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In particular, recently, Hai and Shivaji [29] proved the existence and multiplicity of pos-
itive radial solutions for the superlinear elliptic system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

��u = λh1(|x|)f1(v), |x| � [r0, +�),

��v = λh2(|x|)f2(u), |x| � [r0, +�),

lim|x|�� u(x) = 0, d1
∂u
∂n + �c1(u)u = 0 for |x| = r0,

lim|x|�� v(x) = 0, d2
∂v
∂n + �c2(v)v = 0 for |x| = r0,

using a �xed point result of Krasnoselskii type applied to suitable completely continuous
integral operators on C[0, 1]× C[0, 1]. These results seem to be the �rst ones proving the
multiplicity of positive solutions for this kind of systems.
On the other hand, in the context of nonhomogeneous BCs, elliptic problemswere stud-

ied by Aftalion and Busca [2], Butler et al. [6], Cianciaruso and al. [10], Dhanya et al. [15],
do Ó et al. [18�21], Goodrich [26, 27], Ko and et al. [31], and Lee et al. [34].
The existence of positive radial solutions of elliptic equations with nonlinearities de-

pending on the gradient subject to Neumann, Dirichlet, or Robin boundary conditions
has been investigated by a number of authors; see, for example, Averna et al. [5], Ciancia-
ruso et al. [8, 9, 12], De Figueiredo et al. [13, 14], Faria et al. [22], andMontreanu et al. [36].
Our system (1.1) is quite general:
(1) the nonlinearities fi depend on the functions u and v and their gradients; no

monotonicity hypotheses are supposed.
(2) the boundary conditions are nonlocal and represent feedback mechanisms. They

have been deeply studied for ordinary differential equations, for example, in
[11, 24, 25, 41, 42]).

To search solutions of the elliptic PDE

��w = g
�
|x|

�
f
�
w, |�w|

�

with some boundary conditions, a topological approach is associating, by using standard
transformations, an integral operator of the form

Sw(t) =
� 1

0
G(t, s)g

�
r(s)

��f
�
w(s),

	
	w�(s)

	
	
�

ds.

It is straightforward, in the local problems, to �nd the Green�s function G by integration
and by using the BCs. However, let us remark that, in the nonlocal problems, this is a long
and technical calculation, often resulting in a sum of terms of di�erent signs.
Here, as in [41], we treat the nonlocal problem as the perturbation of the simpler local

problem. In such a way, we handle the positivity properties of the simpler Green�s function
of the local problem.
Often, the associated integral operator is studied in the cone of nonnegative functions

in the space C1[0, 1] or in a weighed space of di�erential functions as in [3]. In our case
and in particular when seeking for multiple solutions, it is suitable to work in a smaller
cone: we will introduce a new cone in which we will use Harnack-type inequalities.
Moreover, since we are interested in positive solutions, the functionals αi and βi must

satisfy some positivity conditions; we will not suppose this in the whole space, but we
choose to include the requirement in the de�nition of the cone.
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We show that, under suitable conditions on the nonlinear terms, the �xed point index
is 0 on certain open bounded subsets of the cone and 1 on the others; the choice of these
subsets allows us to have more freedom on the conditions of the growth of the nonlineari-
ties. These conditions relate the upper and lower bounds of the nonlinearities fi on stripes
and some constants, depending on the kernel of the integral operator and on the nonlocal
BCs that are easily estimable as we show in an example.

2 The associate integral operator
Consider in R

n, n � 3, the equation

�	w = h
�
|x|

�
f
�
w, |�w|

�
, |x| � [r0, +�). (2.1)

Since we are interested in radial solutions w = w(r), r = |x|, following [6], we rewrite (2.1)
as

�w��(r) �
n � 1

r
w�(r) = h(r)f

�
w(r),

	
	w�(r)

	
	
�
, r � [r0, +�). (2.2)

By using the transformation

r(t) := r0t
1

2�n , t � (0, 1],

equation (2.2) becomes

w���r(t)
�
+ g(t)f




w
�
r(t)

�
,
|w�(r(t))|
|r�(t)|

�

= 0, t � (0, 1],

with

g(t) =
r20

(n � 2)2
t
2n�2
2�n h

�
r(t)

�
.

Consider in R
n the system of boundary value problems

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

��u = h1(|x|)f1(u, v, |�u|, |�v|), |x| � [r0, +�),

��v = h2(|x|)f2(u, v, |�u|, |�v|), |x| � [r0, +�),

lim|x|�� u(x) = α1[u], c1u + �d1
∂u
∂r = β1[u] for |x| = r0,

lim|x|�� v(x) = α2[v], c2v + �d2
∂v
∂r = β2[v] for |x| = r0.

(2.3)

Set u(t) = u(r(t)) and v(t) = v(r(t)). Thus with system (2.3) we associate the system of
ODEs

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u��(t) + g1(t)f1(u(t), v(t), |u�(t)|
|r�(t)| ,

|v�(t)|
|r�(t)| ) = 0, t � (0, 1),

v��(t) + g2(t)f2(u(t), v(t), |u�(t)|
|r�(t)| ,

|v�(t)|
|r�(t)| ) = 0, t � (0, 1),

u(0) = α1[u], c1u(1) + d1u�(1) = β1[u],

v(0) = α2[v], c2v(1) + d2v�(1) = β2[v],

(2.4)

where di = r0
2�n

�di and gi(t) =
r20

(n�2)2 t 2n�2
2�n hi(r(t)).
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We study the existence of positive solutions of system (2.4) by means of the associated
system of perturbed Hammerstein integral equations

⎧
⎨

⎩

u(t) = γ1(t)α1[u] + δ1(t)β1[u] +
� 1
0 k1(t, s)g1(s)f1(u(s), v(s), |u�(s)|

|r�(s)| ,
|v�(s)|
|r�(s)| )ds,

v(t) = γ2(t)α2[v] + δ2(t)β2[v] +
� 1
0 k2(t, s)g2(s)f2(u(s), v(s), |u�(s)|

|r�(s)| ,
|v�(s)|
|r�(s)| )ds,

where γi is the solution of the BVP w��(t) = 0, w(0) = 1, ciw(1) + diw�(1) = 0, that is,

γi(t) = 1 �
cit

di + ci
;

δi is the solution of the BVP w��(t) = 0, w(0) = 0, ciw(1) + diw�(1) = 1, that is,

δi(t) =
t

di + ci
;

and ki is the Green�s function associated with the homogeneous problem in which αi[w] =
βi[w] = 0, that is,

ki(t, s) :=

⎧
⎨

⎩

s(1 � cit
di+ci

), s � t,

t(1 � cis
di+ci

), s > t.

In the following proposition, we resume the properties of the functions γi, δi and ki, which
will be further useful.

Proposition 2.1 We have, for i = 1, 2:
• The functions γi, δi are in C1[0, 1]; moreover, for t � [ai,bi] 
 (0, 1), with ai + bi < 1,

�γi�� = 1 and γi(t)� 1 � t � 1 � bi = (1 � bi)�γi�� > ai�γi��;

�δi�� =
1

di + ci
and δi(t) = t�δi�� � ai�δi��.

• The kernels ki are nonnegative and continuous in [0, 1]× [0, 1]. Moreover, for
t � [ai,bi], we have

ki(t, s)� φi(s) for (t, s) � [0, 1]× [0, 1], and

ki(t, s)� aiφi(s) for (t, s) � [ai,bi]× [0, 1],

with φi(s) := s(1 � ci
di+ci

s).

Let ω(t) = t(1 � t). Our setting will be the Banach space (see [3])

C1
ω[0, 1] =



w � C[0, 1]� C1(0, 1) : sup

t�(0,1)
ω(t)

	
	w�(t)

	
	 < +�

�

endowed with the norm

�w� := max
�
�w��,

�
�w���

ω

�
,

where �w�� := maxt�[0,1] |w(t)| and �w��ω := supt�(0,1) ω(t)|w�(t)|.
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For i = 1, 2 and �xed [ai,bi] 
 (0, 1) such that ai + bi < 1, we consider the cones

Ki :=



w � C1
ω[0, 1] : w � 0, min

t�[ai ,bi]
w(t) � ai�w��,

�
�w���

ω
� 4w(1/2),αi[w] � 0,βi[w] � 0

�

in C1
ω[0, 1] and the cone

K := K1 × K2

in C1
ω[0, 1]× C1

ω[0, 1].
Note that the functions in Ki are strictly positive on the subinterval [ai,bi] and that for

w � Ki, we have the inequalities �w��ω � �w� � 4�w��.
Set

Fi(u, v)(t) :=
� 1

0
ki(t, s)gi(s)fi




u(s), v(s),
|u�(s)|
|r�(s)|

,
|v�(s)|
|r�(s)|

�

ds

and

T(u, v)(t) :=

�
γ1(t)α1[u] + δ1(t)β1[u] + F1(u, v)(t)
γ2(t)α2[v] + δ2(t)β2[v] + F2(u, v)(t)

�

:=

�
T1(u, v)(t)
T2(u, v)(t)

�

. (2.5)

We will further assume that, for i = 1, 2,
• fi : [0, +�)4 � [0, +�) is continuous, and there exist ψi : [0, +�)4 � [0, +�) such

that fi(u, v, |u�|
|r�| ,

|v�|
|r�| ) � ψi(u, v, ω|u�|

|r�| ,
ω|v�|
|r�| ) for all (u, v) � K ;

• hi : [r0, +�) � [0, +�) is continuous, and hi(r) � 1
rn+μi as r � +� for some μi > 0.

• 0� αi[γi] < 1 and 0 � βi[δi] < 1;
• αi[ki] := αi[ki(•, s)] and βi[ki] := βi[ki(•, s)] are nonnegative;
• Di = (1 � αi[γi])(1 � βi[δi]) � αi[δi]βi[γi] > 0.

Note that the hypotheses on the nonlinearities fi are used in [3] and are satis�ed, for exam-
ple, if the functions fi are continuous and, with respect to the last two variables, decreasing
or bounded.
We now prove that T leaves the cone K invariant and is completely continuous.

Theorem 2.2 The operator T maps K into K and is completely continuous.

Proof To prove that T leaves the cone K invariant, it su�ces to prove that TiK 
 Ki.
For (u1,u2) � K , we have

�
�Ti(u1,u2)

�
�

� � �γi��αi[ui] + �δi��βi[ui]

+
� 1

0
φi(s)gi(s)fi




u1(s),u2(s),
|u�

1(s)|
|r�(s)|

,
|u�

2(s)|
|r�(s)|

�

ds

� �γi��αi[ui] + �δi��βi[ui]

+
� 1

0
φi(s)gi(s)ψi




u1(s),u2(s),
ω(s)|u�

1(s)|
|r�(s)|

,
ω(s)|u�

2(s)|
|r�(s)|

�

ds

< �. (2.6)
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On the other hand, we have

min
t�[ai ,bi]

Ti(u1,u2)(t)� ai




�γi��αi[ui] + �δi��βi[ui]

+
� 1

0
φi(s)gi(s)fi




u1(s),u2(s),
|u�

1(s)|
|r�(s)|

,
|u�

2(s)|
|r�(s)|

�

ds
�

� ai
�
�Ti(u1,u2)

�
�

�.

Now we prove that, for every (u1,u2) � K ,

�
�
�
Fi(u1,u2)

����
ω

� 4Fi(u1,u2)(1/2).

We have

ω(t)
	
	
�
Fi(u1,u2)

��(t)
	
	

=
	
	
	
	�t(1 � t)

� t

0

cis
di + ci

gi(s)fi




u1(s),u2(s),
|u�

1(s)|
|r�(s)|

,
|u�

2(s)|
|r�(s)|

�

ds

+ t(1 � t)
� 1

t




1 �
cis

di + ci

�

gi(s)fi




u1(s),u2(s),
|u�

1(s)|
|r�(s)|

,
|u�

2(s)|
|r�(s)|

�

ds
	
	
	
	

�
� t

0
t(1 � t)

cis
d1 + ci

gi(s)fi




u1(s),u2(s),
|u�

1(s)|
|r�(s)|

,
|u�

2(s)|
|r�(s)|

�

ds

+
� 1

t
t(1 � t)




1 �
cis

di + ci

�

gi(s)fi




u1(s),u2(s),
|u�

1(s)|
|r�(s)|

,
|u�

2(s)|
|r�(s)|

�

ds.

Since cit
di+ci

� t, we have that (1 � t) � (1 � cit
di+ci

), and consequently

ω(t)
	
	
�
Fi(u1,u2)

��(t)
	
	 �

� t

0
s



1 �
cit

di + ci

�

gi(s)fi




u1(s),u2(s),
|u�

1(s)|
|r�(s)|

,
|u�

2(s)|
|r�(s)|

�

ds

+
� 1

t
t



1 �
cis

di + ci

�

gi(s)fi




u1(s),u2(s),
|u�

1(s)|
|r�(s)|

,
|u�

2(s)|
|r�(s)|

�

ds

=
� 1

0
ki(t, s)gi(s)fi




u1(s),u2(s),
|u�

1(s)|
|r�(s)|

,
|u�

2(s)|
|r�(s)|

�

ds

= Fi(u1,u2)(t)�
�
�Fi(u1,u2)

�
�

�.

Let τi � [0, 1] be such that

Fi(u1,u2)(τi) =
�
�Fi(u1,u2)

�
�

�.

For any t � [0, 1], we can easily compute that

ki(t, s)
ki(τi, s)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

t/τi, τi, t � s,

(1 � cit
di+ci

)(1 � ciτi
di+ci

)�1, τi, t > s,

t(1 � cis
di+ci

)s�1(1 � ciτi
di+ci

)�1, t � s � τi,

s(1 � cit
di+ci

)τ�1
i (1 � cis

di+ci
)�1, τi � s � t,
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and that ki(t,s)
ki(τi ,s)

� t(1 � t) for t, s � [0, 1]. Then, for all t � [0, 1], we have

Fi(u1,u2)(t) =
� 1

0

ki(t, s)
ki(τi, s)

ki(τi, s)gi(s)fi




u1(s),u2(s),
|u�

1(s)|
|r�(s)|

,
|u�

2(s)|
|r�(s)|

�

ds

� t(1 � t)
� 1

0
ki(τi, s)gi(s)fi




u1(s),u2(s),
|u�

1(s)|
|r�(s)|

,
|u�

2(s)|
|r�(s)|

�

ds

= t(1 � t)
�
�Fi(u1,u2)

�
�

�.

For t = 1
2 , we obtain

�
�Fi(u1,u2)

�
�

� � 4Fi(u1,u2)


1
2

�

.

Therefore we conclude that

�
�
�
Fi(u1,u2)

����
ω

�
�
�Fi(u1,u2)

�
�

� � 4Fi(u1,u2)


1
2

�

.

Since γi, δi � Ki, we have

	
	ω(t)

�
Ti(u1,u2)

��(t)
	
	 � ω(t)

	
	γ �

i (t)
	
	αi[ui] +ω(t)

	
	δ�

i(t)
	
	βi[ui]

+ω(t)
	
	
�
Fi(ui,u2)

��(t)
	
	

�
�
�γ �

i
�
�

ω
αi[ui] +

�
�δ�

i
�
�

ω
βi[ui] +

�
�F �

i (u1,u2)
�
�

ω

� 4γi



1
2

�

αi[ui] + 4δi



1
2

�

βi[ui] + 4Fi(ui,u2)


1
2

�

= 4Ti(u1,u2)


1
2

�

.

Taking the supremum on [0, 1], we obtain

�
�
�
Ti(u1,u2)

����
ω

� 4Ti(u1,u2)


1
2

�

.

Since αi and βi are linear functionals, it follows that αi[Ti(u1,u2)] and βi[Ti(u1,u2)] are
nonnegative.
Summarizing, we have TK 
 K .
To prove the complete continuity of T , let us note that the continuity of f , ki, αi, and βi

give the continuity of each Ti and thus the continuity of T .
Let U be a bounded subset of K ; from (2.6) it follows that T(U) is bounded in K . Nowwe

prove that T(U) is relatively compact in K . It is a standard argument based on the uniform
continuity of the kernels ki on [0, 1]× [0, 1] and on the Ascoli�Arzelà theorem that Ti(U)
is relatively compact in C[0, 1].
Now let (un, vn)n�N be a sequence in U . Then Ti(un, vn) 
 Ki.
There exists (unk , vnk )k�N such that (T1(unk , vnk ))k�N converges in C[0, 1].
Since T2(U) is relatively compact, there exists (unkp , vnkp )p�N := (unp , vnp )p�N 
 (unk ,

vnk )k�N such that (Ti(unp , vnp ))p�N � wi � C[0, 1] for i = 1, 2. Since

�
�
�
Ti(unp , vnp )

�� �
�
Ti(unm , vnm )

����
ω

� 4
�
�Ti(unp , vnp ) � Ti(unm , vnm )

�
�

�,
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that is, ((Ti(unp , vnp ))�)p�N is a Cauchy sequence in � • �ω for i = 1, 2. Then (Ti(unp , vnp ))p�N

is a Cauchy sequence in C1
ω[0, 1], and so it converges to wi � C1

ω[0, 1]. The closedness of K
implies that (w1,w2) � K , and therefore T(U) is relatively compact in K . �

To use the �xed point index, we utilize the following sets in K for ρ1,ρ2 > 0:

Kρ1,ρ2 :=
�
(u, v) � K : �u�� < ρ1 and �v�� < ρ2

�
,

Vρ1,ρ2 :=


(u, v) � K : min

t�[a1,b1]
u(t) < ρ1 and min

t�[a2,b2]
v(t) < ρ2

�
.

Since �w��ω � 4�w�� in K , we have �w� � 4�w��, and therefore Kρ1,ρ2 and Vρ1,ρ2 are
open and bounded with respect to K . It is straightforward to verify that these sets satisfy
the following properties:
(P1) Kρ1,ρ2 
 Vρ1,ρ2 
 Kρ1/a1,ρ2/a2 .
(P2) (w1,w2) � ∂Kρ1,ρ2 if and only if (w1,w2) � K and for some i � {1, 2} �wi�� = ρi and

aiρi � wi(t) � ρi for t � [ai,bi].
(P3) (w1,w2) � ∂Vρ1,ρ2 if and only if (w1,w2) � K and for some i � {1, 2} mint�[ai ,bi] wi(t) =

ρi and ρi � wi(t) � ρi/ai for t � [ai,bi].
The following theorem follows from classical results about �xed point index (more details
can be seen, for example, in [4, 28]).

Theorem 2.3 Let K be a cone in an ordered Banach space X. Let Ω be an open bounded
subset with 0 � Ω � K and Ω � K 
= K . Let Ω1 be open in X with Ω1 
 Ω � K . Let F :
Ω � K � K be a compact map. Suppose that

(1) Fx 
= μx for all x � ∂(Ω � K) and μ � 1.
(2) There exists h � K \ {0} such that x 
= Fx + λh for all x � ∂(Ω1 � K) and λ > 0.

Then F has at least one fixed point x � (Ω � K) \ (Ω1 � K).
Denoting by iK (F ,U) the fixed point index of F in some U 
 X, we have

iK (F ,Ω � K) = 1 and iK
�
F ,Ω1 � K

�
= 0.

The same result holds if

iK (F ,Ω � K) = 0 and iK
�
F ,Ω1 � K

�
= 1.

3 A system of elliptic PDE
We de�ne the following sets:

Ωρ1,ρ2 = [0,ρ1]× [0,ρ2]× [0, +�)× [0, +�),

As1,s2
1 =

�

s1,
s1
a1

�

×
�

0,
s2
a2

�

× [0, +�)× [0, +�),

As1,s2
2 =

�

0,
s1
a1

�

×
�

s2,
s2
a2

�

× [0, +�)× [0, +�),
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and the numbers

Ci :=
�
1

Di



��
1 � βi[δi]

�
+ �δi��βi[γi]

�
� 1

0
αi[ki]gi(s)ds

+
�
αi[δi] + �δi��

�
1 � αi[γi]

��
� 1

0
βi[ki]gi(s)ds

�

+ sup
t�[0,1]

� 1

0
ki(t, s)gi(s)ds

��1

,

Mi =
�
1

Di



�
ai

�
1 � βi[δi]

�
+ ai�δi��βi[γi]

�
� bi

ai

αi[ki]gi(s)ds

+
�
aiαi[δi] + ai�δi��

�
1 � αi[γi]

��
� bi

ai

β1[ki]gi(s)ds
�

+ inf
t�[ai ,bi]

� bi

ai

ki(t, s)gi(s)ds)
��1

.

Theorem 3.1 Suppose that there exist ρ1,ρ2, s1, s2 � (0, +�), with ρi < si, i = 1, 2, such that

sup
Ωρ1,ρ2

fi(w1,w2, z1, z2) < Ciρi (3.1)

and

inf
As1,s2

i

fi(w1,w2, z1, z2) > Misi. (3.2)

Then system (2.3) has at least one positive radial solution.

Proof Note that the choice of the numbers ρi and si ensures the compatibility of conditions
(3.1) and (3.2).
We want to show that iK (T ,Kρ1,ρ2 ) = 1 and iK (T ,Vs1,s2 ) = 0, so that from Theorem 2.3 it

follows that the completely continuous operator T has a �xed point in Vs1,s2 \ Kρ1,ρ2 . Then
system (2.3) admits a positive radial solution.
First, we claim that λ(u, v) 
= T(u, v) for all (u, v) � ∂Kρ1,ρ2 and λ � 1, which implies that

the index of T is 1 on Kρ1,ρ2 . Suppose this is not true. Let λ � 1, and let (u, v) � ∂Kρ1,ρ2 be
such that

λ(u, v) = T(u, v).

In view of (P2), without loss in generality, let us suppose that �u�� = ρ1. Then

λu(t) = γ1(t)α1[u] + δ1(t)β1[u]

+
� 1

0
k1(t, s)g1(s)f1




u(s), v(s),
|u�(s)|
|r�(s)|

,
|v�(s)|
|r�(s)|

�

ds. (3.3)

Applying α1 to both terms, we have

λα1[u] = α1[γ1]α1[u] + α1[δ1]β1[u] +
� 1

0
α1[k1]g1(s)f1




u(s), v(s),
|u�(s)|
|r�(s)|

,
|v�(s)|
|r�(s)|

�

ds,
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wich implies

�
λ � α1[γ1]

�
α1[u] � α1[δ1]β1[u] =

� 1

0
α1[k1]g1(s)f1




u(s), v(s),
|u�(s)|
|r�(s)|

,
|v�(s)|
|r�(s)|

�

ds.

In a similar way, applying β1, we obtain

�
λ � β1[δ1]

�
β1[u] � β1[γ1]α1[u] =

� 1

0
β1[k1]g1(s)f1




u(s), v(s),
|u�(s)|
|r�(s)|

,
|v�(s)|
|r�(s)|

�

ds.

Denoting

Nλ
1 :=

�
λ � α1[γ1] �α1[δ1]
�β1[γ1] λ � β1[δ1]

�

, N1
1 := N1, and D1 := det N1,

we can write the previous conditions as

Nλ
1

�
α1[u]
β1[u]

�

=

�� 1
0 α1[k1]g1(s)f1(u(s), v(s), |u�(s)|

|r�(s)| ,
|v�(s)|
|r�(s)| )ds

� 1
0 β1[k1]g1(s)f1(u(s), v(s), |u�(s)|

|r�(s)| ,
|v�(s)|
|r�(s)| )ds

�

.

Therefore we get that

�
α1[u]
β1[u]

�

=
�
Nλ

1
��1

�� 1
0 α1[k1]g1(s)f1(u(s), v(s), |u�(s)|

|r�(s)| ,
|v�(s)|
|r�(s)| )ds

� 1
0 β1[k1]g1(s)f1(u(s), v(s), |u�(s)|

|r�(s)| ,
|v�(s)|
|r�(s)| )ds

�

� (N1)�1
�� 1

0 α1[k1]g1(s)f1(u(s), v(s), |u�(s)|
|r�(s)| ,

|v�(s)|
|r�(s)| )ds

� 1
0 β1[k1]g1(s)f1(u(s), v(s), |u�(s)|

|r�(s)| ,
|v�(s)|
|r�(s)| )ds

�

,

so that formula (3.3) becomes, for t � [0, 1],

u(t) �
1

D1

�

γ1(t)
�
1 � β1[δ1]

�
� 1

0
α1[k1]g1(s)f1




u(s), v(s),
|u�(s)|
|r�(s)|

,
|v�(s)|
|r�(s)|

�

ds

+ γ1(t)α1[δ1]
� 1

0
β1[k1]g1(s)f1




u(s), v(s),
|u�(s)|
|r�(s)|

,
|v�(s)|
|r�(s)|

�

ds

+ δ1(t)β1[γ1]
� 1

0
α1[k1]g1(s)f1




u(s), v(s),
|u�(s)|
|r�(s)|

,
|v�(s)|
|r�(s)|

�

ds

+ δ1(t)
�
1 � α1[γ1]

�
� 1

0
β1[k1]g1(s)f1




u(s), v(s),
|u�(s)|
|r�(s)|

,
|v�(s)|
|r�(s)|

�

ds
�

+
� 1

0
k1(t, s)g1(s)f1




u(s), v(s),
|u�(s)|
|r�(s)|

,
|v�(s)|
|r�(s)|

�

ds

=
1

D1

�
�
γ1(t)

�
1 � β1[δ1]

�
+ δ1(t)β1[γ1]

�

×
� 1

0
α1[k1]g1(s)f1




u(s), v(s),
|u�(s)|
|r�(s)|

,
|v�(s)|
|r�(s)|

�

ds

+
�
γ1(t)α1[δ1] + δ1(t)

�
1 � α1[γ1]

��

×
� 1

0
β1[k1]g1(s)f1




u(s), v(s),
|u�(s)|
|r�(s)|

,
|v�(s)|
|r�(s)|

�

ds
�
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+
� 1

0
k1(t, s)g1(s)f1




u(s), v(s),
|u�(s)|
|r�(s)|

,
|v�(s)|
|r�(s)|

�

ds

� sup
Ωρ1,ρ2

f1(w1,w2, z1, z2)
�
1

D1

�
�
γ1(t)

�
1 � β1[δ1]

�
+ δ1(t)β1[γ1]

�
� 1

0
α1[k1]g1(s)ds

+
�
γ1(t)α1[δ1] + δ1(t)

�
1 � α1[γ1]

��
� 1

0
β1[k1]g1(s)ds

�

+
� 1

0
k1(t, s)g1(s)ds

�

. (3.4)

Taking the supremum on [0, 1] in the last inequality, it follows that

ρ1 = �u��

� sup
Ωρ1,ρ2

f1(w1,w2, z1, z2)
�
1

D1

�
��
1 � β1[δ1]

�
+ �δ1��β1[γ1]

�
� 1

0
α1[k1]g1(s)ds

+
�
α1[δ1] + �δ1��

�
1 � α1[γ1]

��
� 1

0
β1[k1]g1(s)ds

�

+ sup
t�[0,1]

� 1

0
k1(t, s)g1(s)ds

�

=
1

C1
sup

Ωρ1,ρ2
f1(w1,w2, z1, z2) < ρ1,

which is a contradiction.
Now we show that that the index of T is 0 on Vs1,s2 .
Consider l(t) = 1 for t � [0, 1] and note that (l, l) � K . Now we claim that

(u, v) 
= T(u, v) + λ(l, l) for (u, v) � ∂Vs1,s2 and λ � 0.

Assume, by contradiction, that there exist (u, v) � ∂Vs1,s2 and λ � 0 such that (u, v) =
T(u, v) + λ(l, l).
Without loss of generality, we can assume that mint�[a1,b1] u(t) = s1 and s1 � u(t) � s1/a1

for t � [a1,b1]. Then, for t � [a1,b1], we obtain

u(t) = γ1(t)α1[u] + δ1(t)β1[u] +
� 1

0
k1(t, s)g1(s)f1




u(s), v(s),
|u�(s)|
|r�(s)|

,
|v�(s)|
|r�(s)|

�

ds+λ. (3.5)

Applying α1 and β1 to both sides of (3.5) gives

α1[u] = α1[γ1]α1[u] + α1[δ1]β1[u]

+
� 1

0
α1[k1]g1(s)f1




u(s), v(s),
|u�(s)|
|r�(s)|

,
|v�(s)|
|r�(s)|

�

ds + λα1[1],

β1[u] = β1[γ1]α1[u] + β1[δ1]β1[u]

+
� 1

0
β1[k1]g1(s)f1




u(s), v(s),
|u�(s)|
|r�(s)|

,
|v�(s)|
|r�(s)|

�

ds + λβ1[1].
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Thus we have

�
1 � α1[γ1]

�
α1[u] � α1[δ1]β1[u]

=
� 1

0
α1[k1]g1(s)f1




u(s), v(s),
|u�(s)|
|r�(s)|

,
|v�(s)|
|r�(s)|

�

ds + λα1[1],

�β1[γ1]α1[u] +
�
1 � β1[δ1]

�
β1[u]

=
� 1

0
β1[k1]g1(s)f1




u(s), v(s),
|u�(s)|
|r�(s)|

,
|v�(s)|
|r�(s)|

�

ds + λβ1[1].

Therefore

N1

�
α1[u]
β1[u]

�

=

�� 1
0 α1[k1]g1(s)f1(u(s), v(s), |u�(s)|

|r�(s)| ,
|v�(s)|
|r�(s)| )ds + λα1[1]

� 1
0 β1[k1]g1(s)f1(u(s), v(s), |u�(s)|

|r�(s)| ,
|v�(s)|
|r�(s)| )ds + λβ1[1]

�

.

Applying the matrix (N1)�1 to both sides of the last equality, we obtain

�
α1[u]
β1[u]

�

= (N1)�1
�� 1

0 α1[k1]g1(s)f1(u(s), v(s), |u�(s)|
|r�(s)| ,

|v�(s)|
|r�(s)| )ds + λα1[1]

� 1
0 β1[k1]g1(s)f1(u(s), v(s), |u�(s)|

|r�(s)| ,
|v�(s)|
|r�(s)| )ds + λβ1[1]

�

� (N1)�1
�� 1

0 α1[k1]g1(s)f1(u(s), v(s), |u�(s)|
|r�(s)| ,

|v�(s)|
|r�(s)| )ds

� 1
0 β1[k1]g1(s)f1(u(s), v(s), |u�(s)|

|r�(s)| ,
|v�(s)|
|r�(s)| )ds

�

.

Thus, as in the previous step, we have

u(t) �
1

D1

�
�
γ1(t)

�
1 � β1[δ1]

�
+ δ1(t)β1[γ1]

�

×
� 1

0
α1[k1]g1(s)f1




u(s), v(s),
|u�(s)|
|r�(s)|

,
|v�(s)|
|r�(s)|

�

ds

+
�
γ1(t)α1[δ1] + δ1(t)

�
1 � α1[γ1]

��

×
� 1

0
β1[k1]g1(s)f1




u(s), v(s),
|u�(s)|
|r�(s)|

,
|v�(s)|
|r�(s)|

�

ds
�

+
� 1

0
k1(t, s)g1(s)f1




u(s), v(s),
|u�(s)|
|r�(s)|

,
|v�(s)|
|r�(s)|

�

ds + λ.

Then, for t � [a1,b1], we obtain

u(t) �
1

D1

�
�
γ1(t)

�
1 � β1[δ1]

�
+ δ1(t)β1[γ1]

�

×
� b1

a1
α1[k1]g1(s)f1




u(s), v(s),
|u�(s)|
|r�(s)|

,
|v�(s)|
|r�(s)|

�

ds

+
�
γ1(t)α1[δ1] + δ1(t)

�
1 � α1[γ1]

��

×
� b1

a1
β1[k1]g1(s)f1




u(s), v(s),
|u�(s)|
|r�(s)|

,
|v�(s)|
|r�(s)|

�

ds
�

+
� b1

a1
k1(t, s)g1(s)f1




u(s), v(s),
|u�(s)|
|r�(s)|

,
|v�(s)|
|r�(s)|

�

ds + λ
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� inf
As1,s2
1

f1(w1,w2, z1, z2)
�
1

D1

�
�
γ1(t)

�
1 � β1[δ1]

�
+ δ1(t)β1[γ1]

�
� b1

a1
α1[k1]g1(s)ds

+
�
γ1(t)α1[δ1] + δ1(t)

�
1 � α1[γ1]

��
� b1

a1
β1[k1]g1(s)ds

�

+
� b1

a1
k1(t, s)g1(s)ds

�

+ λ.

Taking the minimum over [a1,b1] gives

s1 � inf
As1,s2
1

f1(w1,w2, z1, z2)
�
1

D1

�
�
a1

�
1 � β1[δ1]

�
+ a1�δ1��β1[γ1]

�
� b1

a1
α1[k1]g1(s)ds

+
�
a1α1[δ1] + a1�δ1��

�
1 � α1[γ1]

��
� b1

a1
β1[k1]g1(s)ds

�

+ inf
t�[a1,b1]

� b1

a1
k1(t, s)g1(s)ds

�

+ λ

> M1s1
1

M1
+ λ,

a contradiction. �

By means of Theorem 3.1 and the �xed point index properties in Theorem 2.3 we can
state results on the existence of multiple positive solutions for system (2.3). Here we enun-
ciate a result on the existence of two positive solutions (see [32, 33] for the conditions that
ensure three or more positive results).

Theorem 3.2 Suppose that there exist ρi, si, θi � (0,�) with ρi < si and si
ai
< θi, i = 1, 2, such

that

sup
Ωρ1,ρ2

fi(w1,w2, z1, z2) < Ciρi,

inf
As1,s2

i

fi(w1,w2, z1, z2) > Misi,

sup
Ωθ1,θ2

fi(w1,w2, z1, z2) < Ci, θi.

Then system (2.3) has at least two positive radial solutions.

Example 3.3 Note that Theorems 3.1 and 3.2 can be applied when the nonlinearities fi are
of the type

fi
�
u, v, |�u|, |�v|

�
=

�
δiuαi + γivβi

�
ζi

�
u, v, |�u|, |�v|

�

with continuous functions ζi bounded by a strictly positive constant, αi,βi > 1, and suitable
δi,γi � 0.
Setting

q(w) = w3χ[0,40](w) +
	
	65,600 � w2		χ(40,360)(w) +

100
101

|65,000 � w|χ[360,+�)(w),
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we can consider in R
3 the system of BVPs

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

��u = 1
30|x|4 (2 � sin(|�u|2 + |�v|2)q(u) in Ω ,

��v = 1
π |x|4 arctan(1 + |�u|2 + |�v|2)q(v) in Ω ,

lim|x|�� u(x) = u( 14 ), 2u � 4 ∂u
∂r = u( 12 ) for |x| = 1,

lim|x|�� v(x) = v( 14 ), 3v � 2 ∂v
∂r = v( 12 ) for |x| = 1.

(3.6)

Let [a1,b1] = [a2,b2] = [ 14 ,
1
2 ]. By direct computation we obtain

Di =
ci � 1

4(ci + di)
;

sup
t�[0,1]

� 1

0
ki(t, s)gi(s)ds =

(ci + 2di)2

8(ci + di)2
; inf

t�[ 14 ,
1
2 ]

� 1
2

1
4

ki(t, s)gi(s)ds =
5ci + 8di

128(ci + di)
;

� 1

0
αi[ki]gi(s)ds =

(3ci + 7di)
32(ci + di)

;
� 1

0
βi[ki]gi(s)ds =

(ci + 3di)
8(ci + di)

;

� bi

ai

αi[ki]gi(s)ds =
5ci + 8di

128(ci + di)
;

� bi

ai

βi[ki]gi(s)ds =
3
32




1 �
ci

2(ci + di)

�

.

Since in our example themixed perturbed conditions state that c1 = 2, d1 = 4, c2 = 3, and
d2 = 2, we easily compute Ci and Mi:

C1 =
9
47

, C2 =
25
48

, M1 =
96
41

, M2 =
16
3
.

Choosing ρ1 = ρ2 = 1, s1 = 9, s2 = 5, θ1 = 40,000, and θ2 = 65,000, we have

sup
Ωρ1,ρ2

f1 �
1
10

sup
u�[0,ρ1]

q(u) =
1
10

q(ρ1) =
1
10

<
9
47

= C1ρ1,

inf
As1,s2
1

f1 �
1
30

inf
u�[s1,4s1]

q(u) =
1
30

q(s1) =
243
10

>
192
41

= M1s1,

sup
Ωθ1,θ2

f1 �
1
10

sup
u�[0,θ1]

q(u) =
1
10

q(40) = 6400 <
36,000
47

= C1θ1,

sup
Ωρ1,ρ2

f2 �
1
2

sup
v�[0,ρ2]

q(v) =
1
2

q(ρ2) =
1
2
<
25
48

= C2ρ2,

inf
As1,s2
2

f2 �
1
4

inf
v�[s2,4s2]

q(v) =
1
4

q(s2) =
125
4

>
80
3

= M2s2,

sup
Ωθ1,θ2

f2 �
1
2

sup
v�[0,θ2]

q(v) =
1
2

q(40) = 3200 <
203,125

6
= C2θ2,

where the suprema and in�ma are computed on

Ωρ1,ρ2 = Ω1,1 = [0, 1]× [0, 1]× [0, +�)× [0, +�);

As1,s2
1 = A9,5

1 = [9, 36]× [0, 20]× [0, +�)× [0, +�);

As1,s2
2 = A9,5

2 = [0, 36]× [5, 20]× [0, +�)× [0, +�);
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Ωθ1,θ2 = Ω40,000,60,000 = [0, 40,000]× [0, 60,000]× [0, +�)× [0, +�).

Then the hypotheses of Theorem 3.2 are satis�ed, and hence system (3.6) has at least two
positive solutions.

4 Nonexistence results
We now show a nonexistence result for the system of elliptic equations (2.3) when the the
functions fi have an enough �small� or �large� growth.

Theorem 4.1 Assume that one of following conditions holds:

fi(w1,w2, z1, z2) < Ciwi, wi > 0 for i = 1, 2, (4.1)

fi(w1,w2, z1, z2) > Miwi, wi > 0 for i = 1, 2. (4.2)

Then the only possible positive solution of system (2.3) is the zero one.

Proof Suppose that (4.1) holds and assume that there exists a solution ( flu, flv) of (2.3), ( flu, flv) 
=
(0, 0); then (u, v) := ( flu � r, flv � r) is a �xed point of T . Let, for example, �(u, v)� = �u� �
4�u�� 
= 0.
Then, for t � [0, 1], taking into account (3.4), we have

u(t) < C1



1

D1

�
��
1 � β1[δ1]

�
+ �δ1��β1[γ1]

�
� 1

0
α1[k1]g1(s)u(s)ds

+
�
α1[δ1] + �δ1��

�
1 � α1[γ1]

��
� 1

0
β1[k1]g1(s)u(s)ds

�

+
� 1

0
k1(t, s)g1(s)u(s)ds

�

� C1�u��



1

D1

�
��
1 � β1[δ1]

�
+ �δ1��β1[γ1]

�
� 1

0
α1[k1]g1(s)ds

+
�
α1[δ1] + �δ1��

�
1 � α1[γ1]

��
� 1

0
β1[k1]g1(s)ds

�

+
� 1

0
k1(t, s)g1(s)ds

�

.

For u > 0, taking the supremum for t � [0, 1], we have �u�� < �u��, a contradiction.
Suppose that (4.2) holds and assume that there exists (u, v) � K such that (u, v) = T(u, v)

and (u, v) 
= (0, 0). Let, for example, �u�� 
= 0; then σ := mint�[a1,b1] u(t) > 0 since u � K1.
Thus, as in the proof of Theorem 3.1, we have, for t � [a1,b1],

u(t) �
1

D1

�
�
a1

�
1 � β1[δ1]

�
+ a1�δ1��β1[γ1]

�

×
� b1

a1
α1[k1]g1(s)f1




u(s), v(s),
|u�(s)|
|r�(s)|

,
|v�(s)|
|r�(s)|

�

ds

+
�
a1α1[δ1] + a1�δ1��

�
1 � α1[γ1]

��

×
� b1

a1
β1[k1]g1(s)f1




u(s), v(s),
|u�(s)|
|r�(s)|

,
|v�(s)|
|r�(s)|

�

ds
�

+
� b1

a1
k1(t, s)g1(s)f1




u(s), v(s),
|u�(s)|
|r�(s)|

,
|v�(s)|
|r�(s)|

�

ds
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> M1



1

D1

�
�
a1

�
1 � β1[δ1]

�
+ a1�δ1��β1[γ1]

�
� b1

a1
α1[k1]g1(s)u(s)ds

+
�
a1α1[δ1] + a1�δ1��

�
1 � α1[γ1]

��
� b1

a1
β1[k1]g1(s)u(s)ds

�

+
� b1

a1
k1(t, s)g1(s)u(s)ds

�

� M1σ



1

D1

�
�
a1

�
1 � β1[δ1]

�
+ a1�δ1��β1[γ1]

�
� b1

a1
α1[k1]g1(s)ds

+
�
a1α1[δ1] + a1�δ1��

�
1 � α1[γ1]

��
� b1

a1
β1[k1]g1(s)ds

�

+
� b1

a1
k1(t, s)g1(s)ds

�

.

For u > 0, taking the in�mum for t � [a1,b1], we obtain σ > σ , a contradiction. �
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