to a differential inequality technique and maximum principles, the authors
showed a blow-up or non-blow-up criterion under some appropriate assumptions. More-
over, they were dedicated to the upper and lower bounds for the blow-up time when blow-
up occurs. In [24], the authors dealt with the blow-up phenomena of the following quasi-
linear reaction diffusion equations with weighted nonlocal source:

(
g(u)

)
t = ∇ · (ρ(|∇u|2)∇u

)
+ a(x)f (u), (x, t) ∈ Ω × (0, T),

where Ω ⊂ Rn(n ≥ 2) is a bounded convex domain. They established conditions to guar-
antee that the solution remains global or blows up in a finite time. Moreover, an upper and
lower bounds for blow-up time were derived. These results were obtained by utilizing a
differential inequality technique on suitably defined auxiliary functions.

Inspired by the above papers, we are concerned with the following reaction diffusion
equations under Robin boundary conditions:

⎧
⎪⎪⎨

⎪⎪⎩

(g(u))t = ∇ · (ρ(|∇u|p)∇u) + k(t)a(x)f (u), (x, t) ∈ Ω × (0, T),
∂u
∂ν

+ γ u = 0, (x, t) ∈ ∂Ω × (0, T),

u(x, 0) = u0(x), x ∈ Ω .

(1.1)

Here, p > 0 and Ω ⊂ R
n(n > 2) is a bounded convex domain and the boundary ∂Ω is

smooth. Ω is the closure of Ω . ∂u
∂ν

stands for the outward normal derivative on ∂Ω , γ is
a positive constant, u0 denotes the initial value and is a positive C2(Ω) function, T is the
blow-up time if the blow-up happens, otherwise T = +∞. Set R+ = (0, +∞), g is a C2(R+)
function with g ′(s) > 0 for all s > 0, ρ is a positive C2(R+) function with ρ(s) + psρ ′(s) > 0
for s > 0, k is a positive C1(R+) function, a is a positive C1(Ω) function, f is a nonnegative
C1(R+) function. The maximum principles imply that the classical solution u of (1.1) is a
positive solution in Ω × [0, T).

It is obvious that problem (1.1) is more general than the ones in [22–24]. The purpose
of the paper is to get a non-blow-up or blow-up criterion for system (1.1). We need to
define appropriate auxiliary functions that are different from the ones in [22–24]. By us-
ing first-order differential inequalities, we show that the solution of (1.1) exists globally
under some conditions. Furthermore, combining the first-order differential inequalities
with maximum principles, we demonstrate that the solution u(x, t) blows up at some fi-
nite time. When blow-up does occur, the upper and lower bounds for the blow-up time
are presented.

The rest of the paper is organized as follows. Section 2 shows that solution u(x, t) of (1.1)
exists globally in the suitable measure. In Sect. 3, we prove that solution u(x, t) blows up
at some finite time and obtain an upper bound for the blow-up time. Section 4 presents
a lower bound for the blow-up time when blow-up occurs. The last section gives two
examples to illustrate our main results.
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2 Global existence
In the section, under some suitable conditions, we prove the existence of global solution
u of problem (1.1). We suppose that u is a classical solution of problem (1.1). In order to
obtain our main result, it is required to construct the following notations and functions:

F(s) :=
∫ s

0
f (y) dy, G(s) := 2

∫ s

0
yg ′(y) dy, Φ(t) :=

∫

Ω

G
(
u(x, t)

)
dx, (2.1)

Ψ (t) := –γ

∫

∂Ω

u2 dS –
∫

Ω

|∇u|2 dx + 2k(t)
∫

Ω

a(x)F(u) dx. (2.2)

Throughout the paper, we need to assume that λ is the first positive eigenvalue of the
following problem:

⎧
⎨

⎩

ω + λω = 0, x ∈ Ω ,
∂ω
∂ν

+ γω = 0, x ∈ ∂Ω ,

where

0 < γ <
λL0

μn(pq + 1)
, L0 = min

∂Ω
(x · ν),μ ≥ 1.

In what follows, the main result will be stated.

Theorem 2.1 Let u be a classical solution of problem (1.1). And the following assumptions
on the functions ρ, g, a, f hold:

a(x)f
(
s(x, t)

) ≤ a1
(
s(x, t)

)κ

(∫

Ω

(
s(x, t)

)l dx
)m

, (2.3)

ρ(s) ≥ b1 + b2s2q, g ′(s) ≤ c, s > 0, (2.4)

where l, m,κ , a1, q, c, b1, b2 are positive constants satisfying

κ > 1, 0 < l < κ + 1 < 2pq + 2, κ + lm < 2pq + 1. (2.5)

Then u cannot blow up in the measure Φ(t) for all time t > 0, that is, there exists a global
solution for problem (1.1) in the measure Φ(t).

Proof Taking the derivation the function Φ(t) in (2.1), we get

Φ ′(t) =
∫

Ω

G′(u(x, t)
)
ut dx

= 2
∫

Ω

u
(∇ · (ρ(|∇u|p)∇u

)
+ k(t)a(x)f (u)

)
dx

= 2
∫

Ω

∇ · (uρ
(|∇u|p)∇u

)
– ρ

(|∇u|p)|∇u|2 + k(t)a(x)f (u)u dx.

= 2
∫

∂Ω

uρ
(|∇u|p)∂u

∂ν
dS – 2

∫

Ω

ρ
(|∇u|p)|∇u|2 dx + 2

∫

Ω

k(t)a(x)f (u)u dx
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= –2γ

∫

∂Ω

u2ρ
(|∇u|p)dS – 2

∫

Ω

ρ
(|∇u|p)|∇u|2 dx

+ 2
∫

Ω

k(t)a(x)f (u)u dx, (2.6)

where the divergence theorem and Robin boundary condition in (1.1) are used. Further-
more, conditions (2.3) and (2.4) imply that

Φ ′(t) ≤ –2γ

∫

∂Ω

u2ρ
(|∇u|p)dS – 2

∫

Ω

(
b1 + b2|∇u|2pq)|∇u|2 dx

+ 2k(t)
∫

Ω

a1uκ+1 dx
(∫

Ω

ul dx
)m

≤ –2b2

∫

Ω

|∇u|2pq+2 dx + 2k(t)
∫

Ω

a1uκ+1 dx
(∫

Ω

ul dx
)m

. (2.7)

Next, we deal with the first term on the right-hand side of (2.7). By virtue of Hölder’s
inequality, we have the following inequality:

∫

Ω

∣∣∇(
upq+1)∣∣2 dx = (pq + 1)2

∫

Ω

u2pq|∇u|2 dx

≤ (pq + 1)2
(∫

Ω

u2pq+2 dx
) pq

pq+1
(∫

Ω

|∇u|2pq+2 dx
) 1

pq+1
. (2.8)

The general Poincaré inequality yields

λ

∫

Ω

u2pq+2 dx ≤
∫

Ω

∣∣∇(
upq+1)∣∣2 dx –

∫

∂Ω

upq+1 ∂upq+1

∂ν
dS

=
∫

Ω

∣
∣∇(

upq+1)∣∣2 dx + γ (pq + 1)
∫

∂Ω

u2pq+2 dS, (2.9)

where the Robin boundary conditions in (1.1) are used. We apply the divergence theorem
to derive

∫

∂Ω

u2pq+2(x · ν) dS =
∫

Ω

∇ · (u2pq+2x
)

dx

= n
∫

Ω

u2pq+2 dx + 2(pq + 1)
∫

Ω

u2pq+1(∇u · x) dx

≤ n
∫

Ω

u2pq+2 dx + 2d(pq + 1)
∫

Ω

u2pq+1|∇u|dx.

Then it follows from Hölder’s inequality and Young’s inequality that

∫

∂Ω

u2pq+2 dS ≤ n
L0

∫

Ω

u2pq+2 dx +
2d(pq + 1)

L0

∫

Ω

u2pq+1|∇u|dx

=
n
L0

∫

Ω

u2pq+2 dx +
2d
L0

∫

Ω

upq+1∣∣∇(
upq+1)∣∣dx

≤ n
L0

∫

Ω

u2pq+2 dx + 2
((

d
L0

)2

θ

∫

Ω

u2pq+2 dx
) 1

2
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×
(∫

Ω

θ–1∣∣∇(
upq+1)∣∣2 dx

) 1
2

≤
(

n
L0

+
(

d
L0

)2

θ

)∫

Ω

u2pq+2 dx + θ–1
∫

Ω

∣
∣∇(

upq+1)∣∣2 dx, (2.10)

where

θ =
λL2

0 – μγ (pq + 1)nL0

μγ (pq + 1)d2 > 0, d = max
Ω

|x|. (2.11)

After inserting (2.10) into (2.9), we obtain

∫

Ω

∣
∣∇(

upq+1)∣∣2 dx ≥ M0

∫

Ω

u2pq+2 dx. (2.12)

Here

M0 =
λ – γ (pq + 1)[ n

L0
+ ( d

L0
)2θ ]

1 + γ (pq + 1)θ–1 > 0.

We substitute (2.12) into (2.8) to get

∫

Ω

|∇u|2pq+2 dx ≥ Mpq+1
0

(pq + 1)2pq+2

∫

Ω

u2pq+2 dx.

Therefore, (2.7) can be rewritten as follows:

Φ ′(t) ≤ –
2b2Mpq+1

0
(pq + 1)2(pq+1)

∫

Ω

u2pq+2 dx + 2k(t)
∫

Ω

a1uκ+1 dx
(∫

Ω

ul dx
)m

. (2.13)

From Hölder’s inequality, we deduce

∫

Ω

ul dx ≤
(∫

Ω

uκ+1 dx
) l

κ+1 |Ω| κ+1–l
κ+1 , (2.14)

∫

Ω

uκ+1 dx ≤
(∫

Ω

u2pq+2 dx
) κ+1

2pq+2 |Ω| 2pq–κ+1
2pq+2 . (2.15)

Obviously, the following inequality holds:

∫

Ω

u2pq+2 dx ≥
(∫

Ω

uκ+1 dx
) 2pq+2

κ+1 |Ω|– 2pq–κ+1
κ+1 . (2.16)

Combining (2.13) and (2.14)–(2.16), we derive

Φ ′(t) ≤ 2k(t)
(∫

Ω

uκ+1 dx
)1+ lm

κ+1 |Ω| (κ+1–l)m
κ+1

{
a1 –

b2Mpq+1
0

k(t)(pq + 1)2pq+2

× |Ω|– 2pq–κ–lm+1
κ+1 –m

(∫

Ω

uκ+1 dx
) 2pq+2–lm

κ+1 –1}
. (2.17)
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An application of Hölder’s inequality implies

∫

Ω

u2 dx ≤
(∫

Ω

uκ+1 dx
) 2

κ+1 |Ω| κ–1
κ+1 ,

that is,

∫

Ω

uκ+1 dx ≥
(∫

Ω

u2 dx
) κ+1

2 |Ω| 1–κ
2 . (2.18)

Consequently, (2.17) can be replaced by

Φ ′(t) ≤ 2k(t)
(∫

Ω

uκ+1 dx
)1+ lm

κ+1 |Ω| (κ+1–l)m
κ+1

{
a1 –

b2Mpq+1
0

k(t)(pq + 1)2pq+2

× |Ω|– 2pq+1–κ–lm
2 –m

(∫

Ω

u2 dx
) 2pq+1–κ–lm

2
}

. (2.19)

Assumptions (2.1) and (2.4) imply

G(u) = 2
∫ u

0
yg ′(y) dy ≤ 2c

∫ u

0
y dy = cu2.

Hence,

u2 ≥ 1
c

G(u). (2.20)

It follows from (2.19) and (2.20) that

Φ ′(t) ≤ 2k(t)
(∫

Ω

uκ+1 dx
)1+ lm

κ+1 |Ω| (κ+1–l)m
κ+1

{
a1 –

b2Mpq+1
0

k(t)(pq + 1)2pq+2

× |Ω|– 2pq+1–κ–lm
2 –m

(∫

Ω

1
c

G(u) dx
) 2pq+1–κ–lm

2
}

= 2k(t)
(∫

Ω

uκ+1 dx
)1+ lm

κ+1 |Ω| (κ+1–l)m
κ+1

{
a1 –

b2Mpq+1
0

(pq + 1)2pq+2k(t)c
2pq+1–κ–lm

2

× |Ω|– 2pq+1–κ–lm
2 –mΦ(t)

2pq+1–κ–lm
2

}
. (2.21)

From (2.21), we are devoted to proving that u cannot blow up in the measure Φ(t). Now,
suppose that u blows up at some finite t∗ in the measure Φ(t). Then we could find

lim
t→t∗–

k(t) = k
(
t∗), lim

t→t∗–
Φ(t) = +∞.

Moreover,

lim
t→t∗–

a1 –
b2Mpq+1

0

(pq + 1)2pq+2k(t)c
2pq+1–κ–lm

2
|Ω|– 2pq+1–κ–lm

2 –mΦ(t)
2pq+1–κ–lm

2 = –∞.
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Therefore, (2.21) yields that there exists t1 < t∗ such that Φ ′(t) < 0, t ∈ (t1, t∗). Namely,

Φ(t1) > Φ(t), t ∈ (
t1, t∗).

We take the limit as t → t∗– to get

Φ(t1) ≥ lim
t→t∗–

Φ(t) = +∞.

This is a contradiction. Then the hypothesis that u blows up at some finite time is false. �

3 Blow-up in finite time and an upper bound for blow-up time
This subsection presents that u blows up in finite time and derives an upper bound for
blow-up time under some suitable assumptions of the functions ρ, b, k, f , g . Firstly, we state
the following Lemma 3.1 which is used for the proof of the main result.

Lemma 3.1 Suppose that u is a classical solution of problem (1.1). And the following as-
sumptions are satisfied:

k′(t) ≥ 0, t > 0. (3.1)

∇ · (ρ(|∇u0|p
)∇u0

)
+ k(0)a(x)f (u0) ≥ 0, x ∈ Ω . (3.2)

Then

ut(x, t) ≥ 0, (t, x) ∈ [0, t∗) × Ω .

Proof Taking a derivative of ut with respect to t, we have

utt =
(

1
g ′(u)

(∇ · (ρ(|∇u|p)∇u
)

+ k(t)a(x)f (u)
)
)

t

=

(
1
g ′

(

ρ
u + pρ ′|∇u|p–2
n∑

i,j=1

uxi uxj uxixj + k(t)a(x)f (u)

))

t

=
ρ

g ′ 
ut +
pρ ′g ′|∇u|p–2∇u · ∇ut – ρg ′′ut

g ′2 
u

+
g ′p2ρ ′′|∇u|p–2∇u · ∇ut – pρ ′g ′′ut

g ′2 |∇u|p–2
n∑

i,j=1

uxi uxj uxixj

+
pρ ′(p – 2)|∇u|p–4∇u · ∇ut

g ′

n∑

i,j=1

uxi uxj uxixj

+
2pρ ′|∇u|p–2

g ′

n∑

i,j=1

(ut)xi uxj uxixj

+
(ak′f + akf ′ut)g ′ – g ′′utakf

g ′2 +
pρ ′|∇u|p–2

g ′

n∑

i,j=1

uxi uxj (ut)xixj .
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For convenience, let ξ = ut , then we get

ξt =
ρ

g ′ 
ξ +
pρ ′|∇u|p–2

g ′

n∑

i,j=1

uxi uxjξxixj +

(
pρ ′|∇u|p–2
u

g ′ +
ρ ′′p2|∇u|2p–4

g ′

×
n∑

i,j=1

uxi uxj uxixj +
p(p – 2)ρ ′|∇u|p–4

g ′

n∑

i,j=1

uxi uxj uxixj

)

∇u · ∇ξ

+
2pρ ′|∇u|p–2

g ′

n∑

i,j=1

uxj uxixjξxi +

(
akf ′

g ′ –
g ′′akf

g ′2

–
ρg ′′

g ′2 
u –
pρ ′g ′′|∇u|p–2

g ′2

n∑

i,j=1

uxi uxj uxixj

)

ξ +
ak′f

g ′ . (3.3)

By (3.1) and the properties of the functions a, f , g for any (t, x) ∈ [0, t∗) × Ω , we derive

ρ

g ′ 
ξ +
pρ ′|∇u|p–2

g ′

n∑

i,j=1

uxi uxjξxixj +

(
pρ ′|∇u|p–2
u

g ′ +
ρ ′′p2|∇u|2p–4

g ′

×
n∑

i,j=1

uxi uxj uxixj +
p(p – 2)ρ ′|∇u|p–4

g ′

n∑

i,j=1

uxi uxj uxixj

)

∇u · ∇ξ

+
2pρ ′|∇u|p–2

g ′

n∑

i,j=1

uxj uxixjξxi +

(
akf ′

g ′ –
g ′′akf

g ′2

–
ρg ′′

g ′2 
u –
pρ ′g ′′|∇u|p–2

g ′2

n∑

i,j=1

uxi uxj uxixj

)

ξ – ξt

= –
ak′f

g ′ ≤ 0. (3.4)

The Robin boundary condition of (1.1) implies

∂ξ

∂ν
=

∂ut

∂ν
=

(
∂u
∂ν

)

t
= –γ ut = –γ ξ ,

namely

∂ξ

∂ν
+ γ ξ = 0, (t, x) ∈ [0, t∗) × ∂Ω . (3.5)

From (3.2), we are led to

ξ (x, 0) = ut(x, 0) =
1
g ′

(∇ · (ρ(|∇u0|p
)∇u0

)
+ k(0)a(x)f (u0)

) ≥ 0, x ∈ Ω . (3.6)

According to (3.4)–(3.6) and the maximum principle in [25], we can obtain

ut = ξ (x, t) ≥ 0, (t, x) ∈ [0, t∗) × Ω .

The proof is complete. �



Tian and Zhang Boundary Value Problems         (2020) 2020:68 Page 9 of 19

In the sequel, the main result Theorem 3.1 will be stated under Lemma 3.1 and the
auxiliary functions defined by (2.1) and (2.2).

Theorem 3.1 Let u be a classical solution of problem (1.1). And assume that (3.1)–(3.2)
hold and the functions ρ, g, f , k, a satisfy the following conditions:

1 ≤ ρ(s) ≤ 1 + α, g ′′(s) ≤ 0, s > 0, (3.7)
∫

Ω

a(x)sf (s) dx ≥ 2(1 + α)
∫

Ω

a(x)F(s) dx, s > 0, (3.8)

Ψ (0) := –γ

∫

∂Ω

u2
0 dS –

∫

Ω

|∇u0|2 dx + 2k(0)
∫

Ω

a(x)F(u0) dx > 0, (3.9)

where u0 is the initial value and α is a positive constant. Then u blows up at some finite
time T ≤ T∗ in the measure Φ(t). And

T∗ =
Φ(0)

2α(1 + α)Ψ (0)
.

Proof Obviously, (2.6) also holds. Then, from assumptions (3.7) and (3.8), we rewrite (2.6)
as

Φ ′(t) ≥ –2γ (1 + α)
∫

∂Ω

u2 dS – 2(1 + α)
∫

Ω

|∇u|2 dx + 4(1 + α)
∫

Ω

k(t)a(x)F(u) dx

= 2(1 + α)Ψ (t). (3.10)

Differentiating Ψ (t) in (2.2), we obtain

Ψ ′(t) = –2γ

∫

∂Ω

uut dS – 2
∫

Ω

∇u · ∇ut dx + 2k′(t)
∫

Ω

a(x)F(u) dx

+ 2k(t)
∫

Ω

a(x)f (u)ut dx

≥ –2γ

∫

∂Ω

uut dS – 2
∫

Ω

∇u · ∇ut dx + 2k(t)
∫

Ω

a(x)f (u)ut dx

≥ –2γ

∫

∂Ω

ρ
(|∇u|p)uut dS – 2

∫

Ω

ρ
(|∇u|p)∇u · ∇ut dx

+ 2k(t)
∫

Ω

a(x)f (u)ut dx,

where (3.2) and (3.7) are used. Moreover, it follows from Gauss’s law and Robin’s boundary
condition that

Ψ ′(t) ≥ 2
∫

∂Ω

ρ
(|∇u|p)ut

∂u
∂ν

dS – 2
∫

Ω

ρ
(|∇u|p)∇u · ∇ut dx

+ 2k(t)
∫

Ω

a(x)f (u)ut dx

= 2
∫

Ω

∇ · (ρ(|∇u|p)∇uut
)

dx – 2
∫

Ω

ρ
(|∇u|p)∇u · ∇ut dx

+ 2k(t)
∫

Ω

a(x)f (u)ut dx
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= 2
∫

Ω

ut∇ · (ρ(|∇u|p)∇u
)

dx + 2k(t)
∫

Ω

a(x)f (u)ut dx

= 2
∫

Ω

g ′(u)u2
t dx

≥ 0. (3.11)

Therefore, Ψ (t) is a nondecreasing function in t. By virtue of (3.9), it is easy to get that

Ψ (t) ≥ Ψ (0) > 0, ∀t ∈ (0, T).

Consequently, (3.10) yields

Φ ′(t) > 0. (3.12)

With the help of (3.10)–(3.11), we obtain

2(1 + α)Ψ (t)Φ ′(t) ≤ (
Φ ′(t)

)2 =
(

2
∫

Ω

ug ′(u)ut dx
)2

≤ 4
∫

Ω

g ′(u)u2 dx
∫

Ω

g ′(u)u2
t dx, (3.13)

where Schwarz’s inequality is applied. Integrating by parts and (3.7), we are led to

G(u) = 2
∫ u

0
yg ′(y) dy

=
∫ u

0
g ′(y) dy2

= g ′(u)u2 –
∫ u

0
y2g ′′(y) dy

≥ g ′(u)u2.

Therefore, (3.13) can be replaced by

(1 + α)Ψ (t)Φ ′(t) ≤ 2
∫

Ω

G(u) dx
∫

Ω

g ′(u)u2
t dx ≤ Φ(t)Ψ ′(t), (3.14)

namely

(
Ψ (t)Φ(t)–(α+1))′ ≥ 0. (3.15)

We integrate (3.15) from 0 to t and obtain

Ψ (t)Φ(t)–(α+1) ≥ Ψ (0)Φ(0)–(α+1). (3.16)

(3.10) and (3.16) imply

Φ ′(t)Φ(t)–(α+1) ≥ 2(1 + α)Ψ (0)Φ(0)–(α+1). (3.17)
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When α > 0, integrating (3.17) from 0 to t again, we have

Φ(t)–α ≤ –2α(1 + α)Ψ (0)Φ(0)–(α+1)t + Φ(0)–α . (3.18)

Hence, it follows from (3.18) that the solution u of (1.1) blows up at some finite time T < T∗

in the measure Φ(t) and

T < T∗ =
Φ(0)

2α(1 + α)Ψ (0)
. �

4 A lower bound for blow-up time
In this subsection, a lower bound for the blow-up time t∗ is given. Now we will make the
following assumptions on the functions k,ρ, a, f , g :

a(x)f (s) ≤ c1 + c2sβ , s > 0, (4.1)

ρ(s) ≥ b1 + b2s2q, g ′(s) ≥ m0, s > 0, (4.2)

k′(t)
k(t)

≤ η, k(t) ≤ η0, t > 0, (4.3)

where c1, q are nonnegative constants, b1, b2, c2,η, m0,β ,η0 are some positive constants,
and they satisfy β > 2pq + 1. Now we define the new auxiliary functions to prove the main
result in this section:

A(t) = kδ1 (t)
∫

Ω

B(u) dx, t ≥ 0, B(s) = δ2

∫ s

0
g ′(y)yδ2–1 dy, s ≥ 0, (4.4)

where

δ1 =
2r(pq + 1) + pq(n – 2)

β – 1
, δ2 = 2r(pq + 1) – 2pq, (4.5)

μ ≥ r = max

{
(n – 2)(β – 2pq – 1)

4(pq + 1)
, 1

}
. (4.6)

The following is our main result.

Theorem 4.1 Let u be a classical solution of problem (1.1). Assume that conditions (4.1)–
(4.3) on k,ρ, a, f , g hold. And u becomes unbounded in the measure A(t) at some finite time
t∗. Then the blow-up time t∗ is bounded and it satisfies

t∗ ≥
∫ ∞

A(0)

1

δ1ητ + C1τ
δ2–1
δ2 + C2τ

4r(pq+1)+2pq(n–2)–(n–2)(β–1)
4r(pq+1)+2pq(n–2)–n(β–1)

dτ .

Here

C1 =
η

δ1+δ2
δ2

0 |Ω| 1
δ2 c1δ2

m
δ2–1
δ2

0

, (4.7)

C2 =
4r(pq + 1) + 2pq(n – 2) – n(β – 1)

4r(pq + 1) + 2pq(n – 2)
c2δ2

(
C2

0

(
1 +

1
M

)) n(β–1)
4r(pq+1)+2pq(n–2)
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× ε
– n(β–1)

4r(pq+1)+2pq(n–2)

(
1

m0

) 4r(pq+1)+2pq(n–2)–(n–2)(β–1)
4r(pq+1)+2pq(n–2)–n(β–1)

, (4.8)

where C0 is a Sobolev embedding constant depending on n and Ω , |Ω| stands for the volume
of Ω .

ε =
b2δ2(δ2 – 1)Mpq(4r(pq + 1) + 2pq(n – 2))

n(β – 1)(r(pq + 1))2(pq+1)c2δ2(C2
0(1 + 1

M ))
n(β–1)

4r(pq+1)+2pq(n–2)
, (4.9)

M =
λ – rγ (pq + 1)( n

L0
+ ( d

L0
)2θ0)

1 + rγ (pq + 1)θ–1
0

, θ0 =
λL2

0 – rγ (pq + 1)nL0

2γ (pq + 1)d2 . (4.10)

Proof From Gauss’s law and conditions (4.1) – –(4.3), we obtain

A′(t) = δ1kδ1–1(t)k′(t)
∫

Ω

B(u) dx + kδ1 (t)
∫

Ω

B′(u)ut dx

= δ1kδ1 (t)
k′(t)
k(t)

∫

Ω

B(u) dx + δ2kδ1 (t)
∫

Ω

uδ2–1g ′(u)ut dx

≤ δ1ηA(t) + δ2kδ1 (t)
∫

Ω

uδ2–1(∇ · (ρ(|∇u|p)∇u
)

+ a(x)k(t)f (u)
)

dx

= δ1ηA(t) + δ2kδ1 (t)
∫

Ω

∇ · (uδ2–1ρ
(|∇u|p)∇u

)
dx – δ2(δ2 – 1)kδ1 (t)

×
∫

Ω

uδ2–2ρ
(|∇u|p)|∇u|2 dx + δ2kδ1+1(t)

∫

Ω

uδ2–1a(x)f (u) dx

= δ1ηA(t) + δ2kδ1 (t)
∫

∂Ω

uδ2–1ρ
(|∇u|p)∂u

∂ν
dS – δ2(δ2 – 1)kδ1 (t)

×
∫

Ω

uδ2–2ρ
(|∇u|p)|∇u|2 dx + δ2kδ1+1(t)

∫

Ω

uδ2–1a(x)f (u) dx

≤ δ1ηA(t) – γ δ2kδ1 (t)
∫

∂Ω

uδ2ρ
(|∇u|p)dS – δ2(δ2 – 1)kδ1 (t)

×
∫

Ω

uδ2–2(b1 + b2|∇u|2pq)|∇u|2 dx + δ2kδ1+1(t)
∫

Ω

uδ2–1(c1 + c2uβ
)

dx

≤ δ1ηA(t) – δ2b2(δ2 – 1)kδ1 (t)
∫

Ω

uδ2–2|∇u|2pq+2 dx + c1δ2kδ1+1(t)

×
∫

Ω

uδ2–1 dx + c2δ2kδ1+1(t)
∫

Ω

uδ2+β–1 dx. (4.11)

Then we replace ur with v in (4.11) and have

A′(t) ≤ δ1ηA(t) –
δ2b2(δ2 – 1)

r2pq+2 kδ1 (t)
∫

Ω

|∇v|2pq+2 dx + c1δ2kδ1+1(t)
∫

Ω

v
δ2–1

r dx

+ c2δ2kδ1+1(t)
∫

Ω

v2(pq+1)+ β–2pq–1
r dx. (4.12)

Similar to the proof of inequality (2.12), we can derive

∫

Ω

∣
∣∇vpq+1∣∣2 dx ≥ M

∫

Ω

v2pq+2 dx, (4.13)
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where M > 0 is defined by (4.10). It follows from Hölder’s inequality and (4.13) that

∫

Ω

∣∣∇vpq+1∣∣2 dx = (pq + 1)2
∫

Ω

v2pq|∇v|2 dx

≤ (pq + 1)2
(∫

Ω

v2pq+2 dx
) pq

pq+1
(∫

Ω

|∇v|2pq+2 dx
) 1

pq+1

≤ (pq + 1)2

M
pq

pq+1

(∫

Ω

∣
∣∇vpq+1∣∣2 dx

) pq
pq+1

(∫

Ω

|∇v|2pq+2 dx
) 1

pq+1
. (4.14)

That is,
∫

Ω

|∇v|2pq+2 dx ≥ Mpq

(pq + 1)2pq+2

∫

Ω

∣
∣∇vpq+1∣∣2 dx. (4.15)

Therefore, (4.12) can be rewritten as

A′(t) ≤ δ1ηA(t) –
δ2b2(δ2 – 1)Mpq

(r(pq + 1))2pq+2 kδ1 (t)
∫

Ω

∣
∣∇vpq+1∣∣2 dx + c1δ2kδ1+1(t)

×
∫

Ω

v
δ2–1

r dx + c2δ2kδ1+1(t)
∫

Ω

v2(pq+1)+ β–2pq–1
r dx. (4.16)

In what follows, we estimate the last two terms on the right-hand side of (4.16). Hölder’s
inequality and (4.3) yield

kδ1+1(t)
∫

Ω

v
δ2–1

r dx ≤
(∫

Ω

kδ1 (t)v
δ2
r dx

) δ2–1
δ2

k
δ1+δ2

δ2 (t)|Ω| 1
δ2

≤
(∫

Ω

kδ1 (t)v
δ2
r dx

) δ2–1
δ2

η

δ1+δ2
δ2

0 |Ω| 1
δ2 , (4.17)

kδ1+1(t)
∫

Ω

v2(pq+1)+ β–2pq–1
r dx ≤

(
kδ1 (t)

∫

Ω

v
δ2
r dx

) 4r(pq+1)–(n–2)(β–2pq–1)
4r(pq+1)+2pq(n–2)

×
(

k
nδ1
n–2 (t)

∫

Ω

v
2n(pq+1)

n–2 dx
) (n–2)(β–1)

4r(pq+1)+2pq(n–2)
. (4.18)

Now we deal with (4.18). Using Sobolev’s inequality and (4.13), we get

(∫

Ω

v
2n(pq+1)

n–2 dx
) n–2

2n ≤ C0

(∫

Ω

v2(pq+1) dx +
∫

Ω

∣∣∇vpq+1∣∣2 dx
) 1

2

≤ C0

(∫

Ω

1
M

∣
∣∇vpq+1∣∣2 dx +

∫

Ω

∣
∣∇vpq+1∣∣2 dx

) 1
2

≤ C0

(
1 +

1
M

) 1
2
(∫

Ω

∣∣∇vpq+1∣∣2 dx
) 1

2
.

Namely,

∫

Ω

v
2n(pq+1)

n–2 dx ≤ C
2n

n–2
0

(
1 +

1
M

) n
n–2

(∫

Ω

∣
∣∇vpq+1∣∣2 dx

) n
n–2

. (4.19)
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The substitution of (4.19) into (4.18) and Young’s inequality imply

kδ1+1(t)
∫

Ω

v2(pq+1)+ β–2pq–1
r dx

≤
(

kδ1 (t)
∫

Ω

v
δ2
r dx

) 4r(pq+1)–(n–2)(β–2pq–1)
4r(pq+1)+2pq(n–2)

{
k

nδ1
n–2 (t)C

2n
n–2

0

(
1 +

1
M

) n
n–2

×
(∫

Ω

∣∣∇vpq+1∣∣2 dx
) n

n–2
} (n–2)(β–1)

4r(pq+1)+2pq(n–2)

=
{(

kδ1 (t)
∫

Ω

v
δ2
r dx

) 4r(pq+1)+2pq(n–2)–(n–2)(β–1)
4r(pq+1)+2pq(n–2)–n(β–1)

} 4r(pq+1)+2pq(n–2)–n(β–1)
4r(pq+1)+2pq(n–2)

×
{

C2
0

(
1 +

1
M

)} n(β–1)
4r(pq+1)+2pq(n–2) ·

(
kδ1 (t)

∫

Ω

∣∣∇vpq+1∣∣2 dx
) n(β–1)

4r(pq+1)+2pq(n–2)

=
{

C2
0

(
1 +

1
M

)} n(β–1)
4r(pq+1)+2pq(n–2) ·

{
ε

– n(β–1)
4r(pq+1)+2pq(n–2)–n(β–1)

×
(

kδ1 (t)
∫

Ω

v
δ2
r dx

) 4r(pq+1)+2pq(n–2)–(n–2)(β–1)
4r(pq+1)+2pq(n–2)–n(β–1)

} 4r(pq+1)+2pq(n–2)–n(β–1)
4r(pq+1)+2pq(n–2)

×
(

εkδ1 (t)
∫

Ω

∣∣∇vpq+1∣∣2 dx
) n(β–1)

4r(pq+1)+2pq(n–2)

≤
{

C2
0

(
1 +

1
M

)} n(β–1)
4r(pq+1)+2pq(n–2) ·

{
4r(pq + 1) + 2pq(n – 2) – n(β – 1)

4r(pq + 1) + 2pq(n – 2)

× ε
– n(β–1)

4r(pq+1)+2pq(n–2) ·
(

kδ1 (t)
∫

Ω

v
δ2
r dx

) 4r(pq+1)+2pq(n–2)–(n–2)(β–1)
4r(pq+1)+2pq(n–2)–n(β–1)

+
n(β – 1)

4r(pq + 1) + 2pq(n – 2)
·
(

εkδ1 (t)
∫

Ω

∣∣∇vpq+1∣∣2 dx
)}

. (4.20)

We insert (4.17)–(4.20) into (4.16) and obtain

A′(t) ≤ δ1ηA(t) –
δ2b2(δ2 – 1)Mpq

(r(pq + 1))2pq+2 kδ1 (t)
∫

Ω

∣
∣∇vpq+1∣∣2 dx + η

δ1+δ2
δ2

0 |Ω| 1
δ2

× c1δ2

(
kδ1 (t)

∫

Ω

v
δ2
r dx

) δ2–1
δ2

+ c2δ2

{
C2

0

(
1 +

1
M

)} n(β–1)
4r(pq+1)+2pq(n–2)

×
{

4r(pq + 1) + 2pq(n – 2) – n(β – 1)
4r(pq + 1) + 2pq(n – 2)

ε
– n(β–1)

4r(pq+1)+2pq(n–2)

×
(

kδ1 (t)
∫

Ω

v
δ2
r dx

) 4r(pq+1)+2pq(n–2)–(n–2)(β–1)
4r(pq+1)+2pq(n–2)–n(β–1)

+
n(β – 1)

4r(pq + 1) + 2pq(n – 2)

×
(

εkδ1 (t)
∫

Ω

∣∣∇vpq+1∣∣2 dx
)}

. (4.21)

From the definition of ε, the terms containing
∫
Ω

|∇vpq+1|2 dx in (4.21) are offset, that is,

A′(t) ≤ δ1ηA(t) + η

δ1+δ2
δ2

0 |Ω| 1
δ2 c1δ2

(
kδ1 (t)

∫

Ω

v
δ2
r dx

) δ2–1
δ2

+ c2δ2ε
– n(β–1)

4r(pq+1)+2pq(n–2)
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× 4r(pq + 1) + 2pq(n – 2) – n(β – 1)
4r(pq + 1) + 2pq(n – 2)

(
C2

0

(
1 +

1
M

)) n(β–1)
4r(pq+1)+2pq(n–2)

×
(

kδ1 (t)
∫

Ω

v
δ2
r dx

) 4r(pq+1)+2pq(n–2)–(n–2)(β–1)
4r(pq+1)+2pq(n–2)–n(β–1)

.

By g ′(s) > 0 in (4.2), we get

B(u) = δ2

∫ u

0
g ′(y)yδ2–1 dy ≥ m0δ2

∫ u

0
yδ2–1 dy = m0uδ2 .

That is,

v
δ2
r = uδ2 ≤ 1

m0
B(u).

Then

A′(t) ≤ δ1ηA(t) + C1A(t)
δ2–1
δ2 + C2A(t)

4r(pq+1)+2pq(n–2)–(n–2)(β–1)
4r(pq+1)+2pq(n–2)–n(β–1) , (4.22)

where C1, C2 are defined as (4.7) and (4.8). Integrating (4.22) from 0 to t, we have

∫ A(t)

A(0)

dτ

δ1ητ + C1τ
δ2–1
δ2 + C2τ

4r(pq+1)+2pq(n–2)–(n–2)(β–1)
4r(pq+1)+2pq(n–2)–n(β–1)

≤ t.

We take the limit t → t∗– to get

t∗ ≥
∫ ∞

A(0)

dτ

δ1ητ + C1τ
δ2–1
δ2 + C2τ

4r(pq+1)+2pq(n–2)–(n–2)(β–1)
4r(pq+1)+2pq(n–2)–n(β–1)

.

Thus, if u blows up in the measure A(t) at some finite time t∗, and there is a lower bound
for blow-up time. �

5 Applications
As applications, the section shows that two examples illustrate our main results.

Example 5.1 Assume that u is a classical solution of the following equation:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3u – ln(1 + u))t = ∇ · ((2 + |∇u| 5
4 )∇u) + e3t(2 – |x|2

4 )u2(
∫
Ω

u dx)
1
6 ,

(x, t) ∈ Ω × (0, T),
∂u
∂ν

+ 1
3 u = 0, (x, t) ∈ ∂Ω × (0, T),

u(x, 0) = u0(x) = 4 – |x|2
4 , x ∈ Ω ,

where Ω = {x = (x1, x2, x3)|x2
1 + x2

2 + x2
3 < 4}. Then u cannot blow up in the measure Φ(t),

where

Φ(t) =
∫

Ω

–2u + 3u2 + ln(1 + u) dx.
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Proof Compared with problem (1.1), it is obvious that

g(u) = 3u – ln(1 + u), ρ(s) = 2 + s
1
4 , f (u) = u2

(∫

Ω

u dx
) 1

6
,

k(t) = e3t , a(x) = 2 –
|x|2

4
, u0(x) = 4 –

|x|2
4

, p = 5.

Set q = 1
8 , a1 = κ = 2, l = 1,γ = 1

3 , c = 3, m = 1
6 ,λ = 2.4547. And they satisfy the conditions of

Theorem 2.1. Hence, we get that u cannot blow up in the measure Φ(t). �

Example 5.2 Suppose that u is a classical solution of the following equation:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3u + ln(1 + u))t = ∇ · ((5 + 1
3+|∇u|3 )∇u) + (3 – 2e–t)(2 – |x|2

4 )u2,

(x, t) ∈ Ω × (0, T),
∂u
∂ν

+ 1
3 u = 0, (x, t) ∈ ∂Ω × (0, T),

u(x, 0) = u0(x) = 2 – |x|2
8 , x ∈ Ω ,

where Ω = {x = (x1, x2, x3)|x2
1 + x2

2 + x2
3 < 4}. Then u will blow up at t∗ < 0.0552 in the mea-

sure Φ(t), where

Φ(t) =
∫

Ω

G(u) dx =
∫

Ω

(
3u2 + 2u – 2 ln(1 + u)

)
dx.

Moreover, the blow-up time t∗ is also bounded below and

t∗ ≥ 0.0004.

Proof Compared with (1.1), we have

g(u) = 3u + ln(1 + u), ρ
(|∇u|3) = 5 +

1
3 + |∇u|3 , f (u) = u2,

k(t) = 3 – 2e–t , a(x) = 2 –
|x|2

4
, u0(x) = 2 –

|x|2
8

, p = 3,

G(u) = 2
∫ u

0
yg ′(y) dy = 3u2 + 2u – 2 ln(1 + u),

F(u) =
∫ u

0
y2 dy =

1
3

u3.

Firstly, we demonstrate that u blows up in finite time and obtain an upper bound for blow-
up time. Define following functions:

Φ(t) =
∫

Ω

G(u) dx =
∫

Ω

(
3u2 + 2u – 2 ln(1 + u)

)
dx,

Ψ (t) = –
1
3

∫

∂Ω

u2 dS –
∫

Ω

|∇u|2 dx + 2
(
3 – 2e–t)

∫

Ω

(
2 –

|x|2
4

)
F(u) dx.
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Set α = 13
3 . We verify that conditions (3.2), (3.7), and (3.8) are satisfied. We calculate that

Φ(0) =
∫

Ω

G
(
u0(x)

)
dx =

∫

Ω

(
3u2

0 + 2u0 – 2 ln(1 + u0)
)

dx

=
∫

Ω

(
3
(

2 –
|x|2

8

)2

+ 2
(

2 –
|x|2

8

)
– 2 ln

(
3 –

|x|2
8

))
dx

=
∫ 2π

0
dθ

∫ π

0
dϕ

∫ 2

0

(
3
(

2 –
r2

8

)2

+ 2
(

2 –
r2

8

)
– 2 ln

(
3 –

r2

8

))
r2 sinϕ dr

= 339.703,

Ψ (0) = –
1
3

∫

∂Ω

u2
0 dS –

∫

Ω

|∇u0|2 dx +
2
3

∫

Ω

(
2 –

|x|2
4

)
u3

0 dx

= –8π –
∫ 2π

0
dθ

∫ π

0
dϕ

∫ 2

0

1
16

r4 sinϕ dr

+
∫ 2π

0
dθ

∫ π

0
dϕ

∫ 2

0

2
3

(
2 –

r2

4

)(
2 –

r2

8

)3

r2 sinϕ dr

= 133.101

> 0.

Applying Theorem 3.1, we can obtain u will blow up at t∗ < T in the measure Φ(t). And

T =
Φ(0)

2α(1 + α)Ψ (0)
= 0.0552,

which is an upper bound for the blow-up time.
Now, we will show a lower bound for the blow-up time by applying Theorem 4.1. We

choose c1 = 0, c2 = 2, b1 = 4, b2 = 1
2 ,β = η = 2, q = 0, m0 = η0 = 3. Obviously, they satisfy

(4.1)–(4.3). Let δ1 = δ2 = 2, r = 1. And we have

B(s) = 2
∫ s

0
g ′(y)y dy = 3s2 + 2s – 2 ln(1 + s), s > 0,

A(t) =
(
3 – 2e–t)2

∫

Ω

(
3u2 + 2u – 2 ln(1 + u)

)
dx.

Then

A(0) =
∫

Ω

(
3u2

0 + 2u0 – 2 ln(1 + u0)
)

dx = 339.703.

We can compute λ = 2.4547, L0 = d = 2, |Ω| = 32π
3 . From [19], we get the embedding con-

stant C0 = 4 1
3 3– 1

2 π– 2
3 . (4.7)–(4.10) imply that θ0 = 2.932, M = 2.6327, ε = 12.9082, C1 =

0, C2 = 0.01137. Obviously, we can conclude that u blows up at a finite time t∗ and u is
unbounded in the measure A(t) at a finite time t∗. By Theorem 4.1, the blow-up time t∗ is
bounded below and

t∗ ≥
∫ ∞

A(0)

dτ

ϕ(τ )
=

∫ ∞

339.703

dτ

4τ + 0.01137τ 3 = 0.0004.
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Therefore

0.0004 ≤ t∗ ≤ 0.0552. �

6 Conclusion
In this paper, we discussed global and blow-up solutions for a class of nonlinear reaction
diffusion equations with Robin boundary conditions. By auxiliary functions and a first-
order differential inequality technique, conditions on the data to prove the existence of
global solution are established. And applying maximum principles, we obtain the sufficient
conditions that guarantee the occurrence of the blow-up. Moreover, an upper bound and
a lower bound on blow-up time are discussed.
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