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1 Introduction
In this work, we consider the following viscoelastic plate problem with velocity-dependent
material density and logarithmic nonlinearity:

+00
e |Puay + A + Azutt—‘/ h(s)A%u(t —s)ds = auln|u| in 2 x (0,00), (1)
0
equipped with initial and boundary conditions

u(x,t) = a—M(x, t)=0 indf2 x (0,00),
on (2)

u(x, —t) = ug(x, t), us(x,0) = u1(x) in £2,

where £2 is a bounded domain of R? with smooth boundary 9£2, # is the unit outer normal
to 082, and p and « are positive constants. The relaxation function / satisfies the following
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general condition:

H(t) < -£(OH(h(t)), 3)

where the functions £ and H satisfy some conditions specified later. To motivate our work,

let us recall some results regarding problems with logarithmic nonlinearity.

1.1 Problems with logarithmic nonlinearity

The logarithmic nonlinearity has many applications in physics such as nuclear physics,
optics, and geophysics [1-3]. For the problems with logarithmic nonlinearity, we start with
the works of Birula and Mycielski [4] and [5], where they proved that the wave equations
with logarithmic nonlinearity have stable and localized solutions. Cazenave and Haraux

[6] considered the Cauchy problem

Uy — Au = uln|ul® (4)
in R3 and established the existence and uniqueness of the solution. The corresponding
one-dimensional problem of (4) was studied by Gorka [1], who established the global ex-
istence of weak solutions, provided that (uo, u;) € Hi x L. Bartkowski and Gorka [2] in-

vestigated weak solutions and also proved the existence of classical solutions. Hiramatsu

et al. [3] considered the problem
U — A+ u+uy + |u?u=uln|ul (5)

and investigated numerical solutions of this problem without theoretical analysis. Re-
cently, Al-Gharabli et al. [7] considered the problem

t
Uy + A%u+ u—/ h(t —s)A%u(s)ds = auln|u| in §£2 x (0,00) (6)
0

and proved existence and decay results of the solutions under the following condition on

the relaxation function:
, 3
W) <-E@h{@), 1<p< 7 (7)

Al-Gharabli et al. [8] considered the problem
t
| |Pue + A2+ Auyy — / h(t — s)A%u(s)ds = auln|u| in £2 x (0,00)
0

and as in [7] proved the existence and decay results for the solutions with imposing the
same condition (7). Very recently, Al-Gharabli [9] considered the same problem (6) and
established a general decay result for which the relaxation function / satisfies /#'(¢) <
—&(¢)H(h(t)). For more results on some problems with logarithmic nonlinearity, we re-

fer to the recent works [10-14].
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1.2 Problems with infinite memory
Giorgi et al. [15] considered the following semilinear hyperbolic equation with linear
memory in a bounded domain 2 C R>:

uy — K(O0)Au — /+00 K'(s)Au(t-s)ds+g(u) =f in2 xR, (8)
0

with K(0),K(+00) > 0 and K’ < 0 and proved the existence of global attractors for the
solutions. Conti and Pata [16] considered the following semilinear hyperbolic equation:

Uy +au, — K(0)Au —/ K'(s)Au(t-s)ds+g(u) =f in2 xR, 9)
0

where the memory kernel is a convex decreasing smooth function such that K(0) >
K(+00) >0, and g: R, — R, is a nonlinear term of at most cubic growth satisfying some
conditions. They proved the existence of a regular global attractor. Appleby et al. [17]
studied the linear integro-differential equation

t
Uy + Au(t) + / K(t-s)Au(s)ds=0 fort>0 (10)

and established an exponential decay result for strong solutions in a Hilbert space. Pata
[18] discussed the decay properties of the semigroup generated by the following equation:

Uy + aAu(t) + Bu(t) — /+0° w(s)Au(t—s)ds=0 fort>0, (11)
0

where A is a strictly positive self-adjoint linear operator, @ > 0, 8 > 0, and the memory ker-
nel u is a decreasing function satisfying specific conditions. Subsequently, they established
necessary and sufficient conditions for the exponential stability. Guesmia [19] considered

the equation
+00
Uy + Au — / h(s)Bu(t —s)ds=0 fort>0 (12)
0

and introduced a new ingenuous approach for proving a more general decay result based
on the properties of convex functions and the generalized Young inequality. He used a
larger class of infinite history kernels satisfying the condition

0 h(s) h(s)

 H ) S ) <

00 (13)
with

HWO)=H'(0)=0 and lim H'(¢) = +oo, (14)

t—+00

where H : R, — R, is an increasing strictly convex function. Using this approach,
Guesmia and Messaoudi [20] later considered the equation

Uy — Au+ /t h(t - s)div(al(x)Vu(s)) ds + /‘+0<> hz(s)div(az(x)Vu(t - s)) ds=0
0 0
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in a bounded domain under suitable conditions on @; and a, for a wide class of relaxation
functions /; and /;, which are not necessarily decaying polynomially or exponentially, and
established a general decay result such that the usual exponential and polynomial decay
rates are only particular cases. Messaoudi and Al-Gharabli [7] considered the nonlinear

wave equation
lets|Pthyy — At — Aty + /(;+0° h(s)Au(t—s)ds=0 in £2 x (0, +00),
in which the relaxation function g satisfies
W) <-£@h@), t=0, (15)

and they proved a general decay result on the solution energy using an approach different
from that introduced by Guesmia [19]. Recently, Al-Mahdi and Al-Gharabli [21] consid-
ered the viscoelastic problem

Uy — AU+ f0+°° h(s)Au(t —s)ds + |u|"2u; =0 in 2 x (0, +00),
u(x,t)=0 on a2 x (0,+00), (16)

u(x, —t) = ug(x, t), u:(x,0) = u1(x) in £2 x (0, +00),

established decay results in which the relaxation function / satisfies
, 3
H(e)<-E0W @), t=01=p<s, (17)

and obtained a better decay rate than that in [19] and [22]. For more results on problems
with infinite memory and finite memory, we refer the reader to [23—-27]. Motivated by all
these works, we intend to establish a three-fold objective:

(a) To extend many earlier works for the wave equations such as those discussed in
[1, 3,7, 28-30] to the plate equation with logarithmic nonlinearity.

(b) To extend some general decay results, known for the case of finite history, to the
case of infinite history where the relaxation function satisfies a wider class of
relaxation functions instead of those considered in {7, 8, 12, 19, 21, 29, 31].

(c) To drop the boundedness assumptions on the history data considered in many
earlier results in [7, 19, 21].

We obtain our results by using the multiplier method with some logarithmic inequalities
and some properties of integro-differential equations and inequalities. Our decay result is
based on &, H, and «. This paper is organized as follows. In Sect. 2, we present some no-
tations, assumptions, and a local and global existence result of our problem. In Sect. 3, we
establish some lemmas needed in the proof of our result. Stability results with an example

are presented in Sect. 4. Some conclusions are given in Sect. 5.

2 Preliminaries
In this section, we introduce our assumptions and give some useful lemmas. We use c to
denote a positive generic constant.
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(A1) h:R, — R, is a C! nonincreasing function satisfying, for some f, > 0,
+00
—Boh(s) < K (s), h(t)>0 and 1- / h(s)ds:=£>0, (18)
0

(A2) H:(0,00) — (0,00) is a function in C}(R,) N C*(R*) that is increasing and strictly
convex, with H(0) = H'(0) = 0 and lim,_, ,oc H'(s) = +00, s — sH'(s) and s —
s(H')7Y(s) are convex on (0, r], and there exists a nonincreasing function & : R, —
R, such that

H(6) < ~EOH(h®), t=0. (19)

2 bed
p

number satisfying || Vu||3 < ¢, | Aull3 for u € H3($2), where || - 2 = || - l2(c)-

(A3) The constant « in (1) issuch that0 < o < g =

, where ¢, is the smallest positive

Remark 2.1 Assumption (A3) is needed for establishing the local existence of the solutions
of problem (1). For more details, we refer to [8].

Remark 2.2 If H is a strictly increasing and strictly convex C? function on (0, r] with
H(0) = H'(0) = 0, then it has an extension H that is strictly increasing and strictly con-
vex C? function on (0, +00). For instance, if H(r) = a, H'(r) = b, and H"(r) = C, we can
define H for ¢ > r by

H(t) = §t2+(b—Cr)t+ (a+%rz—br). (20)

For simplicity, in the rest of this paper, we use H instead of H.

Remark 2.3 Since H is strictly convex on (0, 7] and H(0) = 0, then

H(0t) <0H(t), 0<6<1landte(0,r]. (21)
Remark 2.4 The function g(s) = %f —e3 is a continuous decreasing function on (0, o)
with

lim g(s)=oco and lim g(x) = —e 3,

s—0t x—00

Then there exists a unique ¢ > 0 such that g(eg) = 0. Moreover,

2l
e 3 < —, se(0,ap), (22)
CpS

which implies that the selection of « in (A3) is possible.

The modified energy functional associated with problem (1)—(2) is given by

1 b4 1 o
E(t) = —— ||, I°72 + = | Au||? + = || Au 2——fu21nudx
(t) ,0+2” s 2|| ll5 2|| elly 2 ), |u]

1
+%||u||§+§(hoAu), (23)
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where
(ho Au)() = / h(s)|| Auls) - Ault - s)|; ds.
0
Direct differentiation of (23) using (1)—(2) leads to
1
E't) = E(h/ o Au)(t) 0. (24)

Lemma 2.1 ([32, 33] (Logarithmic Sobolev inequality)) Let u be any function in H}(£2),

and let a be any positive real number. Then
2 Lo , @ 2 2
u”Inlu|dx < 5”’4”2111 llall3 + 2—||VM||2 - (1 +Ina)llull;. (25)
Q T
Corollary 2.1 Let u be any function in H3($2), and let a be any positive real number. Then
2 Lo 2, O’ 2 2
wln|uldx < SllullyInllull; + S—Aull; — (1 +Ina)|ul;. (26)
Q 2 2w
Lemma 2.2 Let &) € (0,1). Then there exists dy, > 0 such that

s|Ins| <5+ deys' ™0, 5>0. (27)

Proof Let f(s) = s°°(| Ins| —s). Note that f is continuous on (0, 00), its limit at 0* is 0*, and
its limit at oo is —oo. Then f has a maximum d,, on (0, c0), so (27) holds. O

2.1 Existence results

In this subsection, we state without proof a local existence result of our problem (1)—(2).

Theorem 2.1 Let (u,u1) € H3(2) x H2($2). Assume that (A1)—(A3) hold and

3 2l
e2<a< |—. (28)
ac,

Then problem (1)—(2) has a weak solution on [0, T].
The proof of Theorem 2.1 can be obtained by following the same arguments as in [8]
and adapting the finite history to the infinite case. For the global existence, we have the

following:

Theorem 2.2 Assume that (A1)—(A3) hold. Let (uo, u1) € HZ($2) x H3($2) be such that

I10)>0 and «/ﬁaci (?) ’ <, (29)

where ¢ is a positive embedding constant. Then we have:
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(i)

I(t)>0, tel[0,T). (30)

(i) Problem (1)—(2) has a global weak solution,

where
I(t) := )| Aull3 + | Augll3 + (o Au)(t) — 3a/ u?In |u| dx (31)
2
and
1 2 9 k , 1
J(t) := §[£||Au||2 +[|Aulls +go Au] + L—L||u||2 + gl(t). (32)

The proof of Theorem 2.2 can be obtained by following the same arguments as in [8] by

adapting the finite memory to infinite memory.

3 Technical lemmas
In this section, we start by establishing several lemmas needed for the proof of our main

result.

Lemma 3.1 There exists a positive constant My such that
f h(s)(Au(t) - Ault —5))” dsdx < My (8), (33)
t

where I (t) := [y h(t +5)(1 + || Auo(s)1|) ds.

Proof The proof is based on some arguments in [30]. In fact, we have
/t i) |aute) - Ault —s)| ds
<2|au)|’ /tm h(s) ds + 2/:00 h(s)| cute —s)| ds
= 2i‘jg” Aus)|® /Om h(t +s)ds +2 /Omg(t +9)] au(-s)| ds
< (%E@)) /Oooh(t +5)ds + 2f000h(t +5)|| Auo(s) | ds
< (%E(O)) /0 Tt es)ds+2 /0 Thie+s) | Auo(s)|* ds

<M, / e+ )1+ | Auo(s)|*) ds, (34)
0

where M; = max{2, %}0)}. O
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Lemma 3.2 Assume that h satisfies (A1). Then, for u € H3($2),

+00 2
/ </ h(s)(u(t) —u(t - s)) ds) dx < c(h o Au)(t),
2 \Jo

+00 2
/ (/ W () (u() — ul(t - s)) ds> dx < —c(H' o Au)(2).
2 \Jo

Proof The proof can be easily obtained by applying the Cauchy—Schwarz and Poincaré
inequalities. O

Lemma 3.3 Assume that (A1)—(A3) and (29) hold. Then the functionals

1
= /|ut|putudx+f AulAu; dx,
p+lJe 2

X(®) = - /Q (MW ‘- — |ut|f’ut) /0 ) (wte) - e - ) i,

v (t)

satisfy, along the solutions of (1)—(2), the following estimates for any §,81,82 > 0 and &, €
(0,1):

1
p+1

14
W(t)f——/ |Au|2dx+/ |Au;)? dx + /Iutlp*de+c(hoAu)(t)
2 Q 0 2
+oe/ u®In |u| dx, (35)
o)
1) 1-
x'(t) < [(1+2(1—€)2)81+—]/ |Au|2dx—&/ |1y |P*2 dx
4] /e p+1l Jo
1 1 c ..,
+c<81 + — + —>(ho Au)(t) — —(h oVu)(t)
5 6 So

+ [82 + ¢Sy (E(O))p -(1- E)] / |Aug|® dx + Ceps(M o Au)ﬁ (®). (36)
2

Proof The proof of Lemma 3.3 is similar to that in [8] with some adjustments according

to the infinite memory case. 0

Lemma 3.4 Assume that (A1)—(A3) and (29) hold and let gy € (0, 1). Assume that

¢
0<E(0)< X, (37)
4cp

Then, for o« small enough, there exist positive constants & and N such that the functional
L:=NE+¢ey +yx
satisfies

L~E, (38)
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and, for any t > 0, there exists a positive constant m such that

L'(t) < -mE@t) + c(ho Au)(t) + cey(h o Au)ﬁ (2). (39)

Proof For the proof of (38), we refer to [8]. To prove (39), we let f0+°° h(s) ds =: hy and using
(24), (35), and (36), for ¢ > 0, we have

L) < g - é)(h Au)(t) -

_ [gg -(1+21-0?%)8 - Z]||Au||§
— [ho— & = 85— ¢8> (E(0) ]Il A 13

1 1
+ c(s +81+—+ —)(h o Au)(t)
)

(40)

1
+eagpho Au) T () + ea f W10 ] dx.
2

Using the definition of E(t), we obtain, for any m > 0,

’ N 4 , ho—é‘ m +2
L(t)f—mE(t)+(§—g)(h oAu)(t)—<p+1 "p+z>/g|”‘|p dx

iy 8§ m(1-hg)
- gi_(1+2(1—E)2)81—Z—f}HAu”%

i m
—|hy—e-6, - 652(E(0))p - Eil IIAutH%

[ 1 1
+ -C<8+51+ a+ 8) + %](hoAu)(t)

1 mo
+Ceps(ho Au)T () + - llull3

+ (e— E)oz/‘ u?1n |u| dx. (41)
2 2

Using the logarithmic Sobolev inequality (26), we get, for 0 < m < 2¢,

L'(t) < -mE(£) + [% - ﬂ(h/ o Au)(t) - <’;°+_1‘9 - p”:2> / | dx

2

A
_I:gg—(1+2(1—ﬁ)2)51—2—w—(8—%)0{%& ]n ull?
(h() —&— 82 — C52(E(0)) - %) ||Aut||§

|:C<8+51 + = 1) + %](hOAM)(t)+Ceo,8(h0AM)ﬁ(t)

TS

mo
(a ) (201 +Ina) —Influll3) lull3 + —=luls. (42)
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At this point, we carefully choose our constant. First, we pick 0 < ¢ < /. Then for §;, 8,
and § small enough, we have

12 1)
ki ::85—(1+2(1—E)2)81— 2 >0
and
k2 = h() —&— 82 - Caz(E(O))p > 0.

Then, for N sufficiently large,

N
N>c(l+¢) and ——izO.
2 &

Consequently, we get

h _
L/(t)s—mE(t)—< A )/ |2 dix
p+1 p+2/) Jgo

1-h 2
_ [kl _m-hy) (8_ Z)acpa :|||Au||§
2 2 21

- <k2 — %) ||Aut||% + (c + %)(h o Au)(t)

1 mo
+ Ceo(ho Au)T50 (£) + e llac]l3

_(8_%)%(2(1+1na)—ln||u||§)||u||%~ (43)

Finally, we choose m and & small enough so that m < ¢ (so 7* < (¢ - 7)3),

h0—8 m

- >0,
p+1l p+2
m(1—-h m\ ac,a’
kl—u— e—— | —=£L—>o0,
2 2 2
and
m
kp——>0,
)
and we get

L'(t) < -mE(t) + c(h o Au)(t) + cey(h o Au)ﬁ(t)
_(8—%)%(1+21na—ln||u||§)||u||§. (44)

Using (23), (24), (30), (31), (32), and (37), we have

Inlu|5 <1In (3(0) <In (EE(t)> <In <f15(0)) <In (eﬂ) (45)
o o o acp
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By choosing a satisfying

{ 3 [ dm } 207

maxje 2, [—t<a< [—
ac, ac,

we achieve that (28) is satisfied. This selection gives a guarantee that
1+2lna—1In|u|3 >0,

which completes the proof of (39).

Remark 3.1 Recalling (23), (24), (30), and (32), we have

E(0) = E()) = J(t) + ﬁ lullf 232 0 = 5 (0 Au)),
which gives
(h o Au)(t) < 3E(0).

Using (47), for any &g € (0, 1), we obtain that

(ho Au)(z) = (ho Au)™0 () (h o Au) ™ (1)

< c(ho Au)T% (£).

Lemma 3.5 If(A1)-(A2) are satisfied, then we have, for all t > 0, the estimate

, t+1, ([ qop(t+1)
/0h(s)||Au(t)—Au(t—S)llﬁde o 1( 0tés(t) )

where qo > 0 is small enough, H is defined in Remark 2.2, and
¢ 2
u(t) = —/ H(s) || Au(t) — Au(t —s) ||2ds < —cE'(t).
0
Proof To establish (49), we introduce the functional

ME) = fo | Autt) - Aute - 9)|> ds.

(46)

(47)

(48)

(49)

(50)

(51)

Page 11 of 20
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Then since E is nonincreasing, by (23) we get

2 ' ‘
w0 < 22 ([ Jauo s [ aute-;as)

4q0 ¢
D) (/0 (E(®) + E(t - s)) ds)

840 ¢
(i(t+1)/0 Els)ds

SqO t
= e+ 1)/0 EQds

IA

IA

< +00. (52)
Thus g can be chosen so small so that, for all £ > 0,
A < 1. (53)

Without loss of generality, for all £ > 0, we assume that A(£) > 0; otherwise, we get an ex-
ponential decay from (39). Using Jensen’s inequality, (2.3), (50), and (53) gives

wu(t) = qoi(t) /Ot)»(t)(—h’(s)) /Q q0|Au(t) - Au(t—s)|2dxds
1 t 2
> Y0 /0 )»(t)é(s)H(h(s))/quMu(t) - Au(t—s)‘ dxds
£t [* 2
> 20i 0 Js H()\(t)h(s))/gqo‘Au(t)— Au(t—s)| dxds
(+1DE() a0 * 2
> . H((t D /0 h(s)/Q |Au(t) - Au(t—s)| dxds)
_(E+1E@) g0 [* 2
= p, H((t ), h(s)/;z |Au(t) - Au(t - s)| dxds), (54)
and hence (49) is established. O

4 Decay result

In this section, we state and prove our main result and provide an example to illustrate
our decay results. Let us start introducing some functions and then establishing several
lemmas needed for the proof of our main result. As in [30], we introduce the following

functions:
L |
Gl(t) = l m dS, (55)
G()=1G (), G()=t(G)'(t),  Galt) =G5, (56)

where G™1(¢) = (H ’%t))ﬁ and &g € (0,1). Further, we introduce the class S of functions
x : R, — R satisfying, for fixed ¢;, ¢, > 0 (should be selected carefully in (76)),

xe€C'(R,), x<Lyx <0, (57)



Al-Mahdi Boundary Value Problems (2020) 2020:84 Page 13 of 20

and

c Gs5(s)\ Ga(Gs(2)
C2G4|:Eq(t)ho(t)] <q (G2< <6 ) R—E ), (58)

where d > 0, c is a generic positive constant that may change from line to line, /; and ¢

will be defined later in the proof of our main result, and

Gs(t) = GII (01/ &(s) ds). (59)
0

Remark 4.1 According to the properties of H introduced in (A2) and the definition of G,
we can see that G’ > 0 and G” > 0 on (0, 7], G, is convex increasing and defines a bijection
from R, to R,, G; is decreasing and defines a bijection from (0, 1] to R,, and G3 and G,
are convex increasing functions on (0, r]. Then the set S is not empty because it contains
X (s) = €Gs(s) with 0 < & < 1 small enough. Indeed, (57) is satisfied (since (55) and (59)).

Theorem 4.1 Assume that (A1)—(A3) and (29) hold. Then for any x satisfying (57) and
(58) and for any &g € (0, 1), there exists a strictly positive constant C such that the solution
of (1)—(2) satisfies, for all t > 0,

CGs(t)

EO = 0@

(60)

where Gs and x are defined in (55) and (57), respectively, and q will be defined later in the
proof.

Proof Using (39), (48), and (49), for some positive constant m, gy € (0,1), and any ¢ > 0,

we get

t+1\ 7% t Ty L
L/(t)f—mE(t)+c(%> (H%%)) (£) + ch 0 (). (61)

Combining the strict increasing of H and the inequality ﬁ <1 for t > 0, we obtain

H4<M)5H‘I<L@)’ o
(t+ 1)) (t+1) T £(¢)

and, then (61) becomes, for any £ > 0 and &y € (0,1),

L) < —mE(@R) + e D <H‘1 <Lft)>) )+ kT (o), (63)
o (t+ )T E(8)

_1 ;
For simplicity, we let g(£) := go(t + 1) *%0 and hy(¢) := chlm0 (¢). Then (63) becomes

L(t) < —mE@®) + % (H-l (q(? (’t‘)(t ) )) )+ ey@). (64)
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Further, letting G™1(¢) = (H ‘l(t))ﬁ we reduce (64) to

L) < —mE(®) + %G‘l (q(?(’;)(t)> v (), t>0. (65)

For &1 < r, let the functional F be defined by

F) =G (815%5’5)>Lu),

which satisfies F ~ E. Noting that G" > 0, ¢ <0, and E’ <0, we get

F)-e (gE) (¢) o (le(t)q(t)> L)+ G (81E(t)q(t)> L)

E(0) E(0) E(0)
(. E()q(t) ¢ E®q®)\ . (q@)u)
= TmERG (‘91 E©) ) oM (81 E©) )G < £ )
+chy(t)G (81 E(Et)(g)(t) ) (66)
Let G* be the convex conjugate of G in the sense of Young (see [34]). Then
G*(s)=s(G) ()= G[(G) '(5)] forse (0,G'(r)], (67)
and G* satisfies the generalized Young inequality
AB<G*(A)+G(B) ifAe(0,G(r)],Be(0,r]. (68)
So, with A = G'(&; %) and B = G‘l(%), using (24) and (66)—(68), we arrive at
1p) < (. E@a@®) ¢ . . ( E@)q®) n(t)q(t)
Fio=-mewe (s g ) + o (6 () (i)
+ chy(0)G (51 E %;”)
o E(t)q(¢) E@) [ E@)q() u(t)q(t)
<-me06 (275" ) e 0 (2 ) (V)
+ chy ()G (51 E(Et)(g)(t) ) (69)

Multiplying (69) by &(¢), using (50), and the facts that alE(t)q(t) <r and G'(g; %) =

E(0) )
G'(e1 Eﬁ%y) ), we get

E(OF (£) < -mE(DE(DG <815(Efzg§”> vt (e % o (81E<£zg§t))

E (t)q(t))
E(0)

- (mE(O) ~ C) £ E(z) G (SIE(t)q(t)>

+cp(t)g(t) + c& ()ha ()G (81

o “TE0) E(0)

E(t)q(t)>
E@©0) )

—CE'(t) + cE () (t) G’ (81 (70)
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Consequently, recalling the definition of G, and choosing &; such that k = (%1(0) -¢)>0,
we obtain, for all £ € R,,

, O\ (. E@®)q(®) . E(t)q(t)
./—" (t) = k81§(t)( (0))G <81 E(O) ) + CE(t)hz(t)G (81 E(O) )
&0 E(t)q(t) A E@)q(t)
=- MGZ(W) +cE () ()G (SIW) (71)
where F; = £ F + cE ~ E satisfies, for some a1, 0, > 0,
a1 Fi(t) < E(t) < ap Fr(b). (72)

Since Gy(t) = G'(t) + tG"(¢), using the strict convexity of G on (0,r], we find that
G5(t), G2(¢) > 0 on (0,r]. Applying the general Young inequality (68) to the last term in

(71) with A = G'(&; 1% ) and B = [5/15(t)], we have

A E@)q@)\ 4 (. E()q(?)
(o) (o 20)

d
(
<75 (e (F0)) * 75 7100
d
q(
d

EQq0N(.( E®q®\\ d _[c
S_t><81 E0) )(G (81 E(0) >)+EG4[E”](”'“(”}

E(t)q(t) d
< 56(o 0 )+ G| Sat0mo | 73)
Now, combining (71) and (73) and choosing d small enough so that k; = (k — d) > 0, we
arrive at
, &() E(t)q(t)\  d&() E@t)q()\ d&(®) . [c
Filo =k EGZ( E(0) ) F & (81 E(0) ) ) G{ﬁthzm]
£() E(t)q(t)  d&(0)
<h (2 gy ) g | gaomo | 7
Using the equivalent property in (72) and the nonincrease of G,, we have, for some dj =
J% >0,
E
G (81 (Etzggt)> > Ga(doF1(t)g(t)).

Letting F>(2) := doF1(£)q(¢) and recalling that ¢’ < 0, we arrive at,

/ €0, (L E0a0 | dE0),
740 = dogt)( o v (0P ) + 0w Satometo) ) 75)

Then (75) becomes, for some constants ¢; = dok; >0 and ¢y = dod > 0,

Fy(t) < —c16(0)Ga(F(2)) + sz(t)G4|:2fI(t)h2(t)]' (76)
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Since dpgq(t) is nonincreasing. Using the equivalent property F; ~ E implies that there
exists by > 0 such that F,(¢) > boE(t)q(¢). Since y (¢) satisfies (57) and (58), if boq(¢)E(t) <
2%&?, then we get

- 2 Gs()

B0 = g S ®a

(77)

If boq(¢)E(t) > 2%, then since g(t)E(¢) is a nonincreasing function, for any 0 < s <, we

have byq(s)E(s) > ZGXST(t?' Therefore, for any 0 <s <ft,

79220, 78)

Using (21), 0 < x <1, and the convexity of G,, we have, forany 0 < g, <1,

Ga(£2x (5)Fals) — £2Gs(s)) = Ga <82X () Fa(s) - %)
< £21(9G (fz(s) - GS(S)). (79)
x(s)

Recalling the definition of Gy, that is, G,(¢) = tG'(¢), (79) becomes

Gale2x () F2() = £2G5(6)) < e2x(s) (fz(s) - GS(S))G’ (]:2(3) - Gs“))
x(s) x(s)

< e2x()F2(8)G (]—"2(5) _ GS(S))

x(s)
o9 Zg (7:2(5) - GS(S)). (80)
x(s) x(s)

Now, using (78) and the increase of G, for any 0 < s < ¢, we have

¢ (Fz(s) - GE(S)) <G(F(),G (Fz(s) - GS(S)) > G/<G5(S)). (81)
x(s) x(s) x(s)

Combining (81) and (80), we arrive at

Ga(e1x (8)Fa(s) — £2G5(s)) < £2x () Fa(s)G' (Fals)) — e2x(s) G0 ¢ ( G5(s) > (82)
x(s) x(s)

Now we let
F3(s) = g2 x () Fa(s) — £2Gs(s), (83)

where g, is small enough such that F3(0) < 1. Recalling the definition of G,, (82) becomes,

forany0<s<t¢,

Ga(Fs(s)) < e2x(1)Ga(Fals)) - 82X(t)G2<Cj(5((S§)>~ (84)
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Further, we have
F3(t) = o2 (O) F2(t) + &2 (5)F5(t) — £2G5(2). (85)
Since x’ <0, using (76), for any 0 < s < ¢ and 0 < &; < 1, we obtain

F3(t) < eax(s)F5(t) — £2G5(t)

< —c1826 () x (1) G2 (F2 (1)) + 02€2§(t)X(S)G4[26](t)h2(t):| - £Gg(2). (86)

Then, using (58) and (84), we get

F5(t) < 1§ ()G (F3(0) + CzSzE(t)X(t)G4[ (t)hz(t)]

_ clszé‘(t)x(t)Gz<G5(s)> _ e2G(0) (87)
x(s)

From the definitions of G; and G5 we have

G(Gs(s)) = ar /0 §(0)dr,
and hence

Gy (s) = —16(s)G2(Gs(9)). (88)

Now we have

02€2§(t)x(t)G4[ q(t)hz(t)] - C1€25(I)X(t)G2( (( ))) £G4
= 62825(t)x(t)G4[ q(t)hz(t)} - clsﬁ(t)x(t)Gz( ) +ce2£ (£)Ga(Gs (1))
‘825(15))((15)(02@4[ (t)hz(t)] C1G2(G5(S))) G2(GS(”) (89)

Then, according to (58), we get

626 (O (0 (cza[:—iq(t)hz(r)} - chZ(is((sS)))> _ Gz;fj)(”) <0,
Then (87) gives
Fi) < -1t (0G(Fo(0). (90)

Thus from (90) and the definitions of G; and G in (55) and (56) we obtain

(G1(F5(0)) = g (. (91)
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Integrating (91) over [0, ], we get
t
Gi(F0) 2 [ £ ds+ Gi(F00) ©2)
0
Since G; is decreasing, F3(0) <1, and G1(1) = 0, we have
t
F3(t) < Gy <C1 / &(s) dS) = Gs (). (93)
0

Recalling that F3(£) = e x (£) F2(t) — £2Gs(¢), we have

(1+ &) Gs(t)

Fot) < . 94
2(f) < p—r (94)
Similarly, recalling that F,(t) := doF1(¢)q(t), we get
(1+&) Gs(t)
Fi(t) < . 95
= e X040 )
Since Fj ~ E, for some b > 0, we have E(t) < bF;, which gives
b(l + 82) G5(If)
E@t) < . (96)
dogr  x(t)q(t)
From (77) and (96) we obtain the estimate
Gs(2) >
E@®)<c , (97
O=e ( x(0q(?) )
where ¢3 = max{-2, 2Le2)) d

by’ doea

In the following example, we illustrate our decay result.
Example 4.2 Let h(t) = (1+Lt)v’ where v >1and 0 < a < v —1, so that (A1) is satisfied. In this
- v+ 1

case, £(t) = va™, H(t) = t'v, and G-1(¢) = (H-1(¢)) "% . Then for any & € (0,1), we have

G(t) = t*, where A := M > 1. Recall the definitions of the functions G;,i=1,...,5:
Gi(t)=ay (£ - 1), Golt) = ast’, Galt) = ast™1, Ga(t) = aut’,

1 (98)

Gs(t) = as(1 +1)T%,

where a;, i = 1,2,3,4,5, are positive constants depending on a, v, and &;. As in [30], we
consider

mo(L+28)" <1+ ||Augll®> <m(1+1t), (99)

where r < v — 1 and my, m; > 0. Then for some positive constants a; (i = 6,7) depending

only on a, v, my, my, r, we have

ag(L+ )" < () < az(L+ )1, (100)
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where —v + 1 + r < 0. Recalling the definitions of the functions %, /;, and ¢, we have
qOh(t) = (1 + )0,
It is clear that condition (58) is satisfied if

FORO ) O + L+ DT 07 () < (L+£)71. (101)

W ), we have the following two cases

Choosing x (¢) = (1+¢)™, where m < min(0, )\‘—_11 +
depending on r.
Case 1: If 0 < r < v — 1, then for any ¢ > 0, there exists C, > 0 such that we have the

following decay rate estimate of E (60):
E(t) < Co(1+ )77, (102)

Case 2: 1f r < 0, then for any ¢ > 0, there exists C, > 0 such that the decay rate estimate
of E (60) is given by:

E(t) < Co(1+ )70, (103)
Thus estimates (102) and (103) give lim,_, ,c E(T) = 0.

5 Conclusion

As far as we know, there are no decay results in the literature known for logarithmic plate
equation with infinite memory and a wider class of relaxation functions. Our work extends
the works for some wave equations treated in the literature to the plate equation with
logarithmic nonlinearity. Also, we succeed to extend some general decay results, known
for the case of finite history, to the case of infinite history, where the relaxation function
satisfies a wider class of relaxation functions. Furthermore, we dropped the boundedness

assumption on the history data considered in earlier results in the literature.
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