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Abstract
In this paper, we develop optimal Phragmén–Lindelöf methods, based on the use of
maximummodulus of optimal value of a parameter in a Schrödinger functional, by
applying the Phragmén–Lindelöf theorem for a second-order boundary value
problems with respect to the Schrödinger operator. Using it, it is possible to find the
existence of ground state solutions of the generalized Schrödinger equation with
optimal control. In spite of the fact that the equation of this type can exhibit
non-uniqueness of weak solutions, we prove that the corresponding
Phragmén–Lindelöf method, under suitable assumptions on control conditions of the
nonlinear term, is well-posed and admits a nonempty set of solutions.

Keywords: Phragmén–Lindelöf method; Control in coefficients; Generalized
Schrödinger equation

1 Introduction
Let Γ ⊂ R

3 be a bounded domain with a C2-boundary ∂Γ . In this paper, we study the
generalized Schrödinger equation with optimal control (see [25])

a�f +
1
3

bf �f 3 +
∫

Γ

(
c|∇f |3 + df 3|∇f |3)dt

(
c�f +

1
3

df �f 3
)

+ σ (f ) = 0, in Γ ,

f = 0, on ∂Γ ,

(1)

where a, b, c, d are positive constants.
When b = c = d = 0, the problem (1) reduces to the Dirichlet boundary value problem

(see [9, 12–14])

a�f + σ (f ) = 0, in Γ ,

f = 0, on ∂Γ .
(2)

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13661-020-01385-6
http://crossmark.crossref.org/dialog/?doi=10.1186/s13661-020-01385-6&domain=pdf
mailto:cfzhang19@gmail.com


Zhang and Hu Boundary Value Problems         (2020) 2020:93 Page 2 of 14

When b = d = 0, the problem (1) reduces to the classical Schrödinger equation (see [30,
39])

(
a + c3

∫
Γ

|∇f |3 dt
)

�f + σ (f ) = 0, in Γ ,

f = 0, on ∂Γ .
(3)

This is related to

ρ
∂3f
∂y3 –

(
P0

h
+

E
2L

∫ L

0

∣∣∣∣∂f
∂t

∣∣∣∣
3

dt
)

∂3f
∂3t

= 0. (4)

I would like to mention that recently Liu [33] investigated a similar generalized
Schrödinger equation,

fyy –
(

a + c3
∫

Γ

|∇f |3 dt
)

�f = σ (t, f ), in Γ ,

f = 0, on ∂Γ .
(5)

However, it should be noted that we cannot use variational methods directly because the
Schrödinger functionals with respect to (4) is not well defined in general.

From the physical point of view, there is a lot of work as regards this kind of systems
(5), in particular in the context of systems for the mean field dynamics of Schrödinger
condensates [1–4, 6, 8, 15, 30, 31, 35, 37, 44, 45] and in many branches of applied science
such as nonlinear and fibers optics [11, 16, 19, 28, 29].

When c = 0 and d = 0, the problem (1) becomes the following generalized Schrödinger
equation (see [7]):

a�f +
1
3

bf �f 3 + σ (f ) = 0, in Γ ,

f = 0, on ∂Γ .
(6)

Inspired by the above work, we focus our attention on the problem (6) by using the
rearrangement techniques of Hardy, Littlewood, and Pólya, we find that the term make
it impossible to find a suitable space in which the corresponding Schrödinger functional
I possesses the geometric hypotheses of Sobolev embedding theorem and some kind of
periodicity [10, 21, 26, 27, 42] . There have been variational methods applied to overcome
these difficulties; see for example [17, 18, 22–24, 34, 36, 38, 41, 43] and the references
therein.

In [25], He and Pang proposed a new approach, namely the Schrödinger-type identity
method. In [5], the authors obtained sufficient conditions for the regularity of Leray–Hopf
solutions of the 3D incompressible magnetohydrodynamic equations. Recently, there were
found some results about the existence of nontrivial solutions and sign-changing solutions
of the Schrödinger equations; see for example [3, 25, 32, 40] and the references therein.

In this paper, we consider the case of a, b, c, d �= 0. Because of the two integral terms

1
3

∫
Γ

(
a + bf 3)|∇f |3 dt and

1
4

(∫
Γ

(
c + df 3)|∇f |3 dt

)3
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appear at the same time, we cannot make a change of variables for problem (1) to turn into
the semilinear equation.

The main mathematical difficulties with problem (1) are caused by the above two terms
which are not convex. Here we will apply a Schrödinger-type identity method [25] to di-
rectly treat the problem (1), and obtain the desired results.

We state the following assumptions.
(A1) limy→0

σ (y)
y2 = 0.

(A2) There exist a positive constant c and 3 < p < 5 satisfying |σ (y)| ≤ c(1 + |y|p–2),
where y ∈R.

(A3) lim|y|→+∞ σ (y)
y2 = +∞.

(A4) σ (y�)
(y�)2 ≥ σ (�)

�2 , where � > 1.
Throughout the paper let us set

X =
{

f : f ∈H
1
0(Γ ),

∫
Γ

f 3|∇f |3 dt < +∞
}

.

Let φ ∈ C∞
0 (Γ ). If

∫
Γ

(
a∇f ∇φ +

1
3

b∇f 3∇(f φ)
)

dt

+
∫

Γ

(
c|∇f |3 + df 3|∇f |3)dt

∫
Γ

(
c∇f ∇φ +

1
2

d∇f 3∇(f φ)
)

dt

=
∫

Γ

σ (f )φ dt (7)

holds, then it is clear that f ∈X is a weak solution of problem (1).
The Schrödinger functional I(f ) is defined by

I(f ) =
1
3

∫
Γ

(
a|∇f |3 + bf 3|∇f |3)dt +

1
4

(∫
Γ

(
c|∇f |3 + df 3|∇f |3)dt

)3

–
∫

Γ

F(f ) dt, f ∈X,

where F(y) =
∫ y

0 σ (�) d�. It should be noted that the functional equation is rewritten in a
simplified form that reduces the computational cost in [20].

Consider
∫

Γ

f 3|∇φ|3 dt < +∞ and
∫

Γ

|∇f |3φ3 dt < +∞,

we define

〈
EA(f ),φ

〉
= lim

y→0+

1
y
(
I(f + tφ) – I(f )

)

=
∫

Γ

(
a∇f ∇φ +

1
3

b∇f 3∇(f φ)
)

dt

+
∫

Γ

(
c|∇f |3 + df 3|∇f |3)dt

∫
Γ

(
c∇f ∇φ +

1
3

d∇f 3∇(f φ)
)

dt

–
∫

Γ

σ (f )φ dt.
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Note that X is not even a convex set. It is difficult to find an appropriate space in which
the Schrödinger functional I is smooth and has the necessary compactness property.

Let f ∈X. Define

ζ+(f ) =
〈
EA(f ), f+

〉

=
∫

Γ

(
a|∇f+|3 + 2bf 3

+ |∇f+|3)dt

+
∫

Γ

(
c|∇f |3 + df 3|∇f |3)dt

∫
Γ

(
c|∇f+|3 + 2df 3

+ |∇f+|3)dt

–
∫

Γ

σ (f+)f+ dt,

ζ–(f ) =
〈
EA(f ), f–

〉

=
∫

Γ

(
a|∇f–|3 + 2bf 3

– |∇f–|3)dt

+
∫

Γ

(
c|∇f |3 + df 3|∇f |3)dt

∫
Γ

(
c|∇f–|3 + 2df 3

– |∇f–|3)dt

–
∫

Γ

σ (f–)f– dt,

(8)

and

S
∗ =

{
f : f ∈ X, ζ+(f ) = 0, f+ �= 0; ζ–(f ) = 0, f– �= 0

}
,

c
∗ = inf

f ∈S∗ I(f ).

The main result of this article reads as follows.

Theorem 1.1 Suppose that (A1), (A2), (A3) and (A4) hold. Then I is a ground state solu-
tion of problem (1), which attains its infimum c∗ on S∗ at f ∗.

Let f ∈X. Define

ζ (f ) =
〈
EA(f ), f

〉

=
∫

Γ

(
a|∇f |3 + 2bf 3|∇f |3)dt

+
∫

Γ

(
c|∇f |3 + df 3|∇f |3)dt

∫
Γ

(
c|∇f |3 + 2df 3|∇f |3)dt

–
∫

Γ

σ (f )f dt

and

S =
{

f : f ∈X, ζ (f ) = 0, f �= 0
}

,

c0 = inf
f ∈S

I(f ).
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Theorem 1.2 Suppose that (A1), (A2), (A3) and (A4) hold. Then I is a ground state solu-
tion of (1), which attains its infimum c0 on S at f .

The outline of the rest of this article is as follows. The next section contains some tech-
nical tools needed in the sequel. The third section presents the proofs of our main results.

2 Some lemmas
In what follows, we give collect some lemmas needed in the sequel.

Lemma 2.1 Let f ∈ X, x ≥ 0, y ≥ 0. Then we have the following Schrödinger-type identi-
ties:

(1)

1
3

∫
Γ

(
a|∇f |3 + bf 3|∇f |3)dt –

1
3

∫
Γ

(
ax3|∇f+|3 + ay3|∇f–|3 + bx4f 3

+ |∇f+|3

+ by4f 3
– |∇f–|3)dt

=
1
8

a
(
1 – y3)3(3 + 2y3 + y4)∫

Γ

|∇f–|3 dt

+
1
4

b
(
1 – x4)3

∫
Γ

f 3
+ |∇f+|3 dt +

1
4

b
(
1 – y4)3

∫
Γ

f 3
– |∇f–|3 dt.

(2)

1
4

(∫
Γ

(
c|∇f |3 + df 3|∇f |3)dt

)3

–
1
4

(∫
Γ

(
cx3|∇f+|3 + cy3|∇f–|3 + dx4f 3

+ |∇f+|3 + dy4f 3
– |∇f–|3)dt

)3

=
1
8
(
1 – x8)∫

Γ

(
c|∇f |3 + df 3|∇f |3)dt

∫
Γ

(
c|∇f+|3 + 2df 3

+ |∇f+|3)dt

+
1
8
(
1 – y8)∫

Γ

(
c|∇f |3 + df 3|∇f |3)dt

∫
Γ

(
c|∇f–|3 + 2df 3

– |∇f–|3)dt

+
1
8
c

3(1 – x4)3
(∫

Γ

|∇f+|3 dt
)3

+
1
8
c

3(1 – y4)3
(∫

Γ

|∇f–|3 dt
)3

+
1
8

cd
(
1 – x3)3(1 + 2x3 + 3x4)∫

Γ

|∇f+|3 dt
∫

Γ

f 3
+ |∇f+|3 dt

+
1
8

cd
(
1 – y3)3(1 + 2y3 + 3y4)∫

Γ

|∇f–|3 dt
∫

Γ

f 3
– |∇f–|3 dt

+
1
8
c

3((x4 – y4)3 + 2
(
1 – x3y3)3)∫

Γ

|∇f+|3 dt
∫

Γ

|∇f–|3 dt

+
1
8

cd
((

1 – x4)3 + 2
(
x3 – y4)3)∫

Γ

|∇f+|3 dt
∫

Γ

f 3
– |∇f–|3 dt

+
1
8

cd
((

1 – y4)3 + 2
(
y3 – x4)3)∫

Γ

|∇f–|3 dt
∫

Γ

f 3
+ |∇f+|3 dt

+
1
4

d3(x4 – y4)3
∫

Γ

f 3
+ |∇f+|3 dt

∫
Γ

f 3
– |∇f–|3 dt.
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The proof of the above lemma is similar to the one in [25], we just state it in brief and
omit the proof.

Lemma 2.2 Let f ∈ X, x ≥ 0, y ≥ 0. Then we have

I(f ) – I(xf+ + yf–)

≥ 1
8
(
1 – x8)〈

EA(f ), f+
〉
+

1
8
(
1 – y4)〈

EA(f ), f–
〉

+
1
4
(
1 – x3)3

(
a

∫
Γ

|∇f+|3 dt + b
∫

Γ

f 3
+ |∇f+|3 dt +

1
3
c

3
(∫

Γ

|∇f+|3 dt
)3)

+
1
4
(
1 – y3)3

(
a

∫
Γ

|∇f–|3 dt + b
∫

Γ

f 3
– |∇f–|3 dt +

1
3
c

3
(∫

Γ

|∇f–|3 dt
)3)

. (9)

Moreover,

I(f ) > I(xf+ + yf–), (10)

where f ∈S∗, x ≥ 0, y ≥ 0 and (x, y) �= (1, 1).

Proof It follows that

I(f ) – I(xf+ + yf–)

=
1
3

∫
Γ

(
a|∇f |3 + bf 3|∇f |3)dt

–
1
3

(∫
Γ

(
ax3|∇f+|3 + ay3|∇f–|3 + bx4f 3

+ |∇f+|3 + by4f 3
– |∇f–|3)dt

)

+
1
4

(∫
Γ

(
c|∇f |3 + df 3|∇f |3)dt

)3

–
1
4

(∫
Γ

(
cx3|∇f+|3 + cy3|∇f–|3 + dx4f 3

+ |∇f+|3 + dy4f 3
– |∇f–|3)dt

)3

–
∫

Γ

(
F(f+) – F(xf+)

)
dt –

∫
Γ

(
F(f–) – F(yf–)

)
dt

from Lemma 2.1.
It follows that

∫
Γ

(
F(f+) – F(xf+)

)
dt =

∫
Γ

dt
∫ 1

x

d
d�

F(�f+) d�

=
∫

Γ

dt
∫ 1

x
σ (�f+)f+ d�

≥
∫

Γ

dt
∫ 1

x
�7σ (f+)f+ dt

=
1
8
(
1 – x8)∫

Γ

σ (f+)f+ dt (11)
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and
∫

Γ

(
F(f–) – F(xf–)

)
dt ≥ 1

8
(
1 – y8)∫

Γ

σ (f–)f– dt (12)

from (A4).
Combining Lemma 2.1, (11), (12) and the definition (8) of ζ+(f ) and ζ–(f ), we see that

(9) holds. �

Lemma 2.3 Suppose that (A1), (A2), (A3) and (A4) hold. Then the infimum f ∗ is a ground
state solution of problem (1).

Proof We first prove that f ∗ is a solution of Eq. (5). It is clear that there exist m > 0 and
φ ∈ C∞

0 (Γ ) satisfying

〈
EA

(
f ∗),φ

〉
= –2m < 0.

It follows from the continuity that there exist ξ > 0, ε0 > 0 such that

〈
EA(xf+ + yf– + εφ,φ

〉 ≤ –m, (13)

where |x – 1| ≤ ξ , |y – 1| ≤ ξ and 0 ≤ ε ≤ ε0.
If x ≥ 1 and � �= 0, then we have σ (y�)t� ≥ xσ (�)� from (A4).
If 1 – ξ ≤ y ≤ 1 + ξ , then we have

ζ+
(
(1 + ξ )f+ + yf–

)
=

〈
EA

(
(1 + ξ )f+ + yf–

)
, (1 + ξ )f+

〉

≤ 〈
EA

(
(1 + ξ )f

)
, (1 + ξ )f+

〉

< (1 + ξ )8〈
EA(f ), f+

〉
= 0

and

ζ+
(
(1 – ξ )f+ + yf–

)
=

〈
EA

(
(1 – ξ )f+ + yf–

)
, (1 – ξ )f+

〉

≥ 〈
EA

(
(1 – ξ )f

)
, (1 – ξ )f+

〉

> (1 – ξ )8〈
EA(f ), f+

〉
= 0.

If 1 – ξ ≤ x ≤ 1 + ξ , then we have

ζ–
(
xf+ + (1 + ξ )f–

)
=

〈
EA

(
xf+ + (1 + ξ )f–

)
, (1 + ξ )f–

〉
< 0

and

ζ+
(
xf+ + (1 – ξ )f–

)
=

〈
EA

(
xf+ + (1 – ξ )f–

)
, (1 + ξ )f–

〉
> 0.

Take ε sufficiently small such that

ζ+
(
(1 + ξ )f+ + yf– + εφ

)
< 0, ζ+

(
(1 – ξ )f+ + yf– + εφ

)
> 0,
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for 1 – ξ ≤ y ≤ 1 + ξ ; and

ζ–
(
xf+ + (1 + ξ )f– + εφ

)
< 0, ζ–

(
xf+ + (1 – ξ )f– + εφ

)
> 0

for 1 – ξ ≤ x ≤ 1 + ξ .
It follows from a degree theory argument that there exists (x, y) such that |x – 1| ≤ ξ ,

|y – 1| ≤ ξ and

ζ+(xf+ + yf– + εφ) = 0, ζ–(xf+ + yf– + εφ) = 0,

which together with Lemma 2.2 and (13) yields

c
∗ ≤ I(xf+ + yf– + εφ)

≤ I
(
f ∗) + I(xf+ + yf– + εφ) – I(xf+ + yf–)

= c
∗ +

∫ 1

0

〈
EA(xf+ + yf– + �εφ), εφ

〉
d�

≤ c
∗ – εm.

It is clear that this is a contradiction. �

Lemma 2.4 Let f ∈ X and x ≥ 0. Then the following Schrödinger-type identities hold:
(1)

1
3

∫
Γ

(
a|∇f |3 + bf 3|∇f |3)dt –

1
3

∫
Γ

(
ax3|∇f |3 + bx4f 3|∇f |3)dt

=
1
8

a
(
1 – x8)∫

Γ

(
a|∇f |3 + 2b|∇f |3)dt

+
1
8

a
(
1 – x3)3(3 + 2x3 + x4)∫

Γ

|∇f |3 dt +
1
4

b
(
1 – x4)3

∫
Γ

f 3|∇f |3 dt,

(2)

(
1
4

∫
Γ

(
c|∇f |3 + df 3|∇f |3)dt

)3

–
1
4

(∫
Γ

(
cx3|∇f |3 + dx4f 3|∇f |3)dt

)3

=
1
8
(
1 – x8)∫

Γ

(
c|∇f |3 + df 3|∇f |3)dt

∫
Γ

(
c|∇f |3 + 2df 3|∇f |3)dt

+
1
8
c

3(1 – x4)3
∫

Γ

|∇f |3 dt

+
1
8

cd
(
1 – x3)(1 + 2x3 + 3x4)∫

Γ

|∇f |3 dt
∫

Γ

f 3|∇f |3 dt.

The proof of the above lemma is similar to the one in [25], we just state it in brief and
omit the proof.

Lemma 2.5 Suppose that (A1), (A2), (A3) and (A4) hold. Then f is a ground state solution
of (1).
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Proof We shall first that f is a solution of (5). Otherwise, there exist m > 0 and φ ∈ C∞
0 (Γ )

such that

〈
EA(f ),φ

〉
= –2m < 0.

There exist ξ > 0 and ε0 > 0 such that

〈
EA(xf + εφ),φ

〉 ≤ –m, (14)

where |x – 1| ≤ ξ and 0 ≤ ε ≤ ε0.
So

ζ
(
(1 + ξ )f

)
< 0

and

ζ
(
(1 – ξ )f

)
> 0.

There exists a sufficiently small number ε such that

ζ
(
(1 + ξ )f + εφ

)
< 0, ζ

(
(1 – ξ )f + εφ

)
> 0.

It follows that

c0 ≤ I(xf + εφ)

≤ I(f ) + I(xf + εφ) – I(xf )

= c0 +
∫ 1

0

〈
EA(xf + �εφ), εφ

〉
d�

≤ c0 – mε

from (14), which is a contradiction. �

3 Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.1 We only need to prove that f ∗ has exactly two nodal domains. We
prove it reasoning by contradiction.

There exists � > 0 such that
∫

Γ

f p
+ dt ≥ � and

∫
Γ

f p
– dt ≥ � , (15)

where f ∈S∗.
It follows from (A1) and (A2) that

ε

∫
Γ

f 3
+ dt + Cε

∫
Γ

f p
+ dt ≥

∫
Γ

σ (f+)f+ dt ≥
∫

Γ

a|∇f+|3 dt + 2b
∫

Γ

f 3
+ |∇f+|3 dt

≥ 2ε

∫
Γ

f 3
+ dt + c

(∫
Γ

f p
+ dt

)4/p

.
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So

I(f ) = I(f ) –
1
8
〈
EA(f ), f

〉

=
3
8

a
∫

Γ

|∇f |3 dt +
1
4

b
∫

Γ

f 3|∇f |3 dt

+
1
8

∫
Γ

(
c|∇f |3 + df 3|∇f |3)dt

∫
Γ

c|∇f |3 dt +
∫

Γ

(
1
8
σ (f )f – F(f )

)
dt

≥ 3
8

a
∫

Γ

|∇f |3 dt +
1
4

b
∫

Γ

f 3|∇f |3 dt. (16)

It follows from (16) that

∫
Γ

|∇fn|3 dt ≤ c,
∫

Γ

f 3
n |∇fn|3 dt ≤ c.

It is obvious that fn ⇀ f in H1
0(Γ ), fn∇fn ⇀ u∇f in L3(Γ ), fn → f in Lq(Γ ), where 1 ≤

q ≤ 12.
It follows from (15) that

∫
Γ

f p
+ dt = lim

n→∞

∫
Γ

(fn)p
+ dt ≥ � > 0

and

∫
Γ

f p
– dt ≥ � > 0, f+ �= 0, f– �= 0.

It follows from Lemma 2.1 that there exists (x, y) ∈R
3
+ such that xf+ + yf– ∈S∗. So

c
∗ = lim

n→∞I(fn)

≥ lim
n→∞

{
I
(
x(fn)+ + t(fn)–

)
+

1
4

a
(
1 – x3)3

∫
Γ

∣∣∇(fn)+
∣∣3 dt

+
1
4

a
(
1 – y3)3

∫
Γ

∣∣∇(fn)–
∣∣3 dt

}

≥ I(xf+ + yf–) +
1
4

a
(
1 – x3)3

∫
Γ

|∇f+|3 dt +
1
4

a
(
1 – y3)3

∫
Γ

|∇f–|3 dt

≥ c
∗ +

1
4

a
(
1 – x3)3

∫
Γ

|∇f+|3 dt +
1
4

a
(
1 – y3)3

∫
Γ

|∇f–|3 dt

from Lemma 2.2, (9) and the lower semicontinuity.
So x = 1, y = 1, f+ + f– = f ∗ ∈ S∗, and I(f ∗) = c∗.
Put v+ = f ∗χD1 , v– = f ∗χD3 , v = v1 + v2, w = f ∗χD2 , v + w = f ∗, where χD denotes the

eigenfunction of D, D1, D2 are positive nodal domains, and D3 is a negative nodal domain.
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Then we have

c
∗ = I

(
f ∗) = I(v + w) –

1
8
〈
EA(v + w), v + w

〉

=
{
I(v) + I(w) +

1
3

∫
Γ

(
c|∇v|3 + dv3|∇v|3)dt

∫
Γ

(
c|∇w|3 + dw3|∇w|3)dt

}

–
1
8

{〈
EA(v), v

〉
+

〈
EA(w), w

〉

+
∫

Γ

(
c|∇v|3 + dv3|∇v|3)dt

∫
Γ

(
c|∇w|3 + 2dw3|∇w|3)dt

+
∫

Γ

(
c|∇w|3 + dv3|∇w|3)dt

∫
Γ

(
c|∇v|3 + 2dv3|∇v|3)dt

}

> I(v) –
1
8
〈
EA(v), v

〉
.

Note that

0 =
〈
EA

(
f ∗), v+

〉 ≥ 〈
EA(v), v+

〉

and

0 =
〈
EA

(
f ∗), v–

〉 ≥ 〈
EA(v), v–

〉
.

There exist two positive numbers x and y such that xv+ + yv– ∈ S∗. It follows from
Lemma 2.2 that

c
∗ > I(v) –

1
8
〈
EA(v), v

〉

≥ I(xv+ + yv–) +
1
8
(
1 – x8)〈

EA(v), v+
〉
+

1
8
(
1 – y8)〈

EA(v), v+
〉
–

1
8
〈
EA(v), v

〉

= I(xv+ + yv–) –
1
8

x8〈
EA(v), v+

〉
–

1
8

y8〈
EA(v), v–

〉

≥ I(xv+ + yv–) ≥ c
∗,

which is also a contradiction. �

Proof of Theorem 1.2 We shall prove c∗ > 2c0. Let f ∗ = f+ + f– ∈ S∗ be a minimizer,
I(f ∗) = c∗.

Let {fn} ⊂ S be a minimizing sequence, I(fn) → c0 as n → ∞. It follows from (16) that

∫
Γ

|∇fn|3dt ≤ c,
∫

Γ

f 3
n |∇fn|3dt ≤ c.

Assume fn ⇀ f in H1
0(Γ ), fn∇fn ⇀ u∇f in L3(Γ ), fn → f in Lq(Γ ), where 1 ≤ q < 12.

There exists � > 0 such that
∫
Γ

|fn|p dt ≥ � > 0, which yields

∫
Γ

|f |p dt = lim
n→∞

∫
Γ

|fn|p dt ≥ � > 0, f �= 0.
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It follows Lemma 2.3 that there exists a positive number x such that xf ∈ S. By Lemma 2.4
we have

c0 = lim
n→∞I(fn)

≥ lim
n→∞

{
I(xfn) +

1
4
(
1 – x3)a

∫
Γ

|∇fn|3 dt
}

≥ I(xf ) +
1
4
(
1 – x3)3a

∫
Γ

|∇f |3 dt

≥ c0 +
1
4
(
1 – x3)a

∫
Γ

|∇f |3 dt,

which yields x = 1, f ∈ S, I(f ) = c0 and f is a minimizer.
There exist two positive numbers x and y such that xf+ ∈ S, yf– ∈ S. So

c
∗ = I

(
f ∗) = I(f+ + f–)

≥ I(xf+ + yf–)

= I(xf+) + I(yf–)

+
1
3

∫
Γ

(
cx3|∇f+|3 + dx4f 3

+ |∇f+|3)dt
∫

Γ

(
cy3|∇f–|3 + dy4f 3

– |∇f–|3)dt

> I(xf+) + I(yf–) ≥ 2c0.

Finally we shall prove that f ∈ S is signed. Otherwise, f = f+ + f–, f+ �= 0, f– �= 0. Since f is
a solution of (1), 〈EA(f ), f+〉 = 0, 〈EA(f ), f–〉 = 0; that is, f ∈ S∗. So

c0 = I(f ) ≥ c
∗ > 2c0,

which is a contradiction, since we have c0 > 0. �

4 Conclusions
In this paper, we developed optimal Phragmén–Lindelöf methods, based on the use of
maximum modulus of optimal value of a parameter in a Schrödinger functional, by apply-
ing the Phragmén–Lindelöf theorem for a second-order boundary value problems with
respect to the Schrödinger operator
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Silvestrov, S., Rančić, M. (eds.) Engineering Mathematics II, pp. 337–353. Springer, Berlin (2016)
22. Guliyev, V.S., Guliyev, R.V., Omarova, M.N., Ragusa, M.A.: Schrödinger type operators on local generalized Morrey

spaces related to certain nonnegative potentials. Discrete Contin. Dyn. Syst., Ser. B 25(2), 671–690 (2020)
23. Guseinov, G.S.: The inverse scattering problem of scattering theory for a second-order difference equation on the

whole axis. Sov. Math. Dokl. 17, 1684–1688 (1976)
24. Guseinov, G.S.: The determination of an infinite Jacobi matrix from the scattering data. Sov. Math. Dokl. 17, 596–600

(1976)
25. He, H., Pang, Z.: A modified Schrödinger-type identity: uniqueness of solutions for singular boundary value problem

for the Schrödinger equation. Bound. Value Probl. 2019, Article ID 147 (2019)
26. Ho, K., Sim, I.: A-priori bounds and existence for solutions of weighted elliptic equations with a convection term. Adv.

Nonlinear Anal. 6(4), 427–445 (2017)
27. Huang, G., Wu, M.: A Phragmén–Lindelöf theorem for plurisubharmonic functions. Acta Math. Sci. Ser. A 28(3),

434–437 (2008)
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35. Papageorgiou, N.S., Rǎdulescu, V.D., Repovs, D.D.: Nonlinear Analysis—Theory and Methods. Springer Monographs in

Mathematics. Springer, Cham (2019)
36. Polidoro, S., Ragusa, M.A.: Harnack inequality for hypoelliptic ultraparabolic equations with a singular lower order

term. Rev. Mat. Iberoam. 24(3), 1011–1046 (2008)
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44. Wang, L., Rǎdulescu, V.D., Zhang, B.: Infinitely many solutions for fractional Kirchhoff–Schrödinger–Poisson systems.

J. Math. Phys. 60, Article ID 011506 (2019)
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