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Abstract
This paper deals with the implementation of the spectral discretization of the
vorticity–velocity–pressure formulation of the nonstationary Stokes problem. We use
the implicit Euler scheme for the discretization in time. We propose a global method
for the resolution of the linear system resulting from the discrete problem. This
method is implemented, and some numerical results are presented which confirm
the good convergence for the three unknowns.
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1 Introduction
The low velocity flow of an incompressible viscous fluid can be modeled by the nonsta-
tionary Stokes equations. Such problem is typically provided with a Dirichlet boundary
condition on the velocity [1–3]. In this paper, we deal with this problem in two- or three-
dimensional bounded domain using nonstandard boundary conditions. In dimension 2,
the problem is supplied with boundary conditions on the normal component of the veloc-
ity and the Dirichlet condition on the vorticity (since it is a scalar). However, in dimension
3, it is supplied with boundary conditions on the normal component of the velocity and on
the tangential components of the vorticity vector field. This permits us to prove that the
above problem is equivalent to a time-dependent variational formulation with unknown
vorticity, velocity, and pressure [4–7]. For the discretization of this problem, we combined
the implicit Euler’s scheme in time and the spectral method in space. One can see [8] for
the analysis of this discretization in the case of the stationary Stokes problem.

In [9], the Generalized Minimal Residual method (GMRES) [10] is used to solve the sta-
tionary Stokes problem. However, this method is not easy to implement since the matrix is
not symmetric and needs a huge number of iterations to converge. In [11], a direct method
was proposed permitting to simplify and to improve the resolution.

For the nonstationary case, which is the subject of this paper, we will use the global
resolution based on the good results established in [11]. The discretization in time by the
implicit Euler method permits us to stabilize the discrete problem. The resulting global
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matrix is now symmetric and positive definite, making possible the use of the gradient
conjugate method. As a result, we obtained high accuracy with an optimized number of
iterations. Some numerical results are presented to show the time and space convergence.

The paper is organized as follows:
• In Sect. 2 the continuous problem and some regularity results are presented.
• Sect. 3 deals with the discrete problem and error estimates.
• The nonhomogeneous case is handled in Sect. 4.
• The implementation details of the discrete problem are developed in Sect. 5.
• Sect. 6 is dedicated to describe thoroughly the numerical results.

2 The continuous problem
Let Ω be a bounded simply connected domain ofRd (d = 2 or d = 3), and Γ be its boundary
that we suppose connected and Lipschitz; x = (x, y) in d = 2 or x = (x, y, z) in d = 3 is the
generic point in Ω . We introduce [0, T] an interval of R where T is a positive constant and
n is the unit outward vector to Ω on Γ . The nonstationary Stokes problem is presented
as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t (x, t) – ν�u(x, t) + ∇p(x, t) = f(x, t) in Ω × [0, T],

div u(x, t) = 0 in Ω × [0, T],

u(x, t) · n(x) = 0 on Γ × [0, T],

ζ (curl u)(x, t) = 0 on Γ × [0, T],

u(x, 0) = u0 in Ω ,

(1)

where f is the data function and ν is the positive constant viscosity. The unknowns are the
velocity u and pressure p. The boundary operator ζ is defined according to the dimension
as follows:

• In dimension 2 (d = 2), ζ represents the trace operator on the boundary Γ .
• In dimension 3 (d = 3), if the vector field w = (wx, wy, wz), then ζ (w) = curl w × n on

the boundary Γ .
Using the formula

–�w = curl(curl w) – ∇(div w),

and the vorticity τ = curl u, we prove that (1) is equivalent to the following system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t (x, t) + ν curl τ (x, t) + ∇p(x, t) = f(x, t) in Ω × [0, T],

div u(x, t) = 0 in Ω × [0, T],

τ (x, t) = curl u(x, t) in Ω × [0, T],

u(x, t) · n(x) = 0 on Γ × [0, T],

ζ (τ )(x, t) = 0 on Γ × [0, T],

u(x, 0) = u0 in Ω .

(2)

We suppose that the initial velocity and vorticity satisfy

div u0 = 0 and τ (x, 0) = τ0 = curl u0 in Ω . (3)
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We need to introduce the following Sobolev spaces:

W m,p(Ω) =
{
ϕ ∈ Lp(Ω) : ∂αϕ ∈ Lp(Ω),∀|α| ≤ m

}

associated with the following norm and seminorm:

‖ϕ‖m,p,Ω =
( ∑

|α|≤m

∫

Ω

∣
∣∂αϕ(x)

∣
∣p

) 1
p

and |ϕ|m,p,Ω =
( ∑

|α|=m

∫

Ω

∣
∣∂αϕ(x)

∣
∣p

) 1
p

.

Also Hm(Ω) = W m,2(Ω) is a Hilbert space provided with the scalar product

(ϕ,ψ)m,Ω =
( ∑

|α|≤m

(
∂αϕ, ∂αψ

)2
) 1

2
,

where (·, ·) is the L2(Ω) scalar product. We denote by L2
0(Ω) the space of functions in L2(Ω)

which have a null integral on Ω , and D(Ω) the space of infinitely many times differentiable
functions with a compact support in Ω . Then we introduce the space H(div,Ω) as

H(div,Ω) =
{
ϕ ∈ (

L2(Ω)
)d : div ϕ ∈ L2(Ω)

}

with the norm

‖ϕ‖H(div,Ω) =
(‖ϕ‖2

L2(Ω)d + ‖div ϕ‖2
L2(Ω)

) 1
2

and

H0(div,Ω) =
{
ϕ ∈ H(div,Ω) : ϕ · n = 0 on ∂Ω

}
.

In the same way, we introduce the space H(curl,Ω) by

H(curl,Ω) =
{
ϕ ∈ L2(Ω)

d(d–1)
2 : curlϕ ∈ L2(Ω)d}

with the norm

‖ϕ‖H(curl,Ω) =
(‖ϕ‖2

L2(Ω)
d(d–1)

2
+ ‖curlϕ‖2

L2(Ω)d
) 1

2

and

H0(curl,Ω) =
{
ϕ ∈ H(curl,Ω) : ϕ × n = 0 on ∂Ω

}
.

Remark 1 Notice that the spaces H(curl,Ω) and H0(curl,Ω) coincide with the spaces
H1(Ω) and H1

0 (Ω) in dimension d = 2.

Now we introduce the following spaces to deal with time issues. Let B be a separable
Banach space. We define Cm(0, T ; B) as the set of Cm-class time functions with values in B.



Abdelwahed et al. Boundary Value Problems         (2020) 2020:94 Page 4 of 20

Then Cm(0, T ; B) is a Banach space with the norm

‖ϕ‖Cm(0,T ;B) = sup
0≤t≤T

m∑

k=0

∥
∥∂k

t ϕ
∥
∥

B,

where ∂k
t ϕ is the partial derivative of order k in time of function ϕ. Consider also the

spaces

Lp(0, T ; B) =
{

ϕ : ϕ measurable on ]0, T[ such that
∫ T

0

∥
∥ϕ(t, ·)∥∥p

B dt < ∞
}

and

Hs(0, T ; B) =
{
ϕ ∈ L2(0, T ; B) : ∂mϕ ∈ L2(0, T ; B), m ≤ s

}
.

Then Lp(0, T ; B) is a Banach space equipped with the norm

‖ϕ‖Lp(0,T ;B) =

⎧
⎨

⎩

(
∫ T

0 ‖ϕ(t, ·)‖p
B dt)

1
p for 1 ≤ p < +∞,

sup0≤t≤T ‖ϕ(t, ·)‖B for p = +∞,

and Hs(0, T ; B) is a Hilbert space with the scalar product

(ϕ,ψ)Hs(0,T ;B) =

(

(ϕ,ψ)2
L2(0,T ;B) +

s∑

m=0

(
∂mϕ, ∂mψ

)2
L2(0,T ;B)

) 1
2

.

If the data f ∈ L2(0, T ; (H0(div,Ω))′), where (H0(div,Ω))′ is the dual space of H0(div,Ω)
(see [12] for some properties of (H0(div,Ω))′), then we show, using the density of (D(Ω))d

in H0(div,Ω) and the density of D(Ω)
d(d–1)

2 in H0(curl,Ω) (see [2, Chap. I, Sect. 2]), that
problem (2) is equivalent to the following variational formulation:

Find (τ , u, p) ∈ L2(0, T ; H0(curl,Ω)) × L2(0, T ; H0(div,Ω)) × L2(0, T ; L2
0(Ω))

⎧
⎪⎪⎨

⎪⎪⎩

∀v ∈ H0(div,Ω), ( ∂u
∂t , v) + a(τ , u; v) + b(v, p) =≺ f , v 
,

∀q ∈ L2
0(Ω), b(u, q) = 0,

∀ϑ ∈ H0(curl,Ω), c(τ , u;ϑ) = 0,

(4)

where ≺ ·, · 
 is the duality product between (H0(div,Ω))′ and H0(div,Ω). The bilinear
forms a(·, ·; ·), b(·, ·) and c(·, ·; ·) are defined as follows:

a(τ , u; v) = ν

∫

Ω

curl(τ )(x, t) · v(x) dx, b(u, q) = –
∫

Ω

div u(x, t)q(x) dx and

c(τ , u;ϑ) =
∫

Ω

τ (x, t) · ϑ(x) dx –
∫

Ω

u(x, t) · curlϑ(x) dx.

To prove the existence and uniqueness of the solution of problem (4), we need to define
the kernel of the bilinear form b(·, ·):

V =
{
ϕ ∈ H0(div,Ω) : ∀q ∈ L2

0(Ω), b(ϕ, q) = 0
}

,

which coincides with the space of divergence-free functions in H0(div,Ω).
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We also introduce the kernel of the bilinear form c(·, ·; ·):

U =
{

(ϑ ,ϕ) ∈ H0(curl,Ω) × V : ∀ψ ∈ H0(curl,Ω), c(ϑ ,ϕ;ψ) = 0
}

=
{

(ϑ ,ϕ) ∈ H0(curl,Ω) × V : ϕ = curlϑ
}

.

Then (τ , u) is a solution of the following reduced problem:
Find (τ , u) ∈ L2(0, T ; U) such that

∀v ∈ V ,
(

∂u
∂t

, v
)

+ a(τ , u; v) =≺ f , v 
 . (5)

We refer to [9, Lemma 2.3], [3, Chap. III, Theorem 1.1] and ([8, Proposition 1] regarding
the arguments of the demonstration of the following proposition.

Proposition 1 For any data function f ∈ L2(0, T ; (H0(div,Ω))′), and u0 ∈ L2(Ω)d which
satisfies condition (3), problem (5) has a unique solution (τ , u) ∈ L2(0, T ; U) satisfying

‖τ‖2

L∞(0,t;L2(Ω)
d(d–1)

2 )
+ ‖u‖2

L∞(0,t;L2(Ω)d)

≤ c
(‖τ0‖2

L2(Ω)
d(d–1)

2
+ ‖u0‖2

L2(Ω)d + ‖f‖2
L2(0,t;(H0(div,Ω))′)

)
,

where c is a positive constant that depends only on Ω and T .

We recall the following inf–sup condition on bilinear form b(·, ·) (see [2, Chap. I,
Lemma 4.1]).

There exists a constant β > 0 such that

∀q ∈ L2
0(Ω), sup

ϕ∈H0(div,Ω)

b(ϕ, q)
‖ϕ‖H(div,Ω)

≥ β‖q‖L2(Ω). (6)

Using Proposition 1 and (6), we obtain the proof of the following theorem (see [8, Sect. 1]):

Theorem 1 For a function f ∈ L2(0, T ; (H0(div,Ω))′), and u0 ∈ L2(Ω)d which satis-
fies condition (3), problem (4) has a unique solution (τ , u, p) ∈ L2(0, T ; H0(curl,Ω)) ×
L2(0, T ; H0(div,Ω)) × L2(0, T ; L2

0(Ω)). This solution satisfies

‖τ‖2

L∞(0,t;L2(Ω)
d(d–1)

2 )
+ ‖u‖2

L∞(0,t;L2(Ω)d) + ‖p‖2
L2(0,t;L2

0(Ω))

≤ c
(‖τ0‖2

L2(Ω)
d(d–1)

2
+ ‖u0‖2

L2(Ω)d + ‖f‖2
L2(0,t;(H0(div,Ω))′)

)
, (7)

where c is a positive constant that depends on Ω and T .

From [13, Sect. 2], [14], and [15], we derive the following regularity result.

Theorem 2 For a data function f belonging to L2(0, T ; Hr–1(Ω)d), the solution (τ , u, p) of
problem (4) belongs to L2(0, T ; Hr(Ω)

d(d–1)
2 ) × L2(0, T ; Hr(Ω)d) × L2(0, T ; Hr(Ω)) for any

r > 0 such that:
(i) r ≤ 1

2 in the general case,
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(ii) r ≤ 1 when Ω is convex,
(iii) r < π

α
in dimension d = 2 when Ω is a polygon with largest angle equal to α.

3 Discrete problems and error estimates
3.1 The time discrete problem
In this section, we start by the discretization in time of problem (4) using implicit Euler
method. We propose a partition of the interval [0, T] into subintervals [tk–1, tk], for 1 ≤
k ≤ K , where K is a positive integer, and where

0 = t0 < t1 < · · · < tK = T .

Let hk = tk – tk–1, h = (h1, h2, . . . , hK ) and |h| = max1≤k≤K hk .
For any function f ∈ L2(0, T ; (H0(div,Ω))′) and u0 ∈ H0(div,Ω) satisfying condition (3),

we are considering the following scheme:
For all k, 1 ≤ k ≤ K , find (τ k)0≤k≤K ∈ (H0(curl,Ω))K+1, (uk)0≤k≤K ∈ (H0(div,Ω))K+1 and

(pk)1≤k≤K ∈ (L2
0(Ω))K such that

u0 = u0 and τ 0 = curl u0 in Ω , (8)
⎧
⎪⎪⎨

⎪⎪⎩

∀v ∈ H0(div,Ω), (uk , v) + hka(τ k , uk ; v) + hkb(v, pk) = (uk–1, v) + hk ≺ fk , v 
,

∀q ∈ L2
0(Ω), b(uk , q) = 0,

∀ϑ ∈ H0(curl,Ω), c(τ k , uk ;ϑ) = 0,

(9)

where fk = f(·, tk).
For any k, 1 ≤ k ≤ K , let

â
(
τ k , uk ; v

)
=

(
uk , v

)
+ hka

(
τ k , uk ; v

)
and L(v) =

(
uk–1, v

)
+ hk ≺ fk , v 
 .

The functional L is linear and continuous on V . Thus if (τ k , uk , pk) is the solution of prob-
lem (9) then (τ k , uk) belongs to U and is the solution of the following reduced problem:

∀v ∈ V , â
(
τ k , uk ; v

)
= L(v). (10)

Based on the property of the bilinear form â(·, ·, ·), proved in [8, Sect. 2], we state the
following proposition.

Proposition 2 Suppose that the data function f ∈ L2(0, t; H0(div,Ω)′) and that the initial
velocity u0 ∈ H0(div,Ω) satisfies condition (3). Then, for any k, 1 ≤ k ≤ K , problem (8), (10)
has a unique solution (τ k , uk) in U such that

∥
∥uk∥∥2

L2(Ω)d ≤ c

(

‖u0‖2
L2(Ω)d +

k∑

j=1

hj
∥
∥f j∥∥2

(H0(div,Ω))′

)

, (11)

where c is a positive constant independent of k.

Then, according to the inf–sup condition (6), we can state the following theorem (see
[8, Sect. 2] for its proof ).
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Theorem 3 Suppose that the data function f ∈ L2(0, t; H0(div,Ω)′) and that the initial
velocity u0 ∈ H0(div,Ω) satisfies condition (3). Then, for any k, 1 ≤ k ≤ K , problem (8), (9)
has a unique solution (τ k , uk , pk) in H0(curl,Ω) × H0(div,Ω) × L2(Ω).

3.2 The spectral discrete problem
Hereinafter, we assume that the domain Ω is a square in dimension d = 2 or a cube in
dimension d = 3. We adopt the Nédélec’s finite element method analog for the spectral
discretization [16, Sect. 2].

To define the discrete spaces, we introduce Pn,m(Ω) as the space of polynomials with
degree ≤ n with respect to x and ≤ m with respect to y, and Pn,m,p(Ω) as the space of
polynomials with degree ≤ n with respect to x, ≤ m with respect to y, and ≤ p with respect
to z. When n = m = p, these spaces are equal to Pn(Ω).

Let N be an integer ≥ 2. The space DN which approximates H0(div,Ω) is defined by

DN = H0(div,Ω) ∩
⎧
⎨

⎩

PN ,N–1(Ω) × PN–1,N (Ω) if d = 2,

PN ,N–1,N–1(Ω) × PN–1,N ,N–1(Ω) × PN–1,N–1,N (Ω) if d = 3.
(12)

The space CN approximating H0(curl,Ω) depends on the dimension (see Remark 1) and
is defined by

CN =

⎧
⎨

⎩

H1
0 (Ω) ∩ PN (Ω) if d = 2,

H0(curl,Ω) ∩ (PN–1,N ,N (Ω) × PN ,N–1,N (Ω) × PN ,N ,N–1(Ω)) if d = 3.
(13)

Finally, we consider the space MN for the approximation of L2
0(Ω) given by

MN = L2
0(Ω) ∩ PN–1(Ω). (14)

If ξ0 = –1 and ξN = 1, we consider the nodes ξi, 1 ≤ i ≤ N – 1, and the set of N + 1 weights
ρi, 0 ≤ i ≤ N , of the Gauss–Lobatto quadrature formula. We denote Pn(–1, 1) the space of
restrictions to [–1, 1] of polynomials with degree ≤ n, and then

∀Φ ∈ P2N–1(–1, 1),
∫ 1

–1
Φ(ζ ) dζ =

N∑

j=0

Φ(ξj)ρj. (15)

We also recall a property from [17, (13.20)], which is useful in what follows:

∀ϕN ∈ PN (–1, 1), ‖ϕN‖2
L2(–1,1) ≤

N∑

j=0

ϕ2
N (ξj)ρj ≤ 3‖ϕN‖2

L2(–1,1). (16)

According to (16), we define the discrete product on PN (Ω), for two continuous func-
tions u and v by

(u, v)N =

⎧
⎨

⎩

∑N
i=0

∑N
j=0 u(ξi, ξj)v(ξi, ξj)ρiρj if d = 2,

∑N
i=0

∑N
j=0

∑N
k=0 u(ξi, ξj, ξk)v(ξi, ξj, ξk)ρiρjρk if d = 3.

(17)
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Finally, let IN denote the Lagrange interpolation operator on the nodes (ξi, ξj), 0 ≤ i, j ≤ N ,
in dimension d = 2, and on the nodes (ξi, ξj, ξk), 0 ≤ i, j, k ≤ N , in dimension d = 3, with
values in PN (Ω).

Henceforth, we suppose that the data f is continuous on Ω × [0, T]. The spectral discrete
problem is constructed from the time semidiscrete problem (8), (9) using the Galerkin
method combined with numerical integration. It reads as follows:

If u0
N = IN (u0), knowing uk–1

N , we seek (τ k
N , uk

N , pk
N ) in CN ×DN ×MN such that for any

k, 1 ≤ k ≤ K ,

∀vN ∈DN ,
(
uk

N , vN
)

N + hkaN
(
τ k

N , uk
N ; vN

)
+ hkbN

(
vN , pk

N
)

=
(
uk–1

N , vN
)

N + hk
(
IN

(
fk), vN

)

N ,

∀qN ∈MN , bN
(
uk

N , qN
)

= 0,

∀ϑN ∈CN , cN
(
τ k

N , uk
N ;ϑN

)
= 0,

(18)

where the bilinear forms aN (·, ·; ·), bN (·, ·), and cN (·, ·; ·) are defined by

aN
(
τ k

N , uk
N ; vN

)
= ν

(
curl τ k

N , vN
)

N , bN (vN , qN ) = –(div vN , qN )N ,

cN
(
τ k

N , uk
N ;ϕN

)
=

(
τ k

N ,ϕN
)

N –
(
uk

N , curlϕN
)

N .
(19)

Given that

âN
(
τ k

N , uk
N ; vN

)
=

(
uk

N , vN
)

N + hkaN
(
τ k

N , uk
N ; vN

)
and

LN (vN ) =
(
uk–1

N , vN
)

N + hk
(
IN

(
fk), vN

)

N ,

using (16) combined with Cauchy–Schwarz inequality, we prove that the bilinear forms
âN (·, ·; ·), bN (·, ·), and cN (·, ·; ·) are continuous on (CN ×DN ) ×DN , DN ×MN , and (CN ×
DN ) ×CN , respectively, with norms bounded independently of N . Moreover, as a conse-
quence of the exactness property (15), the forms b(·, ·) and bN (·, ·) coincide on DN ×MN .
We remark also that the functional LN is linear and continuous on DN .

Let

VN =
{

vN ∈DN : ∀qN ∈ MN , bN (vN , qN ) = 0
}

be the kernel of the bilinear form bN (·, ·). It corresponds to the space of divergence-free
polynomials in DN .

We consider also

UN =
{

(ϑN , vN ) ∈CN × VN : ∀ϕN ∈CN , cN (ϑN , vN ;ϕN ) = 0
}

,

the kernel of the bilinear form cN (·, ·; ·).
We consider now the following reduced discrete problem:
If u0

N = IN (u0), knowing uk–1, we seek (τ k
N , uk

N ) in UN such that for all k, 1 ≤ k ≤ K ,

∀vN ∈ VN , âN
(
τ k

N , uk
N ; vN

)
= LN (vN ). (20)
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The well-posedness of the reduced discrete problem (20) is based on the positivity condi-
tion and the inf–sup condition satisfied by the bilinear form âN (·, ·; ·) proved in [8, Lemmas
1 and 2] (see [18, Theorem 2.1] and [19] for similar results in finite element methods). We
can presently write the following proposition.

Proposition 3 At each time step and knowing uk–1
N , problem (20) admits a unique solution

(τ k
N , uk

N ) with values in the space UN . The discrete velocity satisfies, for any k, 1 ≤ k ≤ K ,

∥
∥uk

N
∥
∥2

L2(Ω)d ≤ c

(
∥
∥u0

N
∥
∥2

L2(Ω)d +
k∑

j=1

hj
∥
∥IN

(
f j)∥∥2

L2(Ω)d

)

,

where c is a positive constant independent of N and k.

We recall the inf–sup condition on the bilinear form bN (·, ·). We refer to [20, Lemma 3.1]
for details of its proof.

Lemma 1 There exists a positive constant β independent of N such that the bilinear form
bN (·, ·) satisfies

∀qN ∈ MN , sup
vN ∈DN

bN (vN , qN )
‖vN‖H(div,Ω)

≥ β‖qN‖L2(Ω).

Using above results, we obtain the following theorem.

Theorem 4 Suppose function f is continuous on Ω̄ × [0, T] and u0 belongs to H0(div,Ω)
that satisfies condition (3). For any k, 1 ≤ k ≤ K , problem (18) has a unique solution
(τ k

N , uk
N , pk

N ) in CN ×DN ×MN .

3.3 The error estimate
For the estimation of the error between the solution (τ k , uk , pk) of problem (8)–(9) and the
solution (τ k

N , uk
N , pk

N ) of problem (18), we need to define the following space for r ≥ 0:

Hr(curl,Ω) =
{
ϕ ∈ Hr(Ω)

d(d–1)
2 : curlϕ ∈ Hr(Ω)d}.

We notice that in dimension d = 2 this space coincides with Hr+1(Ω).
We have the following error estimate (see [8, Sect. 5] for the proof ).

Theorem 5 Suppose that function f ∈ L2(0, T ; Hσ (Ω)d) for a real number σ > d
2 and u0 ∈

Hμ(Ω)d for a real number μ > d
2 . For any k, 1 ≤ k ≤ K , if the solution (τ k , uk , pk) of problem

(8)–(9) belongs to Hr(curl,Ω) × Hr(Ω)d × Hr(Ω) for a real number r ≥ d – 1, then the
following error estimate holds between this solution and the solution (τ k

N , uk
N , pk

N ) of problem
(18):

∥
∥τ k – τ k

N
∥
∥

H(curl,Ω) +
∥
∥uk – uk

N
∥
∥

L2Ω)d +
∥
∥pk – pk

N
∥
∥

L2(Ω)

≤ cN–μ‖u0‖Hμ(Ω)d + c|h|(N–r(∥∥τ k∥∥
Hr (curl,Ω) +

∥
∥uk∥∥

Hr (Ω)d

+
∥
∥pk∥∥

Hr (Ω)

)
+ N–σ‖f‖L2(0,T ;Hσ (Ω)d)

)
. (21)
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Estimate (21) is optimal for the three unknowns, while the estimate of the pressure is
not obtained for most spectral discretizations of the Stokes problem.

Corollary 1 Assume that the data f belongs to L2(0, T ; Hσ (Ω)d) for a real number σ >
d
2 and u0 ∈ Hμ(Ω)d for a real number μ > d

2 . Then for any k, 1 ≤ k ≤ K , the following
error estimate holds between the solution (τ k , uk , pk) of problem (8)–(9) and the solution
(τ k

N , uk
N , pk

N ) of problem (18):

∥
∥τ k – τ k

N
∥
∥

H(curl,Ω) +
∥
∥uk – uk

N
∥
∥

L2Ω)d +
∥
∥pk – pk

N
∥
∥

L2(Ω)

≤ c|h|N– min{σ ,μ,σΩ }(‖f‖L2(0,T ;Hσ (Ω)d) + ‖u0‖Hμ(Ω)d
)
,

where σΩ is a real number ≥ 1 depending only on Ω .

4 The nonhomogeneous boundary conditions
In this section, we will focus on the nonhomogeneous boundary condition on the velocity
and generalize the results of the previous sections to the following problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t + ν curl τ + grad p = f in Ω × [0, T],

div u = 0 in Ω × [0, T],

τ = curl u in Ω × [0, T],

u · n = g on Γ × [0, T],

ζ (τ ) = 0 on Γ × [0, T],

u(x, 0) = u0 in Ω ,

(22)

where the function g belongs to L2(0, T ; H– 1
2 (Γ )) and satisfies the compatibility condition

(here 〈·, ·〉Γ obviously denotes the duality pairing between H– 1
2 (Γ ) and H 1

2 (Γ )). For each
0 ≤ t ≤ T ,

〈
g(·, t), 1

〉

Γ
= 0. (23)

We consider the following variational problem:
Find (τ , u, p) in L2(0, T ; H0(curl,Ω)) × L2(0, T ; H(div,Ω)) × L2(0, T ; L2

0(Ω)) such that

u · n = g on Γ × [0, T] (24)

and

∀v ∈ H0(div,Ω),
(

∂u
∂t

, v
)

+ a(τ , u; v) + b(v, p) =≺ f , v 
,

∀q ∈ L2
0(Ω), b(u, q) = 0,

∀ϑ ∈ H0(curl,Ω), c(τ , u;ϑ) = 0.

(25)

Thanks to the arguments given in [8, Sect. 2], problem (22) is equivalent to (24)–(25). To
prove the well-posedness of problem (24)–(25), we need a lifting of the boundary condi-
tion (24) given in the following lemma (see [2, Chap. I] for the proof ).



Abdelwahed et al. Boundary Value Problems         (2020) 2020:94 Page 11 of 20

Lemma 2 Assume g is in L2(0, T ; H– 1
2 (Γ )) and satisfies (23). Then there exists a divergence-

free and curl-free function ub in L2(0, T ; L2(Ω)d) such that ub · n is equal to g on Γ × [0, T].
Moreover, this function satisfies

‖ub‖L2(0,T ;H(div,Ω)) ≤ c‖g‖
L2(0,T ;H– 1

2 (Γ ))
, (26)

where c is a positive constant.

We obtain the following result.

Theorem 6 We assume that the data f is in the dual space of L2(0, T ; H0(div,Ω)) and g is
in L2(0, T ; H– 1

2 (Γ )) and satisfies (23). The problem (24)–(25) has a unique solution (τ , u, p)
in L2(0, T ; H0(curl,Ω)) × L2(0, T ; H(div,Ω)) × L2(0, T ; L2

0(Ω)). Moreover, this solution sat-
isfies

‖τ‖2

L∞(0,t;L2(Ω)
d(d–1)

2 )
+ ‖u‖2

L∞(0,t;L2(Ω)d) + ‖p‖2
L2(0,t;L2

0(Ω))

≤ c
(‖u0‖2

L2(Ω)d + ‖f‖2
L2(0,t;(H0(div,Ω))′) + ‖g‖2

L2(0,t;H– 1
2 (Γ ))

)
, (27)

where c is a positive constant.

Proof Let uh = u – ub, where ub is the function introduced in Lemma 2. Then (τ , u, p) is a
solution of problem (24)–(25) if and only if (τ , uh, p) is a solution of problem (4). Theorem 1
provides the existence and uniqueness of (τ , u, p). Combining (7) and (26), we derive the
estimate (27). �

The time nonhomogeneous semidiscrete problem is written as follows:
For any function f ∈ L2(0, T ; (H0(div,Ω))′) and u0 ∈ H0(div,Ω) satisfying condition (3),

find (τ k)0≤k≤K ∈ (H0(curl,Ω))K+1, (uk)0≤k≤K ∈ (H(div,Ω))K+1 and (pk)1≤k≤K ∈ (L2
0(Ω))K

such that

u0 = u0 and τ 0 = curl u0 in Ω ,

for all k, 1 ≤ k ≤ K ,

uk · n = gk on Γ (28)

and
⎧
⎪⎪⎨

⎪⎪⎩

∀v ∈ H0(div,Ω), (uk , v) + hka(τ k , uk ; v) + hkb(v, pk) = (uk–1, v) + hk ≺ fk , v 
,

∀q ∈ L2
0(Ω), b(uk , q) = 0,

∀ϑ ∈ H0(curl,Ω), c(τ k , uk ;ϑ) = 0,

(29)

where fk = f(·, tk) and gk = g(·, tk). Let uk
b = ub(·, tk) be such that uk

b · n is equal to gk on Γ

and

∥
∥uk

b
∥
∥

H(div,Ω) ≤ c
∥
∥gk∥∥

H– 1
2 (Γ )

. (30)
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Theorem 7 Assume that for any k, 1 ≤ k ≤ K , fk ∈ (H0(div,Ω))′, gk ∈ H– 1
2 (Γ ) and that

the initial velocity u0 ∈ H0(div,Ω) satisfies condition (3). Then problem (28)–(29) has a
unique solution (τ k , uk , pk) in H0(curl,Ω) × H(div,Ω) × L2(Ω) such that

∥
∥uk∥∥2

L2(Ω)d ≤ c

(

‖u0‖2
L2(Ω)d +

k∑

j=1

hj
∥
∥f j∥∥2

(H0(div,Ω))′ +
∥
∥gj∥∥2

H– 1
2 (Γ )

)

, (31)

where c is a positive constant independent of k.

Proof For any k, 1 ≤ k ≤ K , if uk
h = uk – uk

b, then (τ k , uk , pk) is a solution of problem (28)–
(29) if and only if (τ k , uk

h, pk) is a solution of problem (8)–(9). Theorem 3 permits us to
deduce the well-posedness of problem (28)–(29), and the estimate (31) is derived by com-
bining (11) and (30). �

Since we handle the nonhomogeneous boundary condition on the velocity, we define
the following new discrete space for the discrete velocity:

DN =

⎧
⎨

⎩

PN ,N–1(Ω) × PN–1,N (Ω) if d = 2,

PN ,N–1,N–1(Ω) × PN–1,N ,N–1(Ω) × PN–1,N–1,N (Ω) if d = 3.

Suppose that for any k, 1 ≤ k ≤ K , the function gk ∈ L2(Γ ) and gk
N is the approximation of

gk defined as follows: On each edge (d = 2) or face (d = 3) Γr of Ω , 1 ≤ r ≤ 2d, gk
N |Γr is equal

to the image of gk
|Γr by the orthogonal projection operator from L2(Γr) onto PN–1(Γr). Thus

we write the following spectral discrete problem:
If u0

N = IN (u0), knowing uk–1
N , find (τ k

N , uk
N , pk

N ) in CN × DN × MN such that for any
k, 1 ≤ k ≤ K ,

uk
N · n = gk

N on Γ , (32)

and

∀vN ∈DN ,
(
uk

N , vN
)

N + hkaN
(
τ k

N , uk
N ; vN

)
+ hkbN

(
vN , pk

N
)

=
(
uk–1

N , vN
)

N + hk
(
fk , vN

)

N ,

∀q ∈MN , bN
(
uk

N , qN
)

= 0,

∀ϑN ∈CN , cN
(
τ k

N , uk
N ;ϑN

)
= 0.

(33)

Theorem 8 If for any k, 1 ≤ k ≤ K , the data function fk is continuous on Ω and gk is in
L2(Γ ) satisfying (23), the problem (32)–(33) has a unique solution (τ k

N , uk
N , pk

N ) in CN ×
DN ×MN .

Proof Writing problem (32)–(33) as a square linear system, we deduce from Theorem 4
that the unique solution of this problem when the data fk and gk

N are zero is (0, 0, 0). This
yields the existence and uniqueness property. �

We derive the following error estimate from those proved in the homogeneous case (see
[8, Sect. 5]) using slight modifications.
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Theorem 9 If the assumptions of Theorem 5 hold and for any k, 1 ≤ k ≤ K , the data gk

satisfies condition (23) and is such that each gk
|Γr , 1 ≤ r ≤ 2d, belongs to Hτ (Γr) for a nonneg-

ative real number τ , then the following error estimate holds between the solution (τ k , uk , pk)
of problem (24)–(25) and the solution (τ k

N , uk
N , pk

N ) of problem (29)–(30):

∥
∥τ k – τ k

N
∥
∥

H(curl,Ω) +
∥
∥uk – uk

N
∥
∥

H(div,Ω) +
∥
∥pk – pk

N
∥
∥

L2(Ω)

≤ c

(

N–s(∥∥τ k∥∥
Hs(curl,Ω) +

∥
∥uk∥∥

Hs(Ω)d +
∥
∥pk∥∥

Hs(Ω)

)

+ N–σ
∥
∥fk∥∥

Hσ (Ω)d + N–τ– 1
2

2d∑

r=1

∥
∥gk∥∥

Hτ (Γr )

)

. (34)

Corollary 2 Assume that for any k, 1 ≤ k ≤ K , the data (fk , gk) belongs to Hσ (Ω)d ×
Hσ– 1

2 (Γ ) for a real number σ > d
2 and that condition (23) is satisfied. Then the following

error estimate holds between the solution (τ k , uk , pk) of problem (24)–(25) and the solution
(τ k

N , uk
N , pk

N ) of problem (29)–(30):

∥
∥τ k – τ k

N
∥
∥

H(curl,Ω) +
∥
∥uk – uk

N
∥
∥

H(div,Ω) +
∥
∥pk – pk

N
∥
∥

L2(Ω)

≤ cN– min{σ ,σΩ }(∥∥fk∥∥
Hσ (Ω)d +

∥
∥gk∥∥

Hσ– 1
2 (Γ )

)
, (35)

where the real number σΩ is same as in Corollary 1.

5 The implementation of the discrete problem
In this section, we propose a global method for the resolution of the discrete problem (18).
This method was used to solve the stationary Stokes problem for the same formulation (see
[11]). This new algorithm enhanced the performance of the previous resolution of Stokes
problem (2D and 3D bounded domain) (see [9]) and optimized the execution time. In the
following, we start by presenting the linear system. Afterwards, we describe the resolution
algorithm.

For the discrete problem (18), as a linear system, we have to choose a basis of the discrete
spaces CN , DN , and MN .

The Lagrange polynomials in PN (–1, 1) linked with the nodes ξj are denoted as ϕj, 0 ≤
j ≤ N . We define

ϕ∗
j (ζ ) = ϕj(ζ )

ξj – ξj∗

ζ – ξj∗
, j ∈ J∗, (36)

where J∗ is the set {0, . . . , N} \ {j∗} and j∗ is the integer part of N
2 . For any k, 1 ≤ k ≤ K , the

unknowns τ k
N , uk

N = (uk
Nx, uk

Ny), and a pseudopressure p̃k
N admit the expansions, in dimen-

sion d = 2 for simplicity,

τ k
N (x, y) =

N–1∑

i=1

N–1∑

j=1

τ k
ij ϕi(x)ϕj(y),

uk
Nx(x, y) =

N–1∑

i=1

∑

j∈J∗
uxk

ij ϕi(x)ϕ∗
j (y), uk

Ny(x, y) =
∑

i∈J∗

N–1∑

j=1

uyk
ij ϕ∗

i (x)ϕj(y),
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p̃N (x, y) =
∑

i∈J∗ ,j∈J∗ ,(i,j) �=(0,0)

pk
ijϕ

∗
i (x)ϕ∗

j (y).

The function p̃k
N vanishes in (–1, –1) but no longer belongs to L2

0(Ω); however, the real
pressure pk

N can easily be recovered in a postprocessing step, thanks to the formula

pk
N (x, y) = p̃k

N (x, y) –
1
2d

(
p̃k

N , 1
)

N . (37)

For any k, 1 ≤ k ≤ K , we denote by Φk , Uk , and Pk the vectors made of these coefficients.
Their respective dimensions are equal to d(d–1)

2 Nd–2(N – 1)2, dNd–1(N – 1), and Nd – 1.
Hereinafter, by supposing the viscosity ν = 1, problem (18) is equivalent to the following
square linear system:

If U0 = (U0
1 , U0

2 ), the components of the vectors U0
1 and U0

2 are respectively u1
0(ξi, ξj) and

u2
0(ξi, ξj) where u0 = (u1

0, u2
0), then for any k, 1 ≤ k ≤ K ,

⎛

⎜
⎝

Dk –Ak T 0
–Ak Ik BkT

0 Bk 0

⎞

⎟
⎠

⎛

⎜
⎝

Φk

Uk

Pk

⎞

⎟
⎠ =

⎛

⎜
⎝

0
Fk

0

⎞

⎟
⎠ , (38)

where AkT and BkT denote the transposed matrices of Ak and Bk , respectively.
Matrix Ak :
Matrix Ak is written as

Ak =

(
Ak

10
0Ak

2

)

.

For any k, 1 ≤ k ≤ K , curl(τ k
N ) = (∂yτ

k
N , –∂xτ

k
N ), and then the coefficients of the matrices Ak

1

and Ak
2 are deduced respectively from the two terms (∂yτ

k
N , uk

Nx)N and (∂xτ
k
N , uk

Ny)N . Thus,

(
ϕiϕ

′
j ,ϕrϕ

∗
s
)

N = α(j, s)δirρr ; 1 ≤ i, j, r ≤ N – 1; s ∈ J∗

and

(
ϕ′

iϕj,ϕ∗
r ϕs

)

N = α(i, r)δjsρs; 1 ≤ i, j, s ≤ N – 1; r ∈ J∗,

where

α(j, s) = ϕ′
j (ξs)ρs + (ξs – ξi∗ )ϕ′

j (ξi∗ )ϕ′
s(ξi∗ )ρi∗

and δij is the Kronecker symbol.
We notice that the matrices Ak

1 and Ak
2 are not square. They have Nd–2(N – 1)2 lines and

d(d–1)
2 Nd–2(N – 1)2 columns.
Matrix Bk :
For any k, 1 ≤ k ≤ K , matrix Bk is defined as

Bk =
[
Bk

1, Bk
2
]
.
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The coefficients of the matrices Bk
1 and Bk

2 are found respectively from the terms
(∂xuk

Nx, pk
N )N and (∂yuk

Ny, pk
N )N . Let then

(
ϕ′

iϕ
∗
j ,ϕ∗

r ϕ∗
s
)

N = α(i, r)β(j, s), 1 ≤ i ≤ N – 1; j, r, s ∈ J∗

and

(
ϕ∗

i ϕ′
j ,ϕ

∗
r ϕ∗

s
)

N = α(j, s)β(i, r), 1 ≤ j ≤ N – 1; i, r, s ∈ J∗,

where

β(r, s) = δrsρr + (ξr – ξi∗ )(ξs – ξi∗ )ϕ′
r(ξi∗ )ϕ′

s(ξi∗ )ρi∗ .

We also note that matrices Bk
1 and Bk

2 are not square, having Nd – 1 lines and dNd–1(N – 1)
columns.

Matrix Dk :
Matrix Dk is a diagonal matrix with d(d–1)

2 Nd–2(N –1)2 lines and columns. Its coefficients
are equal to

(ϕiϕj,ϕrϕs)N = δirδjsρrρs, 1 ≤ i, j, r, s ≤ N – 1. (39)

Matrix Ik :
Matrix Ik is written as

Ik =

(
Ik

1 0
0Ik

2

)

.

For any k, 1 ≤ k ≤ K , the coefficients of the matrices Ik
1 and Ik

2 are respectively equal to

δirρrβ(j, s), 1 ≤ i, r ≤ N – 1; j, s ∈ J∗

and

δjsρsβ(i, r), 1 ≤ j, s ≤ N – 1; i, r ∈ J∗.

Lastly, for any k, 1 ≤ k ≤ K , we denote

Fk =

⎛

⎜
⎝

Fk
1

Fk
2

0

⎞

⎟
⎠ .

The components of the two entries Fk
1 and Fk

2 are respectively (uk–1
Nx ,ϕrϕ

∗
s )N + hk(f k

1 ,
ϕrϕ

∗
s )N , 1 ≤ r ≤ N – 1; s ∈ I∗ and (uk–1

Ny ,ϕ∗
r ϕs)N + hk(f k

2 ,ϕ∗
r ϕs)N , 1 ≤ s ≤ N – 1; r ∈ I∗, where

the data function is f = (f1, f2).
We solve the linear system (38) using the gradient conjugate method preconditioned by

LU incomplete factorization.
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6 Experimental results
6.1 Two-dimensional experiments
In this section, at first, we focus on the time convergence. We consider the square Ω =
] – 1, 1[2. We look at a given solution obtained from the formulas u = curlψ and τ = curl u
in the two cases:

Case (i). Regular functions ψ and p, defined by

ψ(x, y) = t sin(πx) sin(πy), p(x, y) = e–txy. (40)

Case (ii). Less regular functions ψ and p, defined by

ψ(x, y) = t
(
1 – x2)3(1 – y2) 7

2 , p(x, y) = e–tx
(
1 – x2) 3

2
(
1 + y2)– 1

2 . (41)

The velocity is a Gaussian which is null for t = 0. We consider the spectral discrete param-
eter N = 30, T = 1 and the time steps h ∈ {0.1, 0.001, 0.0001}.

Figure 1 presents the curves of convergence for the three terms log‖τ – τ n
N‖H(curl,Ω)

(in red), log‖u – un
N‖H(div,Ω) (in blue), and log‖p – pn

N‖L2(Ω) (in green) as a function of
log(h). Figures 1(a) and 1(b) correspond respectively to the resolution for the continuous
solutions defined in (40) and (41). We notice that the time convergence order is almost
equal to 1.

Hereinafter, we consider h = 0.0001 and T = 1,
Figure 2 presents the spectral error curves on the vorticity, velocity and the pressure

(log(|error|) as a function of log(N) for N varying from 5 to 30).
In Fig. 2(a), the discrete solution is computed from (40). We obtain a very good (expo-

nential) convergence due to spectral discretization.
In Fig. 2(b), the discrete solution is calculated from (41). We get lower convergence due

to the irregularity of the solution.
We notice that the convergence of the pressure is of the same order as for the vorticity

and velocity.

Figure 1 The time error curves
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Figure 2 Error curves for the spectral discretization

Figure 3 The solution (τ ,ux ,uy ,p) for the data f defined in (42) and g = 0

Figure 3 corresponds from top to bottom and left to right to the discrete vorticity, the
two components of the discrete velocity, and the discrete pressure for the data

f = (fx, fy) =
(
tx2y, 0

)
, u0 = (0, xy), (42)

homogeneous boundary conditions g = 0 and N = 30.
Figure 4 corresponds from top to bottom and left to right to the discrete vorticity, the

two components of the discrete velocity, and the discrete pressure for the data f and u0

defined in (42), with g given by

g(x, –1) = –t
(
1 – x2) 3

2 , g(x, 1) = t
(
1 – x2) 3

2 , g(±1, y) = 0, (43)

and N = 30.
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Figure 4 The solution (τ ,ux ,uy ,p) for the data (f,g) defined in (42)–(43)

We mention that the discrete vorticity τN and the discrete pressure pN are roughly the
same in Figs. 3 and 4.

6.2 Three-dimensional experiments
We now work in the cube Ω = ] – 1, 1[3 with g = 0. We consider a less regular solution
constructed using on the formulas u = curlφ and τ = curl u with φ = (φx,φy,φz) and p
defined by

φx(x, y, z) = t
(
1 – y2)3(1 – z2) 7

2 , φy(x, y, z) = t
(
1 – x2) 7

2
(
1 – z2)3,

φz(x, y, z) = t
(
1 – x2)3(1 – y2) 7

2 , p(x, y, z) = e–t x(1 – x2) 3
2

(1 + y2) 1
2 (1 + z2) 1

2
.

(44)

In Fig. 5, we deal with the spectral convergence curves for the discrete solution com-
puted from (44). The error is for the vorticity, velocity and pressure (log(|error|) with re-
spect to log(N) for N varying from 5 to 18), when h = 0.0001. We notice that the conver-
gence slopes of the error are similar to those in Fig. 2.

7 Conclusion
This work concerns the numerical implementation of the implicit Euler scheme in time
and the spectral discretization in space of the nonstationary vorticity–velocity–pressure
formulation of the Stokes problem. We present clearly the details of the linear matrix sys-
tem and the algorithm of its resolution. Some numerical tests are presented which confirm
the optimality error estimates for the three unknowns (vorticity, velocity, and pressure).
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Figure 5 Error curves for the solution defined by
(44)

This estimation depends only on the regularity of the solution. Our forthcoming work con-
cerns the nonlinear nonstationary vorticity–velocity–pressure formulation of the Navier–
Stokes problem.
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