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general condition:

h′(t) ≤ –ξ (t)H
�
h(t)

�
, (3)

where the functions ξ and H satisfy some conditions specified later. To motivate our work,
let us recall some results regarding problems with logarithmic nonlinearity.

1.1 Problems with logarithmic nonlinearity
The logarithmic nonlinearity has many applications in physics such as nuclear physics,
optics, and geophysics [1–3]. For the problems with logarithmic nonlinearity, we start with
the works of Birula and Mycielski [4] and [5], where they proved that the wave equations
with logarithmic nonlinearity have stable and localized solutions. Cazenave and Haraux
[6] considered the Cauchy problem

utt – �u = u ln |u|α (4)

in R3 and established the existence and uniqueness of the solution. The corresponding
one-dimensional problem of (4) was studied by Gorka [1], who established the global ex-
istence of weak solutions, provided that (u0, u1) ∈ H1

0 × L2. Bartkowski and Gorka [2] in-
vestigated weak solutions and also proved the existence of classical solutions. Hiramatsu
et al. [3] considered the problem

utt – �u + u + ut + |u|2u = u ln |u| (5)

and investigated numerical solutions of this problem without theoretical analysis. Re-
cently, Al-Gharabli et al. [7] considered the problem

utt + �2u + u –
� t

0
h(t – s)�2u(s) ds = αu ln |u| in Ω × (0,∞) (6)

and proved existence and decay results of the solutions under the following condition on
the relaxation function:

h′(t) ≤ –ξ (t)hp(t), 1 ≤ p <
3
2

. (7)

Al-Gharabli et al. [8] considered the problem

|ut|ρutt + �2u + �2utt –
� t

0
h(t – s)�2u(s) ds = αu ln |u| in Ω × (0,∞)

and as in [7] proved the existence and decay results for the solutions with imposing the
same condition (7). Very recently, Al-Gharabli [9] considered the same problem (6) and
established a general decay result for which the relaxation function h satisfies h′(t) ≤
–ξ (t)H(h(t)). For more results on some problems with logarithmic nonlinearity, we re-
fer to the recent works [10–14].
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1.2 Problems with infinite memory
Giorgi et al. [15] considered the following semilinear hyperbolic equation with linear
memory in a bounded domain Ω ⊂ R3:

utt – K(0)�u –
� +∞

0
K ′(s)�u(t – s) ds + g(u) = f in Ω × R+, (8)

with K(0), K(+∞) > 0 and K ′ ≤ 0 and proved the existence of global attractors for the
solutions. Conti and Pata [16] considered the following semilinear hyperbolic equation:

utt + αut – K(0)�u –
� +∞

0
K ′(s)�u(t – s) ds + g(u) = f in Ω × R+, (9)

where the memory kernel is a convex decreasing smooth function such that K(0) >
K(+∞) > 0, and g : R+ → R+ is a nonlinear term of at most cubic growth satisfying some
conditions. They proved the existence of a regular global attractor. Appleby et al. [17]
studied the linear integro-differential equation

utt + Au(t) +
� t

–∞
K(t – s)Au(s) ds = 0 for t > 0 (10)

and established an exponential decay result for strong solutions in a Hilbert space. Pata
[18] discussed the decay properties of the semigroup generated by the following equation:

utt + αAu(t) + βut(t) –
� +∞

0
μ(s)Au(t – s) ds = 0 for t > 0, (11)

where A is a strictly positive self-adjoint linear operator, α > 0, β ≥ 0, and the memory ker-
nel μ is a decreasing function satisfying specific conditions. Subsequently, they established
necessary and sufficient conditions for the exponential stability. Guesmia [19] considered
the equation

utt + Au –
� +∞

0
h(s)Bu(t – s) ds = 0 for t > 0 (12)

and introduced a new ingenuous approach for proving a more general decay result based
on the properties of convex functions and the generalized Young inequality. He used a
larger class of infinite history kernels satisfying the condition

� +∞

0

h(s)
H–1(–h′(s))

ds + sup
s∈R+

h(s)
H–1(–h′(s))

< +∞ (13)

with

H(0) = H ′(0) = 0 and lim
t→+∞ H ′(t) = +∞, (14)

where H : R+ → R+ is an increasing strictly convex function. Using this approach,
Guesmia and Messaoudi [20] later considered the equation

utt – �u +
� t

0
h1(t – s)div

�
a1(x)∇u(s)

�
ds +

� +∞

0
h2(s)div

�
a2(x)∇u(t – s)

�
ds = 0
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in a bounded domain under suitable conditions on a1 and a2 for a wide class of relaxation
functions h1 and h2, which are not necessarily decaying polynomially or exponentially, and
established a general decay result such that the usual exponential and polynomial decay
rates are only particular cases. Messaoudi and Al-Gharabli [7] considered the nonlinear
wave equation

|ut|ρutt – �u – �utt +
� +∞

0
h(s)�u(t – s) ds = 0 in Ω × (0, +∞),

in which the relaxation function g satisfies

h′(t) ≤ –ξ (t)h(t), t ≥ 0, (15)

and they proved a general decay result on the solution energy using an approach different
from that introduced by Guesmia [19]. Recently, Al-Mahdi and Al-Gharabli [21] consid-
ered the viscoelastic problem

�
���

���

utt – �u +
	 +∞

0 h(s)�u(t – s) ds + |ut|m–2ut = 0 in Ω × (0, +∞),

u(x, t) = 0 on ∂Ω × (0, +∞),

u(x, –t) = u0(x, t), ut(x, 0) = u1(x) in Ω × (0, +∞),

(16)

established decay results in which the relaxation function h satisfies

h′(t) ≤ –ξ (t)hp(t), t ≥ 0, 1 ≤ p <
3
2

, (17)

and obtained a better decay rate than that in [19] and [22]. For more results on problems
with infinite memory and finite memory, we refer the reader to [23–27]. Motivated by all
these works, we intend to establish a three-fold objective:

(a) To extend many earlier works for the wave equations such as those discussed in
[1, 3, 7, 28–30] to the plate equation with logarithmic nonlinearity.

(b) To extend some general decay results, known for the case of finite history, to the
case of infinite history where the relaxation function satisfies a wider class of
relaxation functions instead of those considered in [7, 8, 12, 19, 21, 29, 31].

(c) To drop the boundedness assumptions on the history data considered in many
earlier results in [7, 19, 21].

We obtain our results by using the multiplier method with some logarithmic inequalities
and some properties of integro-differential equations and inequalities. Our decay result is
based on ξ , H , and α. This paper is organized as follows. In Sect. 2, we present some no-
tations, assumptions, and a local and global existence result of our problem. In Sect. 3, we
establish some lemmas needed in the proof of our result. Stability results with an example
are presented in Sect. 4. Some conclusions are given in Sect. 5.

2 Preliminaries
In this section, we introduce our assumptions and give some useful lemmas. We use c to
denote a positive generic constant.
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(A1) h : R+ → R+ is a C1 nonincreasing function satisfying, for some β0 > 0,

–β0h(s) ≤ h′(s), h(t) > 0 and 1 –
� +∞

0
h(s) ds := 	 > 0, (18)

(A2) H : (0,∞) → (0,∞) is a function in C1(R+) ∩ C2(R∗
+) that is increasing and strictly

convex, with H(0) = H ′(0) = 0 and lims→+∞ H ′(s) = +∞, s �→ sH ′(s) and s �→
s(H ′)–1(s) are convex on (0, r], and there exists a nonincreasing function ξ : R+ →
R+ such that

h′(t) ≤ –ξ (t)H
�
h(t)

�
, t ≥ 0. (19)

(A3) The constant α in (1) is such that 0 < α < α0 = 2π	e3

cp
, where cp is the smallest positive

number satisfying ‖∇u‖2
2 ≤ cp‖�u‖2

2 for u ∈ H2
0 (Ω), where ‖ · ‖2 = ‖ · ‖L2(Ω).

Remark 2.1 Assumption (A3) is needed for establishing the local existence of the solutions
of problem (1). For more details, we refer to [8].

Remark 2.2 If H is a strictly increasing and strictly convex C2 function on (0, r] with
H(0) = H ′(0) = 0, then it has an extension H that is strictly increasing and strictly con-
vex C2 function on (0, +∞). For instance, if H(r) = a, H ′(r) = b, and H ′′(r) = C, we can
define H for t > r by

H(t) =
C
2

t2 + (b – Cr)t +



a +
C
2

r2 – br
�

. (20)

For simplicity, in the rest of this paper, we use H instead of H .

Remark 2.3 Since H is strictly convex on (0, r] and H(0) = 0, then

H(θ t) ≤ θH(t), 0 ≤ θ ≤ 1 and t ∈ (0, r]. (21)

Remark 2.4 The function g(s) =
�

2π	
cps – e– 3

2 is a continuous decreasing function on (0,∞)
with

lim
s→0+

g(s) = ∞ and lim
x→∞ g(x) = –e– 3

2 .

Then there exists a unique α0 > 0 such that g(α0) = 0. Moreover,

e– 3
2 <



2π	

cps
, s ∈ (0,α0), (22)

which implies that the selection of α in (A3) is possible.

The modified energy functional associated with problem (1)–(2) is given by

E(t) =
1

ρ + 2
‖ut‖ρ+2

ρ+2 +
	

2
‖�u‖2

2 +
1
2
‖�ut‖2

2 –
α

2

�

Ω

u2 ln |u|dx

+
α

4
‖u‖2

2 +
1
2

(h ◦ �u), (23)
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where

(h ◦ �u)(t) =
� +∞

0
h(s)

�
� �u(s) – �u(t – s)

�
� 2

2 ds.

Direct differentiation of (23) using (1)–(2) leads to

E′(t) =
1
2

�
h′ ◦ �u

�
(t) ≤ 0. (24)

Lemma 2.1 ([32, 33] (Logarithmic Sobolev inequality)) Let u be any function in H1
0 (Ω),

and let a be any positive real number. Then

�

Ω

u2 ln |u|dx ≤ 1
2
‖u‖2

2 ln‖u‖2
2 +

a2

2π
‖∇u‖2

2 – (1 + lna)‖u‖2
2. (25)

Corollary 2.1 Let u be any function in H2
0 (Ω), and let a be any positive real number. Then

�

Ω

u2 ln |u|dx ≤ 1
2
‖u‖2

2 ln‖u‖2
2 +

cpa2

2π
‖�u‖2

2 – (1 + lna)‖u‖2
2. (26)

Lemma 2.2 Let ε0 ∈ (0, 1). Then there exists dε0 > 0 such that

s| ln s| ≤ s2 + dε0s1–ε0 , s > 0. (27)

Proof Let f (s) = sε0 (| ln s| – s). Note that f is continuous on (0,∞), its limit at 0+ is 0+, and
its limit at ∞ is –∞. Then f has a maximum dε0 on (0,∞), so (27) holds. �

2.1 Existence results
In this subsection, we state without proof a local existence result of our problem (1)–(2).

Theorem 2.1 Let (u0, u1) ∈ H2
0 (Ω) × H2

0 (Ω). Assume that (A1)–(A3) hold and

e– 3
2 < a <



2π	

αcp
. (28)

Then problem (1)–(2) has a weak solution on [0, T].

The proof of Theorem 2.1 can be obtained by following the same arguments as in [8]
and adapting the finite history to the infinite case. For the global existence, we have the
following:

Theorem 2.2 Assume that (A1)–(A3) hold. Let (u0, u1) ∈ H2
0 (Ω) × H2

0 (Ω) be such that

I(0) > 0 and
√

54αc3
∗



E(0)
	

� 1
2

< 	, (29)

where c3∗ is a positive embedding constant. Then we have:
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(i)

I(t) > 0, t ∈ [0, T). (30)

(ii) Problem (1)–(2) has a global weak solution,
where

I(t) := 	‖�u‖2
2 + ‖�ut‖2

2 + (h ◦ �u)(t) – 3α

�

Ω

u2 ln |u|dx (31)

and

J(t) :=
1
3

�
	‖�u‖2

2 + ‖�ut‖2
2 + g ◦ �u

�
+

k
4
‖u‖2

2 +
1
6

I(t). (32)

The proof of Theorem 2.2 can be obtained by following the same arguments as in [8] by
adapting the finite memory to infinite memory.

3 Technical lemmas
In this section, we start by establishing several lemmas needed for the proof of our main
result.

Lemma 3.1 There exists a positive constant M1 such that

� ∞

t
h(s)

��u(t) – �u(t – s)
� 2 dsdx ≤ M1h1(t), (33)

where h1(t) :=
	 +∞

0 h(t + s)(1 + ‖�u0(s)‖2) ds.

Proof The proof is based on some arguments in [30]. In fact, we have

� +∞

t
h(s)

�
� �u(t) – �u(t – s)

�
� 2 ds

≤ 2
�
� �u(t)

�
� 2

� +∞

t
h(s) ds + 2

� +∞

t
h(s)

�
� �u(t – s)

�
� 2 ds

≤ 2 sup
s≥0

�
� �u(s)

�
� 2

� +∞

0
h(t + s) ds + 2

� +∞

0
g(t + s)

�
� �u(–s)

�
� 2 ds

≤



4
	

E(s)
� � ∞

0
h(t + s) ds + 2

� ∞

0
h(t + s)

�
� �u0(s)

�
� 2 ds

≤



4
	

E(0)
� � +∞

0
h(t + s) ds + 2

� +∞

0
h(t + s)

�
� �u0(s)

�
� 2 ds

≤ M1

� +∞

0
h(t + s)

�
1 +

�
� �u0(s)

�
� 2�

ds, (34)

where M1 = max{2, 4E(0)
	

}. �
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Lemma 3.2 Assume that h satisfies (A1). Then, for u ∈ H2
0 (Ω),

�

Ω


 � +∞

0
h(s)

�
u(t) – u(t – s)

�
ds

� 2

dx ≤ c(h ◦ �u)(t),

�

Ω


 � +∞

0
h′(s)

�
u(t) – u(t – s)

�
ds

� 2

dx ≤ –c
�
h′ ◦ �u

�
(t).

Proof The proof can be easily obtained by applying the Cauchy–Schwarz and Poincaré
inequalities. �

Lemma 3.3 Assume that (A1)–(A3) and (29) hold. Then the functionals

ψ(t) :=
1

ρ + 1

�

Ω

|ut|ρutudx +
�

Ω

�u�ut dx,

χ (t) := –
�

Ω



�2ut +

1
ρ + 1

|ut|ρut

� � +∞

0
h(s)

�
u(t) – u(t – s)

�
dsdx,

satisfy, along the solutions of (1)–(2), the following estimates for any δ, δ1, δ2 > 0 and ε0 ∈
(0, 1):

ψ ′(t) ≤ –
	

2

�

Ω

|�u|2 dx +
�

Ω

|�ut|2 dx +
1

ρ + 1

�

Ω

|ut|ρ+2 dx + c(h ◦ �u)(t)

+ α

�

Ω

u2 ln |u|dx, (35)

χ ′(t) ≤
�
�
1 + 2(1 – 	)2�

δ1 +
δ

4

� �

Ω

|�u|2 dx –
(1 – 	)
ρ + 1

�

Ω

|ut|ρ+2 dx

+ c



δ1 +
1
δ1

+
1
δ

�
(h ◦ �u)(t) –

c
δ2

�
h′ ◦ ∇u

�
(t)

+
�
δ2 + cδ2

�
E(0)

� ρ – (1 – 	)
� �

Ω

|�ut|2 dx + cε0,δ(h ◦ �u)
1

1+ε0 (t). (36)

Proof The proof of Lemma 3.3 is similar to that in [8] with some adjustments according
to the infinite memory case. �

Lemma 3.4 Assume that (A1)–(A3) and (29) hold and let ε0 ∈ (0, 1). Assume that

0 < E(0) <
e	π
4cp

. (37)

Then, for α small enough, there exist positive constants ε and N such that the functional

L := NE + εψ + χ

satisfies

L ∼ E, (38)
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and, for any t ≥ 0, there exists a positive constant m such that

L′(t) ≤ –mE(t) + c(h ◦ �u)(t) + cε0 (h ◦ �u)
1

1+ε0 (t). (39)

Proof For the proof of (38), we refer to [8]. To prove (39), we let
	 +∞

0 h(s) ds =: h0 and using
(24), (35), and (36), for t ≥ 0, we have

L′(t) ≤



N
2

–
c
δ2

�
�
h′ ◦ �u

�
(t) –

h0 – ε

ρ + 1

�

Ω

|ut|ρ+2 dx

–
�
ε
	

2
–

�
1 + 2(1 – 	)2�

δ1 –
δ

4

�
‖�u‖2

2

–
�
h0 – ε – δ2 – cδ2

�
E(0)

� ρ �‖�ut‖2
2

+ c



ε + δ1 +
1
δ1

+
1
δ

�
(h ◦ �u)(t)

+ cε0,δ(h ◦ �u)
1

1+ε0 (t) + εα

�

Ω

u2 ln |u|dx. (40)

Using the definition of E(t), we obtain, for any m > 0,

L′(t) ≤ –mE(t) +



N
2

–
c
δ2

�
�
h′ ◦ �u

�
(t) –



h0 – ε

ρ + 1
–

m
ρ + 2

� �

Ω

|ut|ρ+2 dx

–
�
ε
	

2
–

�
1 + 2(1 – 	)2�

δ1 –
δ

4
–

m(1 – h0)
2

�
‖�u‖2

2

–
�
h0 – ε – δ2 – cδ2

�
E(0)

� ρ –
m
2

�
‖�ut‖2

2

+
�
c



ε + δ1 +
1
δ1

+
1
δ

�
+

m
2

�
(h ◦ �u)(t)

+ cε0,δ(h ◦ �u)
1

1+ε0 (t) +
mα

4
‖u‖2

2

+



ε –
m
2

�
α

�

Ω

u2 ln |u|dx. (41)

Using the logarithmic Sobolev inequality (26), we get, for 0 < m < 2ε,

L′(t) ≤ –mE(t) +
�

N
2

–
c
δ2

�
�
h′ ◦ �u

�
(t) –



h0 – ε

ρ + 1
–

m
ρ + 2

� �

Ω

|ut|ρ+2 dx

–
�
ε
	

2
–

�
1 + 2(1 – 	)2�

δ1 –
δ

4
–

m(1 – h0)
2

–



ε –
m
2

�
αcpa2

2π

�
‖�u‖2

2

–



h0 – ε – δ2 – cδ2
�
E(0)

� ρ –
m
2

�
‖�ut‖2

2

+
�
c



ε + δ1 +
1
δ1

+
1
δ

�
+

m
2

�
(h ◦ �u)(t) + cε0,δ(h ◦ �u)

1
1+ε0 (t)

–



ε –
m
2

�
α

2
�
2(1 + lna) – ln‖u‖2

2
� ‖u‖2

2 +
mα

4
‖u‖2

2. (42)
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At this point, we carefully choose our constant. First, we pick 0 < ε < h0. Then for δ1, δ2,
and δ small enough, we have

k1 := ε
	

2
–

�
1 + 2(1 – 	)2�

δ1 –
δ

4
> 0

and

k2 := h0 – ε – δ2 – cδ2
�
E(0)

� ρ > 0.

Then, for N sufficiently large,

N > c(1 + ε) and
N
2

–
c
δ2

≥ 0.

Consequently, we get

L′(t) ≤ –mE(t) –



h0 – ε

ρ + 1
–

m
ρ + 2

� �

Ω

|ut|ρ+2 dx

–
�
k1 –

m(1 – h0)
2

–



ε –
m
2

�
αcpa2

2π

�
‖�u‖2

2

–



k2 –
m
2

�
‖�ut‖2

2 +



c +
m
2

�
(h ◦ �u)(t)

+ cε0 (h ◦ �u)
1

1+ε0 (t) +
mα

4
‖u‖2

2

–



ε –
m
2

�
α

2
�
2(1 + lna) – ln‖u‖2

2
� ‖u‖2

2. (43)

Finally, we choose m and α small enough so that m ≤ ε (so mα
4 ≤ (ε – m

2 ) α
2 ),

h0 – ε

ρ + 1
–

m
ρ + 2

> 0,

k1 –
m(1 – h0)

2
–



ε –

m
2

�
αcpa2

2π
> 0,

and

k2 –
m
2

> 0,

and we get

L′(t) ≤ –mE(t) + c(h ◦ �u)(t) + cε0 (h ◦ �u)
1

1+ε0 (t)

–



ε –
m
2

�
α

2
�
1 + 2 ln a – ln‖u‖2

2
� ‖u‖2

2. (44)

Using (23), (24), (30), (31), (32), and (37), we have

ln‖u‖2
2 ≤ ln



4
α

J(t)
�

≤ ln



4
α

E(t)
�

≤ ln



4
α

E(0)
�

≤ ln



e	π
αcp

�
. (45)
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By choosing a satisfying

max
�

e– 3
2 ,



	π

αcp

�
< a <



2	π

αcp
(46)

we achieve that (28) is satisfied. This selection gives a guarantee that

1 + 2 ln a – ln‖u‖2
2 ≥ 0,

which completes the proof of (39). �

Remark 3.1 Recalling (23), (24), (30), and (32), we have

E(0) ≥ E(t) = J(t) +
1

ρ + 2
‖ut‖ρ+2

ρ+2 ≥ J(t) ≥ 1
3

(h ◦ �u)(t),

which gives

(h ◦ �u)(t) ≤ 3E(0). (47)

Using (47), for any ε0 ∈ (0, 1), we obtain that

(h ◦ �u)(t) = (h ◦ �u)
ε0

1+ε0 (t)(h ◦ �u)
1

1+ε0 (t)

≤ c(h ◦ �u)
1

1+ε0 (t). (48)

Lemma 3.5 If (A1)–(A2) are satisfied, then we have, for all t > 0, the estimate

� t

0
h(s)

�
� �u(t) – �u(t – s)

�
� 2

2 ds ≤ t + 1
q0

H–1



q0μ(t + 1)
tξ (t)

�
, (49)

where q0 > 0 is small enough, H is defined in Remark 2.2, and

μ(t) := –
� t

0
h′(s)

�
� �u(t) – �u(t – s)

�
� 2

2 ds ≤ –cE′(t). (50)

Proof To establish (49), we introduce the functional

λ(t) :=
q0

t + 1

� t

0

�
� �u(t) – �u(t – s)

�
� 2

2 ds. (51)
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Then since E is nonincreasing, by (23) we get

λ(t) ≤ 2q0

t + 1


 � t

0

�
� �u(t)

�
� 2

2 +
� t

0

�
� �u(t – s)

�
� 2

2 ds
�

≤ 4q0

	(t + 1)


 � t

0

�
E(t) + E(t – s)

�
ds

�

≤ 8q0

	(t + 1)

� t

0
E(s) ds

≤ 8q0

	(t + 1)

� t

0
E(0) ds

< +∞. (52)

Thus q0 can be chosen so small so that, for all t > 0,

λ(t) < 1. (53)

Without loss of generality, for all t > 0, we assume that λ(t) > 0; otherwise, we get an ex-
ponential decay from (39). Using Jensen’s inequality, (2.3), (50), and (53) gives

μ(t) =
1

q0λ(t)

� t

0
λ(t)

�
–h′(s)

� �

Ω

q0
�
��u(t) – �u(t – s)

�
�2 dx ds

≥ 1
q0λ(t)

� t

0
λ(t)ξ (s)H

�
h(s)

� �

Ω

q0
�
��u(t) – �u(t – s)

�
�2 dx ds

≥ ξ (t)
q0λ(t)

� t

0
H

�
λ(t)h(s)

� �

Ω

q0
�
��u(t) – �u(t – s)

�
�2 dx ds

≥ (t + 1)ξ (t)
q0

H



q0

(t + 1)

� t

0
h(s)

�

Ω

�
��u(t) – �u(t – s)

�
�2 dx ds

�

=
(t + 1)ξ (t)

q0
H



q0

(t + 1)

� t

0
h(s)

�

Ω

�
��u(t) – �u(t – s)

�
�2 dx ds

�
, (54)

and hence (49) is established. �

4 Decay result
In this section, we state and prove our main result and provide an example to illustrate
our decay results. Let us start introducing some functions and then establishing several
lemmas needed for the proof of our main result. As in [30], we introduce the following
functions:

G1(t) :=
� 1

t

1
sG′(s)

ds, (55)

G2(t) = tG′(t), G3(t) = t
�
G′� –1(t), G4(t) = G∗

3(t), (56)

where G–1(t) = (H–1(t))
1

1+ε0 and ε0 ∈ (0, 1). Further, we introduce the class S of functions
χ : R+ → R∗

+ satisfying, for fixed c1, c2 > 0 (should be selected carefully in (76)),

χ ∈ C1(R+), χ ≤ 1,χ ′ ≤ 0, (57)
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and

c2G4

�
c
d

q(t)h0(t)
�

≤ c1



G2



G5(s)
χ (s)

�
–

G2(G5(t))
χ (t)

�
, (58)

where d > 0, c is a generic positive constant that may change from line to line, h2 and q
will be defined later in the proof of our main result, and

G5(t) = G–1
1



c1

� t

0
ξ (s) ds

�
. (59)

Remark 4.1 According to the properties of H introduced in (A2) and the definition of G,
we can see that G′ > 0 and G′′ > 0 on (0, r], G2 is convex increasing and defines a bijection
from R+ to R+, G1 is decreasing and defines a bijection from (0, 1] to R+, and G3 and G4

are convex increasing functions on (0, r]. Then the set S is not empty because it contains
χ (s) = εG5(s) with 0 < ε ≤ 1 small enough. Indeed, (57) is satisfied (since (55) and (59)).

Theorem 4.1 Assume that (A1)–(A3) and (29) hold. Then for any χ satisfying (57) and
(58) and for any ε0 ∈ (0, 1), there exists a strictly positive constant C such that the solution
of (1)–(2) satisfies, for all t ≥ 0,

E(t) ≤ CG5(t)
χ (t)q(t)

, (60)

where G5 and χ are defined in (55) and (57), respectively, and q will be defined later in the
proof.

Proof Using (39), (48), and (49), for some positive constant m, ε0 ∈ (0, 1), and any t ≥ 0,
we get

L′(t) ≤ –mE(t) + c



t + 1
q0

� 1
1+ε0



H–1



q0μ(t)

(t + 1)ξ (t)

�� 1
1+ε0

(t) + ch
1

1+ε0
1 (t). (61)

Combining the strict increasing of H and the inequality 1
t+1 < 1 for t > 0, we obtain

H–1



q0μ(t)
(t + 1)ξ (t)

�
≤ H–1



q0μ(t)

(t + 1)
1

1+ε0 ξ (t)

�
, (62)

and, then (61) becomes, for any t ≥ 0 and ε0 ∈ (0, 1),

L′(t) ≤ –mE(t) + cε0
(t + 1)

1
1+ε0

q0



H–1



q0μ(t)

(t + 1)
1

1+ε0 ξ (t)

�� 1
1+ε0

(t) + ch
1

1+ε0
1 (t). (63)

For simplicity, we let q(t) := q0(t + 1)
–1

1+ε0 and h2(t) := ch
1

1+ε0
1 (t). Then (63) becomes

L′(t) ≤ –mE(t) +
cε0

γ (t)



H–1



q(t)μ(t)

ξ (t)

�� 1
1+ε0

(t) + ch2(t). (64)
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Further, letting G–1(t) = (H–1(t))
1

1+ε0 we reduce (64) to

L′(t) ≤ –mE(t) +
cε0

γ (t)
G–1



q(t)μ(t)

ξ (t)

�
+ ch2(t), t ≥ 0. (65)

For ε1 < r, let the functional F be defined by

F (t) := G′



ε1
E(t)q(t)

E(0)

�
L(t),

which satisfies F ∼ E. Noting that G′′ ≥ 0, q′ ≤ 0, and E′ ≤ 0, we get

F ′(t) = ε1
(qE)′(t)

E(0)
G′′



ε1

E(t)q(t)
E(0)

�
L(t) + G′



ε1

E(t)q(t)
E(0)

�
L′(t)

≤ –mE(t)G′



ε1
E(t)q(t)

E(0)

�
+

c
q(t)

G′



ε1
E(t)q(t)

E(0)

�
G–1



q(t)μ(t)

ξ (t)

�

+ ch2(t)G′



ε1
E(t)q(t)

E(0)

�
. (66)

Let G∗ be the convex conjugate of G in the sense of Young (see [34]). Then

G∗(s) = s
�
G′� –1(s) – G

��
G′� –1(s)

�
for s ∈ �

0, G′(r)
�
, (67)

and G∗ satisfies the generalized Young inequality

AB ≤ G∗(A) + G(B) if A ∈ �
0, G′(r)

�
, B ∈ (0, r]. (68)

So, with A = G′(ε1
E(t)q(t)

E(0) ) and B = G–1( q(t)μ(t)
ξ (t) ), using (24) and (66)–(68), we arrive at

F ′(t) ≤ –mE(t)G′



ε1
E(t)q(t)

E(0)

�
+

c
q(t)

G∗



G′



ε1
E(t)q(t)

E(0)

��
+ c



μ(t)q(t)

ξ (t)

�

+ ch2(t)G′



ε1
E(t)q(t)

E(0)

�

≤ –mE(t)G′



ε1
E(t)q(t)

E(0)

�
+ cε1

E(t)
E(0)

G′



ε1
E(t)q(t)

E(0)

�
+ c



μ(t)q(t)

ξ (t)

�

+ ch2(t)G′



ε1
E(t)q(t)

E(0)

�
. (69)

Multiplying (69) by ξ (t), using (50), and the facts that ε1
E(t)q(t)

E(0) < r and G′(ε1
E(t)q(t)

E(0) ) =
G′(ε1

E(t)q(t)
E(0) ), we get

ξ (t)F ′(t) ≤ –mξ (t)E(t)G′



ε1
E(t)q(t)

E(0)

�
+ cξ (t)ε1

E(t)
E(0)

G′



ε1
E(t)q(t)

E(0)

�

+ cμ(t)q(t) + cξ (t)h2(t)G′



ε1
E(t)q(t)

E(0)

�

≤ –



mE(0)
ε1

– c
�

ξ (t)ε1
E(t)
E(0)

G′



ε1
E(t)q(t)

E(0)

�

– cE′(t) + cξ (t)h2(t)G′



ε1
E(t)q(t)

E(0)

�
. (70)
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Consequently, recalling the definition of G2 and choosing ε1 such that k = ( mE(0)
ε1

– c) > 0,
we obtain, for all t ∈ R+,

F ′
1(t) ≤ –kε1ξ (t)



E(t)
E(0)

�
G′



ε1

E(t)q(t)
E(0)

�
+ cξ (t)h2(t)G′



ε1

E(t)q(t)
E(0)

�

= –k
ξ (t)
q(t)

G2



E(t)q(t)

E(0)

�
+ cξ (t)h2(t)G′



ε1

E(t)q(t)
E(0)

�
, (71)

where F1 = ξF + cE ∼ E satisfies, for some α1,α2 > 0,

α1F1(t) ≤ E(t) ≤ α2F1(t). (72)

Since G′
2(t) = G′(t) + tG′′(t), using the strict convexity of G on (0, r], we find that

G′
2(t), G2(t) > 0 on (0, r]. Applying the general Young inequality (68) to the last term in

(71) with A = G′(ε1
E(t)q(t)

E(0) ) and B = [ c
d h2(t)], we have

ch2(t)G′



ε1
E(t)q(t)

E(0)

�
=

d
q(t)

�
c
d

q(t)h2(t)
�


G′



ε1
E(t)q(t)

E(0)

��

≤ d
q(t)

G3



G′



ε1

E(t)q(t)
E(0)

��
+

d
q(t)

G∗
3

�
c
d

q(t)h2(t)
�

≤ d
q(t)



ε1

E(t)q(t)
E(0)

�

G′



ε1

E(t)q(t)
E(0)

��
+

d
q(t)

G4

�
c
d

q(t)h2(t)
�

≤ d
q(t)

G2



ε1

E(t)q(t)
E(0)

�
+

d
q(t)

G4

�
c
d

q(t)h2(t)
�

. (73)

Now, combining (71) and (73) and choosing d small enough so that k1 = (k – d) > 0, we
arrive at

F ′
1(t) ≤ –k

ξ (t)
q(t)

G2



ε1

E(t)q(t)
E(0)

�
+

dξ (t)
q(t)

G2



ε1

E(t)q(t)
E(0)

�
+

dξ (t)
q(t)

G4

�
c
d

q(t)h2(t)
�

≤ –k1
ξ (t)
q(t)

G2



ε1

E(t)q(t)
E(0)

�
+

dξ (t)
q(t)

G4

�
c
d

q(t)h2(t)
�

. (74)

Using the equivalent property in (72) and the nonincrease of G2, we have, for some d0 =
α1

E(0) > 0,

G2



ε1

E(t)q(t)
E(0)

�
≥ G2

�
d0F1(t)q(t)

�
.

Letting F2(t) := d0F1(t)q(t) and recalling that q′ ≤ 0, we arrive at,

F ′
2(t) ≤ d0q(t)



–k1

ξ (t)
q(t)

Ψ2



ε0

E(t)q(t)
E(0)

�
+

dξ (t)
q(t)

Ψ4

�
c
d

q(t)h0(t)
��

. (75)

Then (75) becomes, for some constants c1 = d0k1 > 0 and c2 = d0d > 0,

F ′
2(t) ≤ –c1ξ (t)G2

�
F2(t)

�
+ c2ξ (t)G4

�
c
d

q(t)h2(t)
�

. (76)
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Since d0q(t) is nonincreasing. Using the equivalent property F1 ∼ E implies that there
exists b0 > 0 such that F2(t) ≥ b0E(t)q(t). Since χ (t) satisfies (57) and (58), if b0q(t)E(t) ≤
2 G5(t)

χ (t) , then we get

E(t) ≤ 2
b0

G5(t)
χ (t)q(t)

. (77)

If b0q(t)E(t) > 2 G5(t)
χ (t) , then since q(t)E(t) is a nonincreasing function, for any 0 ≤ s ≤ t, we

have b0q(s)E(s) > 2 G5(t)
χ (t) . Therefore, for any 0 ≤ s ≤ t,

F2(s) > 2
G5(t)
χ (t)

. (78)

Using (21), 0 < χ ≤ 1, and the convexity of G2, we have, for any 0 < ε2 ≤ 1,

G2
�
ε2χ (s)F2(s) – ε2G5(s)

�
= G2



ε2χ (s)F2(s) –

ε2χ (s)G5(s)
χ (s)

�

≤ ε2χ (s)G2



F2(s) –

G5(s)
χ (s)

�
. (79)

Recalling the definition of G2, that is, G2(t) = tG′(t), (79) becomes

G2
�
ε2χ (s)F2(s) – ε2G5(s)

� ≤ ε2χ (s)


F2(s) –

G5(s)
χ (s)

�
G′



F2(s) –

G5(s)
χ (s)

�

≤ ε2χ (s)F2(s)G′


F2(s) –

G5(s)
χ (s)

�

– ε2χ (s)
G5(s)
χ (s)

G′


F2(s) –

G5(s)
χ (s)

�
. (80)

Now, using (78) and the increase of G′, for any 0 ≤ s ≤ t, we have

G′


F2(s) –

G5(s)
χ (s)

�
< G′�F2(s)

�
, G′



F2(s) –

G5(s)
χ (s)

�
> G′



G5(s)
χ (s)

�
. (81)

Combining (81) and (80), we arrive at

G2
�
ε1χ (s)F2(s) – ε2G5(s)

� ≤ ε2χ (s)F2(s)G′�F2(s)
�

– ε2χ (s)
G5(s)
χ (s)

G′



G5(s)
χ (s)

�
. (82)

Now we let

F3(s) = ε2χ (s)F2(s) – ε2G5(s), (83)

where ε2 is small enough such that F3(0) ≤ 1. Recalling the definition of G2, (82) becomes,
for any 0 ≤ s ≤ t,

G2
�
F3(s)

� ≤ ε2χ (t)G2
�
F2(s)

�
– ε2χ (t)G2



G5(s)
χ (s)

�
. (84)
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Further, we have

F ′
3(t) = ε2χ

′(t)F2(t) + ε2χ (s)F ′
2(t) – ε2G′

5(t). (85)

Since χ ′ ≤ 0, using (76), for any 0 ≤ s ≤ t and 0 < ε2 ≤ 1, we obtain

F ′
3(t) ≤ ε2χ (s)F ′

2(t) – ε2G′
5(t)

≤ –c1ε2ξ (t)χ (t)G2
�
F2(t)

�
+ c2ε2ξ (t)χ (s)G4

�
c
d

q(t)h2(t)
�

– ε2G′
5(t). (86)

Then, using (58) and (84), we get

F ′
3(t) ≤ –c1ξ (t)G2

�
F3(t)

�
+ c2ε2ξ (t)χ (t)G4

�
c
d

q(t)h2(t)
�

– c1ε2ξ (t)χ (t)G2



G5(s)
χ (s)

�
– ε2G′

5(t). (87)

From the definitions of G1 and G5 we have

G1
�
G5(s)

�
= c1

� s

0
ξ (τ ) dτ ,

and hence

G′
5(s) = –c1ξ (s)G2

�
G5(s)

�
. (88)

Now we have

c2ε2ξ (t)χ (t)G4

�
c
d

q(t)h2(t)
�

– c1ε2ξ (t)χ (t)G2



G5(s)
χ (s)

�
– ε2G′

5(t)

= c2ε2ξ (t)χ (t)G4

�
c
d

q(t)h2(t)
�

– c1ε2ξ (t)χ (t)G2



G5(s)
χ (s)

�
+ cε2ξ (t)G2

�
G5(t)

�

= ε2ξ (t)χ (t)



c2G4

�
c
d

q(t)h2(t)
�

– c1G2



G5(s)
χ (s)

��
+

G2(G5(t))
χ (t)

. (89)

Then, according to (58), we get

ε2ξ (t)χ (t)



c2G4

�
c
d

q(t)h2(t)
�

– c1G2



G5(s)
χ (s)

��
–

G2(G5(t))
χ (t)

≤ 0.

Then (87) gives

F ′
3(t) ≤ –c1ξ (t)G2

�
F3(t)

�
. (90)

Thus from (90) and the definitions of G1 and G2 in (55) and (56) we obtain

�
G1

�
F3(t)

�� ′ ≥ c1ξ (t). (91)
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Integrating (91) over [0, t], we get

G1
�
F3(t)

� ≥ c1

� t

0
ξ (s) ds + G1

�
F3(0)

�
. (92)

Since G1 is decreasing, F3(0) ≤ 1, and G1(1) = 0, we have

F3(t) ≤ G–1
1



c1

� t

0
ξ (s) ds

�
= G5(t). (93)

Recalling that F3(t) = ε2χ (t)F2(t) – ε2G5(t), we have

F2(t) ≤ (1 + ε2)
ε2

G5(t)
χ (t)

. (94)

Similarly, recalling that F2(t) := d0F1(t)q(t), we get

F1(t) ≤ (1 + ε2)
d0ε2

G5(t)
χ (t)q(t)

. (95)

Since F1 ∼ E, for some b > 0, we have E(t) ≤ bF1, which gives

E(t) ≤ b(1 + ε2)
d0ε2

G5(t)
χ (t)q(t)

. (96)

From (77) and (96) we obtain the estimate

E(t) ≤ c3



G5(t)

χ (t)q(t)

�
, (97)

where c3 = max{ 2
b0

, b(1+ε2)
d0ε2

}. �

In the following example, we illustrate our decay result.

Example 4.2 Let h(t) = a
(1+t)ν , where ν > 1 and 0 < a < ν – 1, so that (A1) is satisfied. In this

case, ξ (t) = νa
–1
ν , H(t) = t

ν+1
ν , and G–1(t) = (H–1(t))

1
1+ε0 . Then for any ε0 ∈ (0, 1), we have

G(t) = tλ, where λ := (ε0+1)(ν+1)
ν

> 1. Recall the definitions of the functions Gi, i = 1, . . . , 5:

G1(t) = a1
�
t1–λ – 1

�
, G2(t) = a2tλ, G3(t) = a3t

λ
λ–1 , G4(t) = a4tλ,

G5(t) = a5(1 + t)
1

1–λ ,
(98)

where ai, i = 1, 2, 3, 4, 5, are positive constants depending on a, ν , and ε0. As in [30], we
consider

m0(1 + t)r ≤ 1 + ‖�u0‖2 ≤ m1(1 + t)r , (99)

where r < ν – 1 and m0, m1 > 0. Then for some positive constants ai (i = 6, 7) depending
only on a, ν , m0, m1, r, we have

a6(1 + t)–ν+1+r ≤ h1(t) ≤ a7(1 + t)–ν+1+r , (100)
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where –ν + 1 + r < 0. Recalling the definitions of the functions h1, h2, and q, we have

q(t)h2(t) = (1 + t)
–ν+r
1+ε0 .

It is clear that condition (58) is satisfied if

qλ(t)hλ
2(t)χλ(t) + (1 + t)

–λ
λ–1 χλ–1(t) ≤ (1 + t)

–λ
λ–1 . (101)

Choosing χ (t) = (1+ t)m, where m < min(0, –1
λ–1 + (ν–r)(ν+1)

λν
), we have the following two cases

depending on r.
Case 1: If 0 < r < ν – 1, then for any ε > 0, there exists Cε > 0 such that we have the

following decay rate estimate of E (60):

E(t) ≤ Cε(1 + t)–(ν–r–1)+ε . (102)

Case 2: If r ≤ 0, then for any ε > 0, there exists Cε > 0 such that the decay rate estimate
of E (60) is given by:

E(t) ≤ Cε(1 + t)–(ν–1)+ε . (103)

Thus estimates (102) and (103) give limt→+∞ E(T) = 0.

5 Conclusion
As far as we know, there are no decay results in the literature known for logarithmic plate
equation with infinite memory and a wider class of relaxation functions. Our work extends
the works for some wave equations treated in the literature to the plate equation with
logarithmic nonlinearity. Also, we succeed to extend some general decay results, known
for the case of finite history, to the case of infinite history, where the relaxation function
satisfies a wider class of relaxation functions. Furthermore, we dropped the boundedness
assumption on the history data considered in earlier results in the literature.
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