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1 Introduction
In this paper, we study the existence and multiplicity of positive radial solutions for the
coupled elliptic system

—Au = (x)fi(w, v, [Vul, V), x| € [ro, +00),

=Av =hy(|x)f2(u, v, |Vul, [ VV]), ) || € [ro, +00), (L1)
limyy 00 u(x) = a1 [1], iU+ dlg—;‘ = Bi[u] for |x| = ro,

limyy - 00 V(%) = 02[v], GV + JQ% = Bylv]  for |x| = r,

where ¢;[-], and g;[-] are bounded linear functionals, /; and f; are nonnegative functions,
¢i>0,d; <0,r0>0,and % denotes (as in [23]) differentiation in the radial direction r = |x|.
The functions f; are continuous, and every singularity is captured by the term /; € L!,
which may have pointwise singularities.

Many papers study the existence of radial solutions of elliptic equations in the exterior
part of a ball. A variety of methods have been used, for instance, when the boundary con-
ditions (BCs) are homogeneous; a priori estimates were utilized by Castro et al. [7], sub
and super solutions were used by Djedali and Orpel [16] and Sankar et al. [39]; variational
methods were used by Orpel [37], and topological methods where employed by Abebe and
coauthors [1], do O et al. [17], Hai and Shivaji [29], Han and Wang [30], Lee [35], Orpel
[38], and Stanczy [40].
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In particular, recently, Hai and Shivaji [29] proved the existence and multiplicity of pos-
itive radial solutions for the superlinear elliptic system

—Au = (%)), x| € [ro, +00),
—Av = My (|x)fa (u), x| € [ro, +00),
limyy— 00 #(x) = 0, dq 3—ﬁ +C(W)u=0 for |x| =rg,
limy—, 00 V(%) = 0, a}S—Z +C(v)v=0 for |x| = ro,

using a fixed point result of Krasnoselskii type applied to suitable completely continuous
integral operators on C[0, 1] x C[0, 1]. These results seem to be the first ones proving the
multiplicity of positive solutions for this kind of systems.

On the other hand, in the context of nonhomogeneous BCs, elliptic problems were stud-
ied by Aftalion and Busca [2], Butler et al. [6], Cianciaruso and al. [10], Dhanya et al. [15],
do O et al. [18-21], Goodrich [26, 27], Ko and et al. [31], and Lee et al. [34].

The existence of positive radial solutions of elliptic equations with nonlinearities de-
pending on the gradient subject to Neumann, Dirichlet, or Robin boundary conditions
has been investigated by a number of authors; see, for example, Averna et al. [5], Ciancia-
ruso etal. [8, 9, 12], De Figueiredo et al. [13, 14], Faria et al. [22], and Montreanu et al. [36].

Our system (1.1) is quite general:

(1) the nonlinearities f; depend on the functions u# and v and their gradients; no

monotonicity hypotheses are supposed.

(2) the boundary conditions are nonlocal and represent feedback mechanisms. They

have been deeply studied for ordinary differential equations, for example, in
[11, 24, 25, 41, 42]).
To search solutions of the elliptic PDE

—Aw =g(|x])f (w, |Vw])

with some boundary conditions, a topological approach is associating, by using standard
transformations, an integral operator of the form

1
Sw(t) = /0 G(t,5)g(r(s))f (w(s), |W(s)|) ds.

It is straightforward, in the local problems, to find the Green’s function G by integration
and by using the BCs. However, let us remark that, in the nonlocal problems, this is a long
and technical calculation, often resulting in a sum of terms of different signs.

Here, as in [41], we treat the nonlocal problem as the perturbation of the simpler local
problem. In such a way, we handle the positivity properties of the simpler Green’s function
of the local problem.

Often, the associated integral operator is studied in the cone of nonnegative functions
in the space C'[0,1] or in a weighed space of differential functions as in [3]. In our case
and in particular when seeking for multiple solutions, it is suitable to work in a smaller
cone: we will introduce a new cone in which we will use Harnack-type inequalities.

Moreover, since we are interested in positive solutions, the functionals «; and 8; must
satisfy some positivity conditions; we will not suppose this in the whole space, but we
choose to include the requirement in the definition of the cone.
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We show that, under suitable conditions on the nonlinear terms, the fixed point index
is 0 on certain open bounded subsets of the cone and 1 on the others; the choice of these
subsets allows us to have more freedom on the conditions of the growth of the nonlineari-
ties. These conditions relate the upper and lower bounds of the nonlinearities f; on stripes
and some constants, depending on the kernel of the integral operator and on the nonlocal

BCs that are easily estimable as we show in an example.

2 The associate integral operator
Consider in R”, n > 3, the equation

-Aw = h(|x|)f(w, |VW|), |x| € [rg, +00). (2.1)

Since we are interested in radial solutions w = w(r), r = |x|, following [6], we rewrite (2.1)
as

-w'(r) - w'(r) = h(r)f

), r € [rg, +00). (2.2)

By using the transformation
r(t) = rot ™1, te(0,1],

equation (2.2) becomes

=0, te(0,1],

IW’(V(t))|>
I @)

w'(r(t)) +g(t)f(w(r(t)),

Consider in R” the system of boundary value problems

—Au=h(lx)fi(w,v,|Vul,|Vv]), x| € [ro, +00),

—Av =hy(|x))fa(u, v, |Vul, | Vv]), ) |x| € [ro, +00), (2.3)
lim - 00 (%) = 001 [14], au+d; 3—’: = Bi[u] for |x| = ro,

limyy - 00 V(%) = a2[V], oV + 01722—‘; =B,[v]  for |x| = ro.

Set u(t) = u(r(¢)) and v(¢) = v(r(¢)). Thus with system (2.3) we associate the system of
ODEs

10]

| ’

<.

W' () + & (E)fi (u(2), m(e), St i<”;) , te(0,1),
V'(£) + @O u®), v(e), L B 0, te(0,1),
u(0) = a1 [u], ca1u(1) + dyu/(1) = By [u],
v(0)=aa[v],  cv(l) +dyv(1) = Balv],

<§

<

(2.4)

where d; = 7% d and g;(¢) = 2t 5 (r(t)).

n2)

Page 3 of 17
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We study the existence of positive solutions of system (2.4) by means of the associated
system of perturbed Hammerstein integral equations

u(t) = (o [ul + 8B lu) + [y kit )1 () (uls), v(s), 28, 16l s,
v(t) = ya(B)oa[v] + 80 BaV] + [y Kot s)ga(s)fa(uals), vis), L, L) s,

where y; is the solution of the BVP w(t) = 0, w(0) = 1, ¢;w(1) + d;w' (1) = 0, that is,

cit
(t)=1- ;
yi(t) dic

3; is the solution of the BVP w(t) = 0, w(0) = 0, ¢;w(1) + d;w'(1) = 1, that is,

t

(Sit: 5
() dl'+Ci

and k; is the Green’s function associated with the homogeneous problem in which «;[w] =
Bi[w] =0, that is,

s(1-75), s<t,
ki(t,s) := dive
t(l—dijrci), s> L.

In the following proposition, we resume the properties of the functions y;, §; and k;, which
will be further useful.

Proposition 2.1 We have, fori=1,2:
« The functions y;, 8; are in C*[0, 1]; moreover, for t € [a;,b;] C (0,1), with a; + b; < 1,

1Villo =1 and  yi(6) 21-t=1-b;=(1-b)lVillwc > aill Villoos

8illoo = and  §;(£) = tll8illoc = aill8illoo-

1
dl'+Ci

o The kernels k; are nonnegative and continuous in [0,1] x [0, 1]. Moreover, for

t € [a;, b;], we have

ki(t,s) < ¢i(s) for(t,s)€[0,1] x [0,1], and
ki(t,s) > aipi(s) for (t,s) € [a;, bi] x [0,1],

with ¢;(s) —S(l—d+c s).

Let w(t) = £(1 — t). Our setting will be the Banach space (see [3])

cllo,1] = {w € C[0,1]N CY(0,1): sup a)(t)‘w’(t)| < +oo}
te(0,1)

endowed with the norm

Iwll := max{[[wec,

Wi,

where || Wl 1= maxcjo,1) [w(£)| and [[W/]|o, := sup,¢ (o 1) @(£) W' (2)].
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For i = 1,2 and fixed [a;, b;] C (0,1) such that a; + b; < 1, we consider the cones

K= we CloAT:w= 0, min wlt) = alwlx
€

a;,b;
[, = 4w(1/2), i[wi = 0, Bi{w] = 0]
in C}[0,1] and the cone
K:=K; x K,
in C1[0,1] x CL[0,1].
Note that the functions in K; are strictly positive on the subinterval [a;, ;] and that for

w € K;, we have the inequalities ||w'[|, < [|[w] < 4||W|co-
Set

1 / /
Fiu,v)(2) := /0 ki(t,s)gi(s)ﬁ<u(s),v(s),|u(s)| |V(S)|>ds

)1 1r'(s)]

and

(2.5)

T8 = (m(ﬂal[u] + 81O + Fa(u, v)(t)) - (Tl(u, v)(t))

Ya(B)oa [v] + 85(2) B2 [v] + Fa(u, v)(2) T (u, v)(2)

We will further assume that, for i =1, 2,
+ f;:10, +00)* — [0, +00) is continuous, and there exist ; : [0, +00)* — [0, +00) such
that fi(u, v, 241, 120) < (e, v, 241, 251) for all (u,v) € K;
o h;: [rg, +00) — [0, +00) is continuous, and /;(r) < r,%, as r — +o0o for some pu; > 0.
e 0<uyl<1and 0 < B8] < 1;
o o;lk] == oilki(-,8)] and Bi[k;] := Bilki(:,s)] are nonnegative;
o Dy = (1 —ou[y)(1 = Bi[&:]) — os8:]Bilwi] > 0.
Note that the hypotheses on the nonlinearities f; are used in [3] and are satisfied, for exam-

ple, if the functions f; are continuous and, with respect to the last two variables, decreasing
or bounded.
We now prove that T leaves the cone K invariant and is completely continuous.

Theorem 2.2 The operator T maps K into K and is completely continuous.

Proof To prove that T leaves the cone K invariant, it suffices to prove that T;K C K;.
For (u1,u) € K, we have

| Tiur, ua) | o, < Nillooctile] + 118illooBil]

1 ) )
+/0 ¢i(5)gi(5)ﬁ(ul(s),u2(s) |y (s)] qu(s)|>ds

TS 1)l

< yilloootilz:] + 118:ll oo Bilut:]

1 / /
. f ¢i(s)g,-<s>wl-(u1(s),u2<s>, )l )] “’(S)'”z(s")ds
0

") 7 6)l
< 00. (2.6)

Page 5 of 17
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On the other hand, we have

mil}) ] Ti(ur,u2)(t) > ﬂt(||)/i||oo<¥i[ut] + 116 [l oo Bi [24:]

|M1(S)| |M2(5)|
/dh s)g,(s)f(m(s), us(s), 17 @s)| |r(s)|)ds)

> ai| Ti(ur, w) |
Now we prove that, for every (u;, u;) € K,
| (Fi(ur u2)) ||, < 4Fi (1, u2)(1/2).

We have

/

o(t)|(Fiuy, ua)) (2)]
|1y

i ti, , s)| [uy(s)]
_‘—t(l—t)/ d4+C'gl(S)fl(ul(S),M2(S) G |r(s)|>d

[y (s)] |uy(s)]
‘”/ (1‘d+c,) ”f<”l(“)”” Ol |r<)|>ds‘

61 (s)| uy(s)]
/0 t(l _t)d gl(S)f(l/ll S); 2( ) /(S)| ’ |I”/(S)| >ds

1 ,
. / t(l—t)<l—%)gi(s)ﬁ<ul(8) 0 01 01

(1-2=(

Sinc d ) and consequently

o0, 1) @] < [ s ( = )gAs)f(m(s) (6), 'f;}((j))","f%((:))")ds

! )| 1)
+/f (“T)g’“)f(”l“)’ als) /(s)|’|r/<s>|>ds

:/01ki(t,s)g,'(s)ﬁ<u1(8)y142(3) |1y (s)] qu(s)|>d

IOIIO]

= Fi(u1, u2)(£) < | Fi(ur, wo)||
Let 7; € [0, 1] be such that
Fiuy, u)(1;) = | Fi(ur, wo)|| -
For any ¢ € [0, 1], we can easily compute that

t/t;, Tt <s,
ki(t,s) (1—d+c )1 = ZEE), Tyt > s,
ki(zins) | ¢(1 -

st A=), t=s<1

t - _
s(l- 7o) 1-25)7Y ns=s<t
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and that ]fi((tfss)) > t(1 —t) for t,s € [0,1]. Then, for all ¢ € [0, 1], we have

i\Ti»

L ki(t,s)
o ki(zis)

Fi(u1, us)(t) = ki(ti, 5)gi(s)f; (ul(S), us(s),

()" 17 ()]

14,(5) |u;<s>|>
o e )~

1 1601

1
>t(1-1t) / ki(ti, 8)gi(s)fi (ul(S), uy(s),
0
= t(1 - )| Fi(wr, u5) | -

For t = =, we obtain

1
2
1

|Eiur, ua) |, < 4Fi(u1, 1) (§>

Therefore we conclude that
1

| w)) |, < || < 4a(u1,u2>(5).

Since y;,8; € K;, we have

(&) (Tiu1, u2)) (8)| < o()|y] (&) |orilus] + 0(8)]8,(8)| Billwi)
+ o ()| (Fi(u;, Mz))/(t)’

= il el + |8 Biluad + | FiGar o),

< 4%’(%)%‘[%’] + 45;‘(%)/3;'[%;‘] + 4‘Fi(ui»u2)<%>

= 417(”1,”2)(%)

Taking the supremum on [0, 1], we obtain

(T, Mz))/”w <ATy(uy, Mz)(%)-

Since «; and B; are linear functionals, it follows that «;[T;(u1, u3)] and B;[Ti(u1,u,)] are
nonnegative.

Summarizing, we have TK C K.

To prove the complete continuity of T, let us note that the continuity of f, k;, «;, and g;
give the continuity of each T; and thus the continuity of T

Let U be a bounded subset of K; from (2.6) it follows that T(U/) is bounded in K. Now we
prove that T'(U]) is relatively compact in K. It is a standard argument based on the uniform
continuity of the kernels k; on [0, 1] x [0, 1] and on the Ascoli—Arzela theorem that T;(U)
is relatively compact in C[0, 1].

Now let (¢, V,)en be a sequence in U. Then Tj(u,,v,) C K;.

There exists (i, , Vs, Jken such that (T (u,,, vy, ))ken converges in C[0,1].

Since T,(U) is relatively compact, there exists (u,,kp, Vig, JpeN = (Unys Vi, )pen C (Uny,
Vi Jken such that (Ti(up,, vy,))pen — wi € C[0,1] for i = 1,2. Since

|| (Ti(unp7 Vnp))/ - (Ti(unm¢ Vnm))/ Ha) =< 4” Ti(unpr Vnp) - Ti(unmv Vnm) || 00’
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that is, ((Ti(us,, vs,)) )pen is a Cauchy sequence in || - ||, for i = 1,2. Then (Ti(u,, Vi,)) pen
is a Cauchy sequence in C1 [0, 1], and so it converges to w; € C1 [0, 1]. The closedness of K

implies that (w1, w;) € K, and therefore T(U]) is relatively compact in K. O

To use the fixed point index, we utilize the following sets in K for p;, p2 > 0:

Koy pr = {(,v) € K : |lulloo < p1 and [[V]oo < p2},

Vorpy i= {(u, v)€K: min u(t) < pyand min v(f) < ,02}.

telay,b] telaz,bs]

Since [|[W']l, < 4lw|l in K, we have ||[w| < 4|w|, and therefore K, ,, and V,, ,, are
open and bounded with respect to K. It is straightforward to verify that these sets satisfy
the following properties:
(P1) Koipp € Viorpo € Kpyiay,patar-
(P2) (w1,ws) € 0K, ,, if and only if (w;, w;) € K and for some i € {1,2} ||w;|lo = p; and
aipi < wi(t) < p; for t € [a;, b;].
(P3) (w1,wa) € 3V, ,, ifand only if (Wi, wy) € K and for some i € {1, 2} mingeq, 5, wi(t) =
pi and p; < w;(t) < p;la; for t € [a;, b;].

The following theorem follows from classical results about fixed point index (more details

can be seen, for example, in [4, 28]).

Theorem 2.3 Let K be a cone in an ordered Banach space X. Let §2 be an open bounded
subset with 0 € 2 NK and 2 NK # K. Let 2* be open in X with 21 C 2 NK. Let F
2 NK — K be a compact map. Suppose that

(1) Ex#uxforallx e d(2 NK) and pu > 1.

(2) There exists h € K \ {0} such that x # Fx + M for all x € 3(2' N K) and » > 0.

Then F has at least one fixed point x € (2 N K) \ (21 N K).
Denoting by ix(F, U) the fixed point index of F in some U C X, we have

ixk(F,2NK)=1 and ix(F,2'NK)=0.
The same result holds if
ix(F,2NK)=0 and ix(F,2'NK)=1.

3 A system of elliptic PDE
We define the following sets:

22°1P2 =10, p1] x [0, p2] x [0, +00) x [0, +00),

A2 = |:s1, S—1:| X |:0, S—Z] x [0, +00) x [0, +00),

a) a)

s s
A2 = |:0, —1] X |:s2, —2] x [0, +00) x [0, +00),
ay an

Page 8 of 17
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and the numbers

1 1
Ci:= I:B ([(1 - Bilsil) + ||5i||oo,3z’[7/i]]/o o;[k;]gi(s) ds

l

-1

1 1
+ [ouldi] + 18:0o (1 = enla))] /O ﬁ,-[kilgi(s>ds)+ sup /O ki(t,s>gi(s)ds} ,

te[0,1]

1 bi
M; = [5 ([ﬂi(l - Bil8i]) + aillill o Bilyi] ] /ﬂ a;[k;lgi(s) ds

: i

b;
+ [@ici[8:] + aillilloo (1 — cslyi]) | / Balkilgi(s) dS)

b; -1
+ inf / k,-(t,s)gi(s)ds)] .

tela,b;] a;

Theorem 3.1 Suppose that there exist py, p2,51,52 € (0, +00), with p; < s;, i = 1,2, such that

sup fi(wi, wa,21,22) < Cip; (3.1)
QP1P2
and
inf fi(Wb W, 21, 22) > Ml‘Sl‘. (32)

§1,52
i

Then system (2.3) has at least one positive radial solution.

Proof Note that the choice of the numbers p; and s; ensures the compatibility of conditions
(3.1) and (3.2).

We want to show that ix (T, K}, ,) = 1 and ix (T, V5, 5,) = 0, so that from Theorem 2.3 it
follows that the completely continuous operator T has a fixed point in V4, 5, \ K, ,- Then
system (2.3) admits a positive radial solution.

First, we claim that A(x,v) # T(u,v) for all (u,v) € 0K, ,, and A > 1, which implies that
the index of T is 1 on K, ,,. Suppose this is not true. Let A > 1, and let (1, v) € 3K, ,, be
such that

Mu,v) = T(u,v).
In view of (P,), without loss in generality, let us suppose that |||/, = p1. Then

Au(t) = y1(©)eey [u] + 81(2) B1[u]

1
+/ kl(t,s)gl(s)fl(u(s),v(s), (3.3)
0

W e V)
EOK |r/(s>|>ds

Applying a; to both terms, we have

01 VO

Ir(s)| " 17 (s)]

1
rai[u] = a1 [y]en[u] + 1 [81]68:1[u] + / ai[kilgi(s)fi <u(8), v(s),
0
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wich implies

|/ (s)] IV/(S)I>

1
(/\—al[yl])al[u]—a1[81]ﬁ1[u]=/o o [k gl(S)fl<u(S) w(s), ol 6 ds

In a similar way, applying $:, we obtain

1
(%= B1l81]) Br[u] = Balyr]en [u] = /0 Bilkilgi(s) 1(14(5),1’(3): ol PO
Denoting

N (P ean] s —enld] N':=N;, and Dj:=detN;
' ~Biln] A= pBildi] !

we can write the previous conditions as

VA ;31 gl(s)fl u(s), v(s), 'li‘,((j))“, ) ds

P\ Bulu]
Therefore we get that
a1 [u] - (N} fo o1 [k lgi (s)fr (u(s), v(s), ‘zés; |:,(s>|‘)ds
Brlu] Jo Brlkilgu(s)fi (uts), vis), 8L, 128 g
_ vyt (Jo alkalen @), (o), i g ds
=\ Bulkgn )i (), vGs), f ol 1l gs )

so that formula (3.3) becomes, for ¢ € [0, 1],

| (s)| IV(S)I)
res)’ Ir(s)
|

1 /
sl [ pilkla ) (u<s>, o) ';‘/((j))" 'VES;')ds

1 2/ (s)| |V (s)]
+61(t) B [1/1]/0 o [k1]gi(s)fi (”(S)’V(S)’ 17 ()] 17 (s)] > ds

1
o) = o[ nO0-pila) [ alila6i (w6,
1 0

1 / /
Fa00-caln) [ Ailkla) (u(s), us), ';‘,((j))l', ::8" ) ds}

[/ (s)] |V ()]
/kl(ts)gl(sﬁ( QRO TR |r(s)|)ds

- [[Vl( )(1 - Buld1]) +81(0)B1[n]]

D,
! 1/ (s)] |v/(s)|)
/0“1 klgl(s)fl(“(s) TR A

+ [n@®a1[81] + 81(1)(1 - e [11])]

1 [/ ()| |V (s)]
x /o Pilkilgi(s)fi (”(S)’V(S)’ 7 (s) |r’(s)|>ds]

|/ (s)] IV/(S)|>dS

Page 10 of 17
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/kl(ts)gl(sfl< (5),¥(5), |/ (s)] IV(S)I>ds

I 17(s)]
1 1
< sup f1(W1,W2,Z1,Zz)|:D |:()/1(t)(1 B1l81]) +51(f),31[)/1])/0 a1 [ki]gi(s) ds

2P1L2

+ (ri(®)on[81] + 81(6)(1 —051[1/1]))/0 ,31[k1]g1(5)d5]

1
+ / ki(,8)g1(s) ds:|. (3.4)
0

Taking the supremum on [0, 1] in the last inequality, it follows that

pr = llulleo

IA

1
sup fi wl,wZ,zl,m[ ; [[(1 Bi151]) + 161 loer 1] /0 o1k g1 (s) ds

2°1P2

+ [ [81] + 181110 (1 —061[3/1])]/0 B [kl]gl(s)ds]

1
+ sup / kl(t,s)gl(s)ds:|

te[0,1]Jo

1
= = Sup ﬁ(Wh WZ;ZI;ZZ) < P1,
Cl 2P1:L2

which is a contradiction.
Now we show that that the index of T'is 0 on V, 5,.

Consider [(£) = 1 for ¢ € [0, 1] and note that (/,]) € K. Now we claim that
(u,v) # T(u,v) + A1, 1])  for (u,v) € 9V, 5, and L > 0.

Assume, by contradiction, that there exist (#,v) € dV;, 5, and A > 0 such that (u,v) =
T(u,v) + AL, 1).

Without loss of generality, we can assume that mine(,, 5,] #(¢) = 51 and s; < u(t) < s1/a;

1,52

for ¢ € [a1,b1]. Then, for t € [a1, b1], we obtain

[/ (s)| [V (s)]
I(s)| " 7 (s)]

1
u(t) = y1(t)on [u] + 81(2) B1[u] +f0 ki (t,5)g1(s)ft <M(S); v(s), ) ds+h. (3.5)

Applying a4 and B; to both sides of (3.5) gives

o1 [u] = ar[yi]on [u] + o [81] 81 [4]

1
f al[kﬂgl(s)ﬁ(u(s) ), '|” ((S))|' :”ES;:)delm,

Brlul = Brlyilaa [u] + B1[61]B1[u]

[/ (s)| 1V/(s)]
I(s)| " 7 (s)]

/ Brlki1g(s)ft <M(S) v(s), )ds +AB1[1].



Cianciaruso et al. Boundary Value Problems (2020) 2020:87 Page 12 of 17

Thus we have

(1-arlyi])enu] — a1 [81]B1[u]

)\-al [1])

1 /
:/ al[kl]gl(s)fl(u(s us), 6 |V(S)|>ds+
0

()| |r'(s)
—Bilyilea[u] + (1 - B1[81]) Br[u]

1 / /
:/0 Bilkilgi ()i <u(s), v(s), lu (S)|, |V(S)|>ds+k/31[l].

() Ir(s)l

Therefore

N ai[u] fo aq [k 1g1(s)f1 (u(s), v(s), “’:,(S) \: S)‘)ds+ Aag[1]
"\Bulul fo Bilkilgi(s)fi(uls), v(s), “,/(S) I: ‘)d5+)»131[1]

Applying the matrix (N;)™! to both sides of the last equality, we obtain

oy [u] ~ () fo aq [k1]g1(s)f1 (u(s), v(s), '::(S)I |:é)
,31[ ] 1 fO ﬁl[kl]gl S)fl(I/l(S ( ) u's| v(

fO al gl ﬁ ) r
N S
= <f° Pilk gl(s)fl(u(S) V(S) " s)» Le

)ds + o [1]
o) ds + B[]

o ds
)ds

r
V

>

Thus, as in the previous step, we have

ut) = Di[[m)(l Buls1]) + 8100 ]

! /
X /0 oy [k g ()fs (M(S),V(s), lu'(s)| |v (s)|>ds

() 17(s)]
+ (D1 [81] + 81(8) (1 - e [11]) ]

1
x/ Bilkilgi(s)fi (”(S)’V() ||Z’((j))| |V§S;|>d:|
') [V (s)l

/ ki(t,s)g1(s)fs <u(s) v(s), ) ds + A.
'(s)]” Ir )

Then, for ¢ € [ay, b1], we obtain

u(t) > % |:[7/1( )(1 - Buld1]) +81(1)B1[n]]

by ) /
x/ al[kl]gl(s)fl<u(s),v(s)’ |24 (s)] lV(S)|>ds

()] 7 (s)]
+[n@®a[81] +81()(1 - e [1])]

) @) V)
OV Lo |r’<s>|>ds}

NN
el |r(s)|>d "

/ B [kl]gl S)fl

+ k1 t,8)g1(8)fA (u(s)
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by
> inf ﬁ(wl,wZ,zl,zZ>[Di[[w(t)(l ~puls) + 810 n]] / crlkilgi(s)ds

Axll's2 1 ay
by
+ [ (Oar[81] + 81(8) (1 - e [11]) ] Bilkilgi(s) ds]
by
+ ki(t,8)g1(s) ds] + A

Taking the minimum over [a;, ;] gives

by
52 gnfﬁ<wl,wZ,zl,zZ)[g[[al(l—ﬁl[(m)+a1||51||ooﬁ1[y11] | atkiaeas
A2 1

1 ai
by
+[aon[81] + arl81lloe (1 —ea[nn])] [ Bulkilga(s) dS]
ai
by
+ inf ki(t,8)g1(s) dsi| + A
telay,b] J 4y
M L A
S1— + A,
> vl 11\/[1
a contradiction. O

By means of Theorem 3.1 and the fixed point index properties in Theorem 2.3 we can
state results on the existence of multiple positive solutions for system (2.3). Here we enun-
ciate a result on the existence of two positive solutions (see [32, 33] for the conditions that

ensure three or more positive results).

Theorem 3.2 Suppose that there exist p;,s;,0; € (0,00) with p; < s; and :z_l, <0;,i=1,2,such
that

Sup ﬁ(wlr W, 21, ZZ) < Cipi’
2P1:P2

inf ﬁ(WI; Wa, 21, Z2) > MiSi1
A1
i

sup fi(wi, wa,z1,22) < C;, 6;.
20102

Then system (2.3) has at least two positive radial solutions.

Example 3.3 Note that Theorems 3.1 and 3.2 can be applied when the nonlinearities f; are
of the type

ﬁ(u, v,|Vul, |Vv|) = (Siu“" + yivﬂ")g‘i(u, v,|Vul, |Vv|)
with continuous functions ¢; bounded by a strictly positive constant, «;, 8; > 1, and suitable

3, v > 0.
Setting

100
qw) = w? x(0,40/(W) + |65,600 — w*| xa0,360) (W) + ﬁ|65’000 — W[ X[360,+00) (W),

Page 13 of 17
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we can consider in R? the system of BVPs

—Au= W(z —sin(|Vul? + |Vv[*)q(u) in £,
_Ay= m arctan(l + |Vu|? + |Vv|?)q(v)  in £, 36)
limyy 00 u(x) = u(}—L), 2u — 4%—’: = u(%) for |x| =1, '
limyy o0 V() = V(i), 3v— 2% = v(%) for |x| = 1.
Let (a1, b1] = [ay, by] = [}I, %]. By direct computation we obtain
YA+ dy)
(Cl +2d; ) 5C,‘ + 8dl
su ki(t,8)g:(s)ds = 7, 1nf / ki(t,s)gi(s)ds = ——;
te[oﬁ]/ ¢ 8ci+rd)? el ¢ 128(c; + dy)
1 (3Ci + 7d,) 1 (Cz +3d; )
ilkilgi(s)ds = ———=; iLkilgi(s) ds =
| etimds= e [ aiklatds gt
bi 5Cl' + Sd, Ci
ikii dzi; l/lz d—_ .
/ﬂi alkiles)ds = 10 / Ailkilei(s) ds 32( 2 +di))

Since in our example the mixed perturbed conditions state that ¢; =2, d; =4, c; = 3, and

dy =2, we easily compute C; and M;:

9 25 96
C=—, C=—, My =—,
47 48 41

My=—.

3

Choosing p; = p2 = 1,81 =9, 52 = 5, 6; = 40,000, and 8, = 65,000, we have

1 1
sup fi < — sup q(u) = —q(p1) =

= Cyp1,
o S T 10 10 a7
1 243 192
ffi>— - = s
Alilllszfl ~ 30 ue s1 4s1] q(u) q(SI) 0 41 151
1 1 36,000
sup fi < — sup gq(u) = —q(40) = 6400 < = C164,
20192 uel0,01] 10
1 1 1 25
sup fo < - sup q(v)=-q(p2) = = < — = Cypy,
mlngz VG[OBZ]GI 261 2= 5 <48 202
1 1 125 80
ffp>= inf = 2q(s)) = == > — = Mys,,
Al;?szf = Ve[1s121452] qlv) = 461(52) 4 > 3 282
1 203,125
sup fo < 2 sup g(v) = —q(40) 3200 < = Cy0,,

20102 vel[0,67]

where the suprema and infima are computed on

+00);

202 = QB 2 10,1] % [0,1] x [0, +00) X [0, +00);
A3 = AD = [9,36] x [0,20] x [0, +00) x [0,
A = AY° = [0,36] x [5,20] x [0, +00) x [0,

+00);
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Q0182 = 4000060000 _ 10 40,000] x [0,60,000] x [0, +00) X [0, +00).

Then the hypotheses of Theorem 3.2 are satisfied, and hence system (3.6) has at least two

positive solutions.

4 Nonexistence results
We now show a nonexistence result for the system of elliptic equations (2.3) when the the

functions f; have an enough “small” or “large” growth.

Theorem 4.1 Assume that one of following conditions holds:

filwi,wa,z1,20) < Ciwy,  w; >0 fori=1,2, (4.1)

filwy,wa,z1,22) > Myjw;,  w; >0 fori=1,2. (4.2)

Then the only possible positive solution of system (2.3) is the zero one.

Proof Suppose that (4.1) holds and assume that there exists a solution (u, v) of (2.3), (i1, V) #
(0,0); then (u,v) := (tor,vor) is a fixed point of T. Let, for example, ||(u,v)| = |u| <

4|ulleo #O.
Then, for ¢ € [0, 1], taking into account (3.4), we have

1
u(t) < C1<l%1 [[(1 2 NE ||51||oo,31[1/1]]/0 ai[ki]gi(s)uls) ds
1 1
e[oalor] + (1= anlp)] [ Al 6yuts) ds} + [ oo ds)
0 0
1 1
< C1||M||oo<D— |:[(1 = Bil81]) + 181100 B [J/l]]/ o [k1]gi(s) ds
1 0
1 1
+ [a1[81] + 1181 [l (1 —011[3/1])]/ Bilkilgi(s) dSi| +/ ki(t,5)g1(s) dS)-
0 0

For u > 0, taking the supremum for ¢ € [0, 1], we have |||/« < || %]l @ contradiction.

Suppose that (4.2) holds and assume that there exists (u, v) € K such that (u,v) = T(u,v)
and (u,v) # (0,0). Let, for example, ||u||o # 0; then o := minsef,, 5,) %(2) > 0 since u € K.
Thus, as in the proof of Theorem 3.1, we have, for ¢ € [a;, D],

u(t) > l% |:[6l1(1 = Bil81]) + a1 1181 1lcoBrl11]]
h |/ (s)| |V (s)]
x /m a1 [ki]g(s)fi (u(s),v(s), Ol |r,(s)|>ds

+ [amrn[81] + ar 1811l (1 - a1 [11) ]
b /
x Bilkilgi(s)fi (u(s),v(s), |”/ SIS >d }
“ )] 17 (s)]

(
()| V)]
KON |r(s)|>ds

b
+ ki(t,8)g1(s)fs (u(S), v(s),

ai
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b

>M1(Di|:[ﬂl(1—,31[61])+6ll||81”ooﬂ1[yl]]/ lal[kl]gl(s)u(s)ds

1 ai

by
+ [ar01[81] + ar (161100 (1 - 051[)/1])]/ Bulkilgi(s)u(s) ds]

by
+ ki(,8)g1(s)u(s) ds)

ai
b

> Mo <% |:[ﬂ1(1 - Bilo]) + ﬂ1||51||oo,31[1/1]]/ 1 a1 [ki]gi(s) ds
1 a

1

b b

+[mon[81] + arl81lloe (1 —en(nn])] | Bulkilga(s) ds] + /

ai

1 ki(t,s)g1(s) ds).

1

For u > 0, taking the infimum for ¢ € [a;, b;], we obtain ¢ > o, a contradiction. a
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