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Abstract
The existence of at least one positive radial solution of the Neumann problem

–�Hnu + R(ξ )u = a(|ξ |Hn)|u|p–2u – b(|ξ |Hn)|u|q–2u,

is proved on the Heisenberg groupH
n, via the variational principle, where a(|ξ |Hn ),

b(|ξ |Hn ) are nonnegative radial functions and R(ξ ) satisfies suitable conditions.
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1 Introduction
Semilinear elliptic equations were the first nonlinear generalization of linear elliptic partial
differential equations. They are of fundamental importance for the study of engineering,
geometry, life sciences, economics, physics and mechanics; see [1, 23–27]. Some exam-
ples, like the theory of Bose–Einstein condensates, obey

–�u = f (x, u).

The variational approach to these equations has experienced spectacular success in recent
years, reaching a high level of complexity and refinement, with a multitude of applications
(see [10, 14–16, 22]).

In [3] and [12] some problems which depend on continuous component of time like co-
herent states in quantum optics are probed. These problems are studied in a space which
have a component of time and are known as Heisenberg group. Important topics where
the Heisenberg group reveals itself as an essential factor are quantum mechanics, ergodic
theory, representation theory of nilpotent Lie group, foundation of abelian harmonic anal-
ysis, and the theory of partial differential equations. We are now interested in the last one.
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In this paper, the existence of at least one radial solution of a generalized well-known
supercritical Neumann problem

⎧
⎪⎪⎨

⎪⎪⎩

–�Hn u + R(ξ )u = a(|ξ |Hn )|u|p–2u – b(|ξ |Hn )|u|q–2u ξ ∈ Ω ,

u > 0 ξ ∈ Ω ,
∂u
∂n = 0 ξ ∈ ∂Ω ,

(1.1)

is proved where Ω is the Korányi ball in the Heisenberg group. Recently, the existence of a
nontrivial weak solution of following singular boundary value problem on the Heisenberg
group was proved (see [29]):

⎧
⎨

⎩

–�Hn u = μ
g(ξ )u

(|z|4+t2)
1
2

+ λf (ξ , t) ξ ∈ Ω ,

u = 0 ξ ∈ ∂Ω .

In [18] problem (1.1) is studied where R(ξ ) = 1 on the unit ball in R
n, n ≥ 2, see [2, 17, 21,

22] for some applications.
Here we recall some definitions and results on the Heisenberg group (see [4, 7, 30]). Let

us recall some features of the Heisenberg group. The Heisenberg group H
n = (R2n+1,◦) is

the space R
2n+1 with the noncommutative law of product

(x, y, t) ◦ (
x′, y′, t′) =

(
x + x′, y + y′, t + t′ + 2

(〈
y, x′〉 –

〈
x, y′〉)),

where x1, x2, y1, y2 ∈ R
n, t1, t2 ∈R and 〈 , 〉 denotes the standard inner product in R

n. This
operation endows Hn with the structure of a Lie group. The Lie algebra of Hn is generated
by the left-invariant vector fields

T =
∂

∂t
, Xi =

∂

∂xi
+ 2yi

∂

∂t
, Yi =

∂

∂yi
– 2xi

∂

∂t
, i = 1, 2, 3, . . . , n.

These generators satisfy the noncommutative formula

[Xi, Yj] = –4δijT , [Xi, Xj] = [Yi, Yj] = [Xi, T] = [Yi, T] = 0.

Let z = (x, y) ∈ R
2n and ξ = (z, t) ∈H

n. The parabolic dilation

δλξ =
(
λx,λy,λ2t

)
,

satisfies

δλ(ξ0 ◦ ξ ) = δλξ ◦ δλξ0,

and

|ξ |Hn =
(|z|4 + t2) 1

4 =
((

x2 + y2)2 + t2) 1
4 ,
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is a norm with respect to the parabolic dilation which is known as Korányi gauge norm
N(z, t). The Heisenberg distance between two points (z, t) and (z′, t′) is given by

ρ
(
z, t; z′, t′) =

∣
∣
(
z′, t′)–1 ◦ (z, t)

∣
∣
Hn .

Clearly, the vector fields Xi, Yi, i = 1, 2, . . . , n are homogeneous of degree 1 under the norm
| · |Hn and T is homogeneous of degree 2. The Korányi ball of center ξ0 and radius r is
defined by

BHn (ξ0, r) =
{
ξ :

∣
∣ξ–1 ◦ ξ0

∣
∣
Hn ≤ r

}
,

and it satisfies

∣
∣BHn (ξ0, r)

∣
∣ =

∣
∣BHn (0, r)

∣
∣ = r2n+2∣∣BHn (0, 1)

∣
∣.

The Heisenberg gradient and Kohn-Laplacian (Heisenberg-Laplacian) operator on H
n are

given by

∇Hn = (X1, X2, . . . , Xn, Y1, Y2, . . . , Yn)

and

�Hn =
n∑

i=1

X2
i + Y 2

i ,

respectively. Let Ω ⊂ H
n, n ≥ 1, be a smooth bounded open set. Its associated Sobolev

space is defined as follows:

H1(Ω ,Hn) :=
{

u ∈ L2(Ω) : Xiu, Yiu ∈ L2(Ω), i = 1, 2, . . . , n
}

,

and closure of C∞
0 (Ω) in H1(Ω ,Hn) under the norm

‖u‖H1(Ω ,Hn) =
(∫

Ω

(|∇Hn u|2 + |u|2)dξ

) 1
2

,

where u : Ω ⊂ H
n → R, is denoted by H1

0 (Ω ,Hn). The following norm is a norm on
H1

0 (Ω ,Hn):

‖u‖H1
0 (Ω ,Hn) =

(∫

Ω

|∇Hn u|2 dξ

) 1
2

,

which is equivalent to the standard one. The dual space of H1
0 (Ω ,H) will be denoted by

H–1(Ω ,H). Here we recall Hardy’s inequality and some results on the Heisenberg group.

Lemma 1.1 ([19]) For n ≥ 1 and for any u ∈ H1
0 (Ω ,Hn), we have

∫

Ω

|u|2
(|z|4 + |t|2) 1

2
dξ ≤

(
n + 1

n2

)2 ∫

Ω

|∇Hn u|2 dξ .
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For convenience, we write the above inequality as follows:

∫

Ω

|u|2
(|z|4 + |t|2) 1

2
dξ ≤ 1

Cn

∫

Ω

|∇Hn u|2 dξ ,

where Cn = ( n2

n+1 )2.

Lemma 1.2 ([13, 29]) Let Ω ⊂ H
n be a bounded open set. Then the following compact

embedding is satisfied:

H1
0
(
Ω ,Hn) ⊂⊂ Ls(Ω) for 1 ≤ s < Q̄,

where Q̄ = 2Q
Q–2 is critical exponent of Q = 2n + 2, which is a homogeneous dimension of Hn.

We denote the Sobolev embedding constant of the above compact embedding by Cs > 0; i.e.

‖u‖Ls(Ω) ≤ Cs‖u‖H1
0 (Ω ,Hn) for all u ∈ H1

0 (Ω ,H), 1 ≤ s ≤ Q̄.

Consider two subspaces of the Heisenberg–Sobolev space H1
0 (Ω ,H), as follows:

D1,2(Ω) :=
{

u : Ω →R : u, |∇Hn u| ∈ L2(Ω)
}

,

with respect to the norm

‖u‖D1,2(Ω) =
(∫

Ω

(|∇Hn u|2 + |u|2)dξ

) 1
2

,

and D1,2
0 (Ω) be the closure of C∞

0 (Ω) in {u ∈ D1,2(Ω) : 0 ≤ u, u is increasing}. According
to Poincaré’s inequality in Heisenberg–Sobolev space (see [8]), D1,2

0 (Ω) is equipped with
the norm

‖u‖D1,2
0 (Ω) =

(∫

Ω

(|∇Hn u|2)dξ

) 1
2

,

which is equivalent to the standard one. Additionally, define

D2,2(Ω) :=
{

u : Ω →R : u, |∇H u|, |�H u| ∈ L2(Ω)
}

,

which is equipped with the norm

‖u‖D2,2(Ω) =
(∫

Ω

(|�Hn u|2 + |∇Hn u|2 + |u|2)dξ

) 1
2

.

The following compact embedding is needed for the main result.

Theorem 1.1 ([9]) Let Ω ⊂ H
n be a bounded open set. Then the following embeddings are

compact:
(I) If Q = 4, then D2,2(Ω) ∩ D1,2

0 (Ω) ↪→ Ls(Ω), 1 ≤ s < ∞.
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(II) If Q > 4, then D2,2(Ω) ∩ D1,2
0 (Ω) ↪→ Ls(Ω), 1 ≤ s < Q∗,

where Q∗ = 2Q
Q–4 and as above Q = 2n + 2.

Now we recall results we need later. Let V be a real Banach space and V ∗ be its topolog-
ical dual and pairing between V and V ∗ denoted by 〈 , 〉. A function ψ : V → R is called
weakly lower semi-continuous (w.l.s.c.) if

ψ(u) ≤ lim
n→∞ infψ(un),

for each u ∈ V and any sequence {un} converging to u in the weak topology σ (V , V ∗). Let
ψ : V →R∪ {+∞} be a proper convex function. The subdifferential of ψ at u is the set

∂ψ(u) =
{

u∗ ∈ V ∗ : ψ(v) ≥ ψ(u) +
〈
u∗, v – u

〉
for all v ∈ V

}
.

The multivalued mapping ∂ψ : V → 2V∗ (where 2V∗ is the set of all subsets of V ∗) by ψ is
Gâteaux differentiable at u, denoted by Dψ(u), if and only if ∂ψ(u) is a singleton. In this
case, ∂ψ(u) = {Dψ(u)}.

Lemma 1.3 ([1]) Let X be a reflexive Banach space and I : X →R be a continuous convex
functional. Then I is w.l.s.c..

Theorem 1.2 (Weierstrass, [1]) Let X be a reflexive Banach space and I : X → R be w.l.s.c.
and coercive. Then I has a global minimum point.

Definition 1.1 Let V be a real Banach space, ϕ ∈ C1(V ,R) and ψ : V → (–∞, +∞] be a
proper (i.e. Domψ �= ∅), convex and lower semi-continuous function, and K be a convex
and weakly closed subset of V . Define the function ψK : V → (–∞, +∞] by

ψK (u) :=

⎧
⎨

⎩

ψ(u) u ∈ K ,

+∞ u /∈ K .
(1.2)

Suppose the functional I : V → (–∞, +∞] is defined by

I(w) := ψK (w) – ϕ(w), (1.3)

u ∈ Dom(ψK ) is called a critical point of I , if Dϕ(u) ∈ ∂ψK (u) or equivalently,

ψK (v) – ψK (u) ≥ 〈
Dϕ(u), v – u

〉
, for all u ∈ V .

Notice that a global minimum point of I is a critical point of I .

Definition 1.2 ([11]) We say that I satisfies the Palais–Smale compactness condition (PS)
if every sequence {un} is such that

• I[un] → c ∈ R,
• 〈Dϕ(un), un – v〉 + ψ(v) – ψ(un) ≥ –εn‖v – un‖, for all v ∈ V ,

where εn → 0, then {un} possesses a convergent subsequence.
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The following Mountain Pass Geometry (MPG) theorem is proved in [28].

Theorem 1.3 Suppose that I : V → (–∞, +∞] is of the form (1.3) and satisfies the PS
condition and the following conditions:

(i) I(0) = 0,
(ii) there exists e ∈ V such that I(e) ≤ 0,

(iii) there exists positive constant ρ such that I(u) > 0, if ‖u‖ = ρ .
Then I has a critical value c ≤ ρ which is characterized by

c = inf sup
g∈Γ t∈[0,1]

I
[
g(t)

]
,

where Γ = {g ∈ C([0, 1], V ) : g(0) = 0, g(1) = e}.

Subsequently, we need the following theorem.

Theorem 1.4 (G. Polya, [20]) Assume that un : [a, b] →R, n ≥ 1 is a monotone increasing
sequence of (not necessarily continuous) functions which converge point-wise to a continu-
ous function u : [a, b] →R, then the convergence is uniform.

The first eigenvalue plays a very relevant role in nonlinear elliptic problems.

Remark 1.1 (see [1]) According to the variational characterization of the first eigenvalue
when λ1 = λ1(–�Hn + R) > 0 (this happens certainly if R(ξ ) ≥ 0 a.e. in Ω) or when R satisfies
one of the conditions of Theorem 1.5, it is easy to see that the quantity

(u|v) =
∫

∇Hn u∇Hn v dξ +
∫

R(ξ )uv dξ

defines a scalar product on H1
0 (Ω ,Hn) that induces a norm

‖u‖∗ =
(∫

|∇Hn u|2 + R(ξ )|u|2 dξ

) 1
2

,

equivalent to the standard one and similarly on D1,2
0 (Ω).

Now we can state the main result of this paper.

Theorem 1.5 Let Ω be a smooth, bounded open set in the Heisenberg group H
n, 2 ≤ q <

p < Q∗ and a, b ∈ L∞(0, 1) be increasing positive non-constant radial functions. The prob-
lem (1.1) admits at least one radially increasing solution if at least one of the following
conditions is met:

(i) R(ξ ) = α where α > 0 is a real constant.
(ii) R(ξ ) ∈ L∞(Ω) and λ1(–�Hn + R(ξ )) ≥ 0, where λ1 is the first eigenvalue.

(iii) R(ξ ) ≤ c(1 + |ω|Hn )–2, where c ≥ 0 is a small enough constant.

2 Positive radial solution
Here, we recall the following variational principle established in [5].
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Definition 2.1 The triple (ψ ,ϕ, K) satisfies the point-wise invariance condition at a point
u ∈ V if there exists a convex Gâteaux differentiable function G : V →R and a point v ∈ K
such that

Dψ(v) + DG(v) = Dϕ(u) + DG(u).

Theorem 2.1 Let V be a reflexive Banach space and K be a convex and weakly closed
convex subset of V . Let ψ : V → R ∪ {+∞} be a convex, lower semi-continuous function
which is Gâteaux differentiable on K , and let ϕ ∈ C1(V ,R). Assume that the following two
assertions hold:

(i) The functional I : V →R∪ {+∞} defined by I(w) = ψK (w) – ϕ(w) has a critical point
u ∈ V as in Definition 2.1,

(ii) the triple (ψ ,ϕ, K) satisfies the point-wise invariance condition at the point u.
Then u ∈ K is a solution of the equation

Dψ(u) = Dϕ(u).

To use Theorem 2.1, consider the bounded open set Ω ⊂ H
n and the Banach space

V = D1,2
0,r (Ω) ∩ D2,2(Ω) ∩ Lp

a(Ω) ∩ Lq
b(Ω), where

Lp
a(Ω) =

{

u :
∫

Ω

a
(|ξ |Hn

)|u|p dξ < ∞
}

and

Lq
b(Ω) =

{

u :
∫

Ω

b
(|ξ |Hn

)|u|q dξ < ∞
}

,

and also

D1,2
0,r (Ω) =

{
u ∈ D1,2

0 (Ω) : 0 ≤ u, u is a radial function
}

,

D2,2(Ω) is defined as above and u : Ω →R is called radial function if u(x, y, t) = φ(�) where
� = |(x, y, t)|Hn . V is equipped with the norm

‖u‖V := ‖u‖∗ + ‖u‖Lp
a

+ ‖u‖Lq
b

=
(∫

Ω

|∇Hn u|2 + R(ξ )|u|2 dξ

) 1
2

+
(∫

Ω

a
(|ξ |Hn

)|u|p dξ

) 1
p

+
(∫

Ω

b
(|ξ |Hn

)|u|q dξ

) 1
q

.

We consider the Euler–Lagrange functional corresponding to problem (1.1); i.e.

E(u) =
1
2

∫

Ω

|∇Hn u|2 + R(ξ )|u|2 dξ +
1
q

∫

Ω

b
(|ξ |Hn

)|u|q dξ –
1
p

∫

Ω

a
(|ξ |Hn

)|u|p dξ ,

over the convex and weakly closed set

K =
{

u ∈ V : u ≥ 0, u is increasing with respect to the radius � = |ω|Hn
}

. (2.1)
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To adapt Theorem 2.1 to our problem, we define ψ ,ϕ : V → R by

ψ(u) =
1
2

∫

Ω

|∇Hn u|2 + R(ξ )|u|2 dξ +
1
q

∫

Ω

b
(|ξ |Hn

)|u|q dξ

and

ϕ(u) =
1
p

∫

Ω

a
(|ξ |Hn

)|u|p dξ .

Finally, let us introduce the functional I : V → (–∞, +∞] as follows:

I(u) = ψK (u) – ϕ(u),

where ψK is defined as (1.2). We should be aware that I is indeed the Euler–Lagrange func-
tional corresponding to our problem restricted to K . Theorem 2.1 implies the following
corollary.

Corollary 2.1 Let V = D1,2
0,r (Ω) ∩ D2,2(Ω) ∩ Lp

a(Ω) ∩ Lq
b(Ω), and K be the convex closed

subset of V given in (2.1). Assume that the functional

I(w) := ψK (w) –
1
p

∫

Ω

a
(|ξ |Hn

)|w|p dξ , (2.2)

has a critical point u ∈ V and there exists v ∈ K satisfying the linear equation

⎧
⎨

⎩

–�Hv + R(ξ )v + b(|ξ |Hn )|v|q–2v = a(|ξ |Hn )|u|p–2u ξ ∈ Ω ,
∂v
∂n = 0 ξ ∈ ∂Ω ,

(2.3)

in the weak sense. Then u ∈ K is a solution of the equation

⎧
⎨

⎩

–�Hu + R(ξ )u + b(|ξ |Hn )|u|q–2u = a(|ξ |Hn )|u|p–2u ξ ∈ Ω ,
∂u
∂n = 0 ξ ∈ ∂Ω .

Notice that satisfying Eq. (2.3) shows that the triple (ψK ,ϕ, K) satisfies the point-wise in-
variance condition at u, where G = 0. We need some lemmas and theorems before proving
our main result.

Lemma 2.1 Assume R(ξ ) is given in Theorem 1.5. If h ∈ L2(Ω), f : R → R is continuous
and there exist α,β > 0 such that

∣
∣f (t)

∣
∣ ≤ α + β|t|Q∗–1 and f (t)t ≤ 0

for all t ∈R. Then the problem

⎧
⎨

⎩

–�Hn u + R(ξ )u = f (u) + h(ξ ) ξ ∈ Ω ,
∂u
∂n = 0 ξ ∈ ∂Ω ,

(2.4)

admits at least one solution.
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Proof First notice that by integration, there exist α1,β1 > 0 such that

∣
∣F(t)

∣
∣ ≤ α1 + β1|u|Q∗

and F(t) ≤ 0 for all t ∈ R, where F(t) =
∫ t

0 f (s) ds. Now consider the following energy func-
tional corresponding to problem (2.4) on D1,2

0 (Ω) ∩ D2,2(Ω):

J(u) =
1
2
‖u‖2

∗ –
∫

Ω

F(u) dx –
∫

Ω

hu dx.

Theorem 1.1 implies

J(u) ≥ 1
2
‖u‖2

∗ – C‖u‖∗.

So J is coercive and weakly lower semi-continuous on D1,2
0 (Ω). So according to the Weier-

strass theorem, J has a global minimum point which means problem (2.4) admits at least
one solution. �

Lemma 2.2 For 2 ≤ q < p < Q∗, there exists C > 0 such that

‖u‖∗ ≤ ‖u‖V ≤ C‖u‖∗

for all u ∈ K .

Proof Theorem 1.1 implies

‖u‖∗ ≤ ‖u‖V = ‖u‖∗ +
(∫

Ω

a
(|ξ |Hn

)|u|p dξ

) 1
p

+
(∫

Ω

b
(|ξ |Hn

)|u|q dξ

) 1
q

≤ ‖u‖∗ + C′
1|a|L∞(Ω)‖u‖D1,2

0 (Ω) + C′
2|b|L∞(Ω)‖u‖D1,2

0 (Ω)

≤ (1 + C1 + C2)‖u‖∗.

The last estimate holds, since ‖ · ‖∗ and ‖ · ‖D1,2
0 (Ω) are equivalent. �

Lemma 2.3 Let V = D1,2
0,r (Ω)∩D2,2(Ω)∩Lp

a(Ω)∩Lq
b(Ω). Suppose the functional I : V →R

is defined by

I(u) := ψK (u) – ϕ(u),

where ϕ and ψK are given in Corollary 2.1. Then I has a nontrivial critical point.

Proof We utilize Theorem 1.3 to prove this lemma. First recall that

Dϕ(u) = a
(|ξ |Hn

)|u|p–2u,

and therefore ϕ is a C1-function on the space V . Also notice that ψ is a proper, convex
and lower semi-continuous and K is closed in V . We are going to prove this lemma in two
steps:



Safari and Razani Boundary Value Problems         (2020) 2020:88 Page 10 of 14

Step 1. We verify that I satisfies in MPG conditions. It is clear that I(0) = 0. Take e ∈ K .
It follows that

I(te) =
t2

2
‖u‖2

∗ +
tq

q

∫

Ω

b
(|ξ |Hn

)|e|q dξ –
tp

p

∫

Ω

a
(|ξ |Hn

)|e|p dξ .

Now since p > q ≥ 2, for t sufficiently large I(te) is negative. We now prove condition (iii)
of the MPG theorem. Take u ∈ Dom(ψ) with ‖u‖V = ρ > 0. Notice that from Lemma 2.2
for u ∈ K we have

‖u‖V ≤ (1 + C1 + C2)‖u‖∗. (2.5)

Also

ϕ(u) =
1
p

∫

Ω

a
(|ξ |Hn

)|u|p dξ ≤ C3‖u‖p
V = C3ρ

p,

I(u) ≥ ρ2

2(1 + C1 + C2)2 – C3ρ
p > 0,

(2.6)

provided ρ > 0 is small enough as 2 < p and C1, C2, C3 are positive constants. If u /∈
Dom(ψ). Then clearly I(u) > 0. Therefore, MPG holds for the functional I .

Step 2. We verify the PS compactness condition. Suppose that {un} is a sequence in K
such that I(un) → c ∈R, εn → 0 and

〈
Dϕ(un), un – v

〉
+ ψK (v) – ψK (un) ≥ –εn‖v – un‖V , for all v ∈ V . (2.7)

We show that {un} has a convergent subsequence in V . First notice that un ∈ Dom(ψ), then

I(un) = ψK (un) – ϕ(un) → c, as n → ∞.

Thus, for large values of n we have

ψK (un) – ϕ(un) ≤ 1 + c. (2.8)

Now consider the function g(r) = rq –p(r –1)–1 on the interval (1, +∞) and set r∗ = ( p
q )

1
q–1 .

It is easy to see that for every r ∈ (1, r∗) we have g(r) < 0. We choose a number r for which
we have r > 1 and rq – 1 < p(r – 1). In (2.7) set v = run. Then

(1 – r)
〈
Dϕ(un), un

〉
+

(
rq – 1

)
ψK (un) ≥ –εn(r – 1)‖un‖V . (2.9)

Furthermore,

〈
Dϕ(un), un

〉
=

∫

Ω

a
(|ξ |Hn

)
un(ξ )p dξ = pϕ(un). (2.10)

Since rq – 1 < p(r – 1), we can take β > 0 such that 1
p(r–1) < β < 1

rq–1 . Multiplying (2.9) by β

and adding it to (2.8) we obtain

[
1 – βp(1 – r)

]
ϕ(un) +

[
1 – β

(
rq – 1

)]
ψK (un) ≤ 1 + c + βC‖un‖∗.
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So for a suitable constant C′ > 0

‖un‖2
∗ ≤ ψK (un) ≤ C′(1 + ‖un‖∗

)
.

Therefore, {un} is a bounded sequence in Hilbert space D1,2
0,r (Ω) ∩ D2,2(Ω). Theorem 1.1

and the standard results in Sobolev space show there exists ū ∈ D1,2
0,r (Ω) ∩ D2,2(Ω) such

that, up to subsequences,
• un ⇀ ū in D1,2

0,r (Ω) ∩ D2,2(Ω);
• un → ū in Ls(Ω), 1 ≤ s < Q∗;
• un(ξ ) → ū(ξ ) a.e in Ω ;
• there exist ws ∈ Ls(Ω) such that |un(ξ )| ≤ ws(ξ ) a.e. in Ω and for all n ∈N where

1 ≤ s < Q∗.
Now in (2.7) replace v with ū:

–
∫

Ω

a
(|ξ |Hn

)|un|p–1(ū – un) dξ + ψK (ū) – ψK (un) ≥ –εn‖ū – un‖V . (2.11)

On the one hand, we have

∣
∣
∣
∣

∫

Ω

a
(|ξ |Hn

)|un|p–1(ū – un) dξ

∣
∣
∣
∣ ≤

∫

Ω

a
(|ξ |Hn

)
wp–1

p–1(ξ )|ū – un|dξ . (2.12)

On the other hand, {un} ⊂ K so {un} is an increasing sequence so {|ū – un|} is an increasing
sequence, too. Now according to Theorem 1.4 the right hand side of the latter inequality
goes to zero. Therefore passing into limits in (2.11), one gets

lim
n→∞ supψK (un) ≤ ψK (ū). (2.13)

But the norm is weakly lower semi-continuous and un → ū in Lq
b(Ω). So ψK (un) ≤

limn→∞ infψK (un). Then

lim
n→∞ψK (un) = ψK (ū).

Then ‖un‖V → ‖ū‖V , and besides un(ξ ) → ū(ξ ) a.e. thus un → ū strongly in V as desired.
Notice that every un is radial, so u is radial; moreover, u ∈ K . �

Lemma 2.4 Suppose u ∈ K . There exists v ∈ K such that

⎧
⎨

⎩

–�Hn v + R(ξ )v = a(|ξ |Hn )up–1 – b(|ξ |Hn )vq–1 in Ω ,

v = 0 on ∂Ω ,

in the weak sense.

Proof Let u ∈ K so 0 ≤ u ∈ K ⊂ D2,2. According to Theorem 2.4, it is enough to show that
h(ξ ) = a(|ξ |Hn )u(ξ )p–1 belongs to L2(Ω) and f (v) = –b(|ξ |Hn )v(ξ )q–1 satisfies the inequality

∣
∣f (t)

∣
∣ ≤ α + β|t|Q∗–1 and f (t)t ≤ 0
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for all t ∈R. Clearly since q < Q∗ both hold. On the other hand, as u ∈ LQ∗ (Ω) and Ω ⊂H
n

one can see following estimate:

∣
∣u(ξ )

∣
∣ =

∣
∣φ(�)

∣
∣ =

∣
∣
∣
∣

∫ �

0
φ′(s) ds + φ(0)

∣
∣
∣
∣

≤
∫ �

0

∣
∣φ′(s)

∣
∣ds +

∣
∣φ(0)

∣
∣

≤
(∫ �

0

∣
∣φ′(s)

∣
∣2s2n ds

) 1
2
(∫ �

0

ds
s2n

) 1
2

+
∣
∣φ(0)

∣
∣

≤ C
(

ω–1
2n

∫

Ω

∣
∣φ′(ξ )

∣
∣2 dξ

) 1
2
�

1–2n
2 +

∣
∣φ(0)

∣
∣

≤ C′
(∫

Ω

|∇Hn u|2
|ξ |2

Hn
dξ

) 1
2
(∫

Ω

ξ 2 dξ

) 1
2
�

1–2n
2 +

∣
∣φ(0)

∣
∣

≤ C′′|ξ |2–n
Hn

1
Cn

∫ �

0
|�Hn u|2 dξ +

∣
∣φ(0)

∣
∣

≤ C∗‖u‖D2,2(Ω)|ξ |2–n
Hn ,

where ω2n is the measure of unit ball inR
2n+1 = H

n, and C, C′, C′′, C∗ are positive constants,
and the fundamental theorem of calculus and Hardy’s inequality (1.1) are applied. Recent
inequalities are satisfied since u is a radial function so |∇Hn u| = �

r |φ′| where � = |ξ |Hn =
|(z, t)|Hn , r = |z| (see [6]). Because of the last inequality and since p < Q∗, it is easy to see
that h ∈ L2(Ω). This means the desired result has been obtained. �

Now we can state the proof of Corollary 2.1, by using Theorem 2.1 and introducing an
appropriate space.

Proof Let V = D1,2
0,r (Ω) ∩ D2,2(Ω) ∩ Lp

a(Ω) ∩ Lq
b(Ω). By introducing the norm

‖u‖V := ‖u‖∗ + ‖u‖Lp
a

+ ‖u‖Lq
b

=
(∫

Ω

|∇Hn u|2 + R(ξ )|u|2 dξ

) 1
2

+
(∫

Ω

a
(|ξ |Hn

)|u|p dξ

) 1
p

+
(∫

Ω

b
(|ξ |Hn

)|u|q dξ

) 1
q

on V , it is converted to a reflexive Banach space. Note that

K =
{

u ∈ V :
∂u
∂n

= 0 on ∂Ω and u is a radially increasing function
}

is a convex closed subset and we define the functional I = ψK – ϕ which is the Euler–
Lagrange functional restricted to K . It follows from the MPG theorem and the PS com-
pactness condition in Lemma 2.3 that the functional I has a critical point u, also it is guar-
anteed that I(u) > 0. Lemma 2.4 implies that there exists v ∈ Dom(ψ) satisfying the linear
equation DψK (v) = Dϕ(u). Setting C(ξ ) := 1 – a(|ξ |Hn )u(ξ )p–1 we have –�Hn u + C(ξ ) u = 0
in Ω . We show u > 0 in Ω . Otherwise, by applying the strong maximum principle, we
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deduce u is identically zero in Ω . On the other hand u is a radially increasing function.
This a contradiction and so u must be a nontrivial nonnegative solution of (1.1). So the
conditions of Corollary 2.1 hold and the proof is completed. �

Remark 2.1 Corollary 2.1 implies problem (1.1) has at least one nontrivial radially in-
creasing solution.
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