
Xin and Cheng Boundary Value Problems         (2020) 2020:89 
https://doi.org/10.1186/s13661-020-01388-3

R E S E A R C H Open Access

Positive periodic solution for prescribed
mean curvature generalized Liénard equation
with a singularity
Yun Xin1 and Zhibo Cheng2*

*Correspondence:
czbo@hpu.edu.cn
2School of Mathematics and
Information Science, Henan
Polytechnic University, Jiaozuo,
China
Full list of author information is
available at the end of the article

Abstract
The main purpose of this paper is to investigate the existence of a positive periodic
solution for a prescribed mean curvature generalized Liénard equation with a
singularity (weak and strong singularities of attractive type, or weak and strong
singularities of repulsive type). Our proof is based on an extension of Mawhin’s
continuation theorem.

MSC: 34B16; 34B18; 34C25

Keywords: Positive periodic solution; Prescribed mean curvature; Weak and strong;
Attractive and repulsive; Liénard equation

1 Introduction
In this paper, we consider the following p-Laplacian prescribed mean curvature Liénard
equation:

(
φp

(
u′(t)√

1 + (u′(t))2

))′
+ f

(
t, u(t)

)
u′(t) + g

(
u(t)

)
= e(t), (1.1)

where φ(s) = |s|p–2s, p is a positive constant, and p > 1, f : R × R → R is an L2-
Carathéodory function and f (t + T , ·) ≡ f (t, ·), g : (0, +∞) →R is the continuous function
and has a singularity at the origin, e ∈ Lσ (R) is T-periodic function and 1 ≤ σ < ∞, T is a
positive constant.

During the past 30 years, the problem of existence of positive periodic solutions to Lié-
nard equations with singularity was extensively studied by many researchers [1–9]. In [9],
Zhang discussed the existence of a positive periodic solution to equation (1.1), where

u′(t)√
1+(u′(t))2

= u′(t), p = 2, f (t, u) = f (u) and e(t) ≡ 0, g satisfies a semilinear condition and

has a strong singularity of repulsive type, i.e.,

lim
u→0+

g(u) = –∞ and lim
u→0+

∫ 1

u
g(ν) dν = +∞. (1.2)
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After that, Yu and Lu [7] improved the results of [9], showing in their Theorem 2.1 (see
[7]) that g may possess weak and strong singularities. Zhang and Yu’s proof was based on
coincidence degree theory.

Compared with Liénard equations, only a few works focus on prescribed mean curva-
ture Liénard equations, especially p-Laplacian prescribed mean curvature Liénard equa-
tions. As far as we know, prescribed mean curvature u′(t)√

1+(u′(t))2
of u(t) appears in different

geometry and physics problems [10–16]. Using coincidence degree theory, Feng [17] and
Lu [18] et al. investigated respectively the existence of a positive periodic solution for equa-
tion (1.1) without singularity and with a strong singularity of repulsive type, where p = 2,
f (t, u) = f (u), and g satisfying a semilinear condition.

Inspired by [7, 9, 17, 18], in this paper, we further consider the existence of a positive
periodic solution for equation (1.1) by means of an extension of Mawhin’s continuation
theorem due to Ge and Ren [19]. It is worth mentioning that conditions on f , g and the
work for estimating a priori bounds of positive periodic solutions for equation (1.1) are
more complex than in [7, 9, 17, 18]. Firstly, the friction term f (u(t))u′(t) in [7, 9, 17, 18]
satisfies

∫ T
0 f (u(t))u′(t) dt = 0, which is crucial to estimating a priori bounds of positive pe-

riodic solutions for these equations. However, the friction term of this paper, f (t, u(t))u′(t),
may not satisfy

∫ T
0 f (t, u(t))u′(t) dt = 0. Secondly, g of this paper possesses weak and strong

singularities of attractive type (or weak and strong singularities of repulsive type) at the
origin. Thirdly, g of this paper may satisfy sublinearity, semilinearity, or superlinearity
conditions at infinity. Therefore, we extend and improve the results in [7, 9, 17, 18].

2 Positive periodic solution for equation (1.1) when p > 1
In this section, we study the existence of a positive periodic solution to equation (1.1).
Since (φp( u′(t)√

1+(u′(t))2
))′ is a nonlinear term, coincidence degree theory does not apply di-

rectly. The traditional study method is to translate equation (1.1) into the following two-
dimensional system:

⎧⎨
⎩

u′
1(t) = φq(u2(t))√

1–φ2
q (u2(t))

,

u′
2(t) = –f (t, u1(t))u′

1(t) – g(u1(t)) + e(t),

where 1
p + 1

q = 1, for which coincidence degree theory can be applied. However, from the
first equation of the above system it is obvious that ‖u2‖ < 1, where ‖u2‖ := maxt∈R |u′(t)|.
Therefore, estimating an upper bound of u2(t) is very complicated; in order to get around
this difficulty, we find other methods to study equation (1.1). We first investigate the fol-
lowing second-order prescribed mean curvature equation:

(
φp

(
u′(t)√

1 + (u′(t))2

))′
= f̃

(
t, u(t), u′(t)

)
, (2.1)

where f̃ : [0, T] × R × R → R is a Carathéodory function. Applying the extension of
Mawhin’s continuous theorem due to Ge and Ren [19, Theorem 2.1], we get the following
conclusion.

Lemma 2.1 Assume Ω is an open bounded set in C1
T := {u ∈ C1(R,R) : u(t + T) ≡

u(t) and u′(t + T) ≡ u′(t),∀t ∈ R}. Suppose the following conditions hold:
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(i) For each λ ∈ (0, 1), the equation

(
φp

(
u′(t)√

1 + (u′(t))2

))′
= λf̃

(
t, u(t), u′(t)

)

has no solution on ∂Ω .
(ii) The equation

F(a) :=
1
T

∫ T

0
f̃ (t, a, 0) dt = 0

has no solution on ∂Ω ∩R.
(iii) The Brouwer degree

deg{F ,Ω ∩R, 0} �= 0.

Then equation (2.1) has at least one T-periodic solution on Ω̄ .

Proof First, operators M and Nλ are defined by

M : dom M ∩ X → Z, (Mu)(t) =
(

φp

(
u′(t)√

1 + (u′(t))2

))′
, t ∈R,

Nλ : X → Z, (Nλu)(t) = λf̃
(
t, u(t), u′(t)

)
.

Obviously, equation (2.1) can be converted into

Mu = Nλu, λ ∈ (0, 1).

By [20, Lemmas 3.1 and 3.2], we know that M is a quasilinear operator, Nλ is M-compact.
From assumption (i), one finds

Mu �= Nλu,λ ∈ (0, 1) and u ∈ ∂Ω ,

and assumptions (ii) and (iii) imply that deg{JQN ,Ω ∩ ker M, θ} is valid and

deg{JQN ,Ω ∩ ker M, θ} �= 0.

Therefore, applying the extension of Mawhin’s continuous theorem, equation (2.1) has at
least one T-periodic solution. �

In the following, applying Lemma 2.1, we prove the existence of a positive periodic so-
lution for equation (1.1) with a singularity of repulsive type.

Theorem 2.1 Assume that equation (1.2) holds. Furthermore, suppose the following con-
ditions hold:

(H1) There exists a positive constant γ such that inf(t,u)∈[0,T]×R |f (t, u)| ≥ γ > 0.
(H2) There exist two positive constants d1, d2 with d1 < d2 such that g(u) – e(t) < 0 for

(t, u) ∈ [0, T] × (0, d1) and g(u) – e(t) > 0 for (t, u) ∈ [0, T] × (d2, +∞).
Then equation (1.1) has at least one positive periodic solution.
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Proof We embed equation (1.1) into the following family of equations:

(
φp

(
u′(t)√

1 + (u′(t))2

))′
+ λf

(
t, u(t)

)
u′(t) + λg

(
u(t)

)
= λe(t), (2.2)

where λ ∈ (0, 1]. Firstly, we claim that there exist two points τ , ξ ∈ (0, T) such that

u(τ ) ≥ d1 and u(ξ ) ≤ d2. (2.3)

In fact, since
∫ T

0 u′(t) dt = 0, it is easy to verify that there exist two point t1, t2 ∈ (0, T) such
that

u′(t1) ≤ 0 and u′(t2) ≥ 0.

Therefore, we get

φp

(
u′(t1)√

1 + (u′(t1))2

)
≤ 0 and φp

(
u′(t2)√

1 + (u′(t2))2

)
≥ 0.

Letting t, t ∈ (0, T) be maximum and minimum points of the prescribed mean curvature
term φp( u′(t)√

1+(u′(t))2
), the above inequalities imply

φp

(
u′(t)√

1 + (u′(t))2

)
≥ 0 and

(
φp

(
u′(t)√

1 + (u′(t))2

))′
= 0; (2.4)

and

φp

(
u′(t)√

1 + (u′(t))2

)
≤ 0 and

(
φp

(
u′(t)√

1 + (u′(t))2

))′
= 0. (2.5)

Applying equations (2.5) into (2.2), we deduce

g
(
u(t)

)
– e(t) = –f

(
t, u(t)

)
u′(t). (2.6)

By condition (H1), we know that f may not change sign (i.e., f (t, u) > 0 or f (t, u) < 0, for
(t, u) ∈ [0, T] × R). Without loss of generality, suppose f (t, u) > 0, for (t, u) ∈ [0, T] × R.
Besides, since

φp

(
u′(t)√

1 + (u′(t))2

)
=

∣∣∣∣ u′(t)√
1 + (u′(t))2

∣∣∣∣
p–2 u′(t)√

1 + (u′(t))2
≤ 0,

then it is clear that u′(t) ≤ 0. By condition (H2) and since g(u(t)) – e(t) ≤ 0, we get that
u(t) ≥ d1.

Similarly, by condition (H2) and equation (2.4), we obtain that u(t) ≤ d2. Taking τ = t
and ξ = t, (2.3) is proved.
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Multiplying both sides of equation (2.2) by u′(t) and integrating from 0 to T , we have

∫ T

0

(
φp

(
u′(t)√

1 + (u′(t))2

))′
u′(t) dt + λ

∫ T

0
f
(
t, u(t)

)∣∣u′(t)
∣∣2 dt + λ

∫ T

0
g
(
u(t)

)
u′(t) dt

= λ

∫ T

0
e(t)u′(t) dt. (2.7)

Substituting

∫ T

0

(
φp

(
u′(t)√

1 + (u′(t))2

))′
u′(t) dt

= φp

(
u′(t)√

1 + (u′(t))2

)
u′(t)

∣∣∣∣
T

0
–

∫ T

0
φp

(
u′√

1 + (u′)2

)
du′ = 0

and
∫ T

0 g(u(t))u′(t) dt = 0 into (2.7), it is clear that

∣∣∣∣
∫ T

0
f (t, u)

∣∣u′(t)
∣∣2 dt

∣∣∣∣ =
∣∣∣∣
∫ T

0
e(t)u′(t) dt

∣∣∣∣.

By condition (H1) and Hölder inequality, the above equality implies

γ

∫ T

0

∣∣u′(t)
∣∣2 dt ≤

∣∣∣∣
∫ T

0
f
(
t, u(t)

)∣∣u′(t)
∣∣2 dt

∣∣∣∣
≤

∫ T

0

∣∣e(t)
∣∣∣∣u′(t)

∣∣dt

≤
(∫ T

0

∣∣e(t)
∣∣2 dt

) 1
2
(∫ T

0

∣∣u′(t)
∣∣2 dt

) 1
2

.

Since
∫ T

0 |u′(t)|2 dt �= 0 and γ > 0, we arrive at

(∫ T

0

∣∣u′(t)
∣∣2 dt

) 1
2 ≤ ‖e‖2

γ
, (2.8)

where ‖e‖2 := (
∫ T

0 |e(t)|2 dt) 1
2 . From equations (2.3) and (2.8), using Hölder inequality, we

get

u(t) ≤ d2 +
∫ T

0

∣∣u′(t)
∣∣dt

≤ d2 + T
1
2

(∫ T

0

∣∣u′(t)
∣∣2 dt

) 1
2

≤ d2 +
T 1

2 ‖e‖2

γ
:= M1. (2.9)

From equation (2.8) and using Hölder inequality, we deduce

∥∥u′∥∥ =
1
T

∫ T

0

∥∥u′∥∥dt ≤ T– 1
2

(∫ T

0

∥∥u′∥∥2 dt
) 1

2 ≤ T– 1
2
‖e‖2

γ
:= M2. (2.10)



Xin and Cheng Boundary Value Problems         (2020) 2020:89 Page 6 of 14

On the other hand, let τ ∈ (0, T) be as in equation (2.3). Multiplying both sides of equa-
tion (2.2) by u′(t) and integrating over the interval [τ , t], where t ∈ [τ , T], we see that

λ

∫ u(t)

u(τ )
g(u) du = λ

∫ t

τ

g
(
u(s)

)
u′(s) ds

= –
∫ t

τ

(
φp

(
u′(s)√

1 + (u′(s))2

))′
u′(s) ds – λ

∫ t

τ

f
(
s, u(s)

)∣∣u′(s)
∣∣2 ds

+ λ

∫ t

τ

e(s)u′(s) ds.

Furthermore, from equations (2.2), (2.9) and (2.10), applying Hölder inequality, the above
equation implies

λ

∣∣∣∣
∫ u(t)

u(τ )
g(u) du

∣∣∣∣ ≤
∫ T

0

∣∣∣∣
(

φp

(
u′(t)√

1 + (u′(t))2

))′∣∣∣∣
∣∣u′(t)

∣∣dt

+ λ

∫ T

0

∣∣f (t, u(t)
)∣∣∣∣u′(t)

∣∣2 dt + λ

∫ T

0

∣∣e(t)
∣∣∣∣u′(t)

∣∣dt

≤ λM2

(∫ T

0

∣∣f (t, u(t)
)∣∣∣∣u′(t)

∣∣dt +
∫ T

0

∣∣g(
u(t)

)∣∣dt +
∫ T

0

∣∣e(t)
∣∣dt

)

+ λM2
2

∫ T

0

∣∣f (t, u(t)
)∣∣dt + λM1T

1
2 ‖e‖2

≤ 2λM2
(
M2T‖fM1‖ + T

1
2 ‖e‖2

)
+ λM2

∫ T

0

∣∣g(
u(t)

)∣∣dt, (2.11)

where ‖fM1‖ := max(t,u)∈[0,T]×(0,M1] |f (t, u)|.
Next, we consider

∫ T
0 |g(u(t))|dt. Integrating equation (2.2) over the interval [0, T], we

obtain
∫ T

0

(
f
(
t, u(t)

)
u′(t) + g

(
u(t)

)
– e(t)

)
dt = 0. (2.12)

From equation (2.12), we see that

∫ T

0

∣∣g(
u(t)

)∣∣dt =
∫

g(u(t))≥0
g
(
u(t)

)
dt –

∫
g(u(t))≤0

g
(
u(t)

)
dt

= 2
∫

g(u(t))≥0
g+(

u(t)
)

dt +
∫ T

0
f
(
t, u(t)

)
u′(t) dt –

∫ T

0
e(t) dt

≤ 2
∫ T

0
g+(

u(t)
)

dt +
∫ T

0

∣∣f (t, u(t)
)∣∣∣∣u′(t)

∣∣dt +
∫ T

0

∣∣e(t)
∣∣dt, (2.13)

where g+(u) := max{g(u), 0}. Since g+(u(t)) ≥ 0, form conditions (H2) and equation (1.2),
we know that there exists a positive constant d∗

2 with d∗
2 > d1 such that u(t) ≥ d∗

2 . Therefore,
from equations (2.9) and (2.10), equation (2.13) implies

∫ T

0

∣∣g(
u(t)

)∣∣dt ≤ 2T
∥∥g+

M1

∥∥ +
∫ T

0

∣∣f (t, u(t)
)∣∣∣∣u′(t)

∣∣ +
∫ T

0

∣∣e(t)
∣∣dt

≤ 2T
∥∥g+

M1

∥∥ + M2T‖fM1‖ + T
1
2 ‖e‖2, (2.14)
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where ‖g+
M1

‖ := maxd∗
2≤u≤M1 g+(u). Applying equations (2.14) into (2.11), we have

λ

∣∣∣∣
∫ u(t)

u(τ )
g(u) du

∣∣∣∣ ≤ 3λM2
(
M2T‖fM1‖ + T

1
2 ‖e‖2

)
+ 2λM2T

∥∥g+
M1

∥∥.

According to equation (1.2), we see that there exists a positive constant M′
3 such that

u(t) ≥ M′
3, for t ∈ [τ , T]. (2.15)

If t ∈ [0, τ ], we can handle this case similarly.
From equations (2.9), (2.10), and (2.15), we obtain that a periodic solution u of equation

(2.2) satisfies

M3 < u(t) < M1,
∥∥u′∥∥ < M2,

where M3 := min{d1, M′
3}. Then condition (1) of Lemma 2.1 is satisfied. For a possible so-

lution C to equation

g(C) –
1
T

∫ T

0
e(t) dt = 0,

we have C ∈ [M3, M1]. Therefore, condition (2) of Lemma 2.1 holds. Finally, by condition
(H2), we arrive at

g(M3) –
1
T

∫ T

0
e(t) dt < 0 and g(M1) –

1
T

∫ T

0
e(t) dt > 0.

So condition (3) of Lemma 2.1 is also satisfied. By Theorem 2.1, equation (1.1) has at least
one positive periodic solution. �

In equation (1.2), the nonlinear term g requires a strong singularity of repulsive type
(i.e., limu→0+

∫ 1
u g(ν) dν = +∞). It is clear that the method of Theorem 2.1 is no longer

applicable to estimate a lower bound on a periodic solution u(t) of equation (1.1) in the
case of a weak singularity of repulsive type (i.e., limu→0+

∫ 1
u g(ν) dν < +∞). Therefore, we

need to find another method to consider equation (1.1) in the case of a weak singularity
of repulsive type.

Theorem 2.2 Assume that conditions (H1) and (H2) hold. If T
1
2 ‖e‖2
2γ

< d1, here d1 is defined
in Theorem 2.1, then equation (1.1) has at least one positive periodic solution.

Proof We follow the same strategy and notation as in the proof of Theorem 2.1. Next, we
consider the lower bound on a periodic solution u(t) of equation (1.1). From equations
(2.3) and (2.8), applying Hölder inequality, we get

u(t) =
1
2
(
u(t) + u(t – T)

)

=
1
2

(
u(τ ) +

∫ t

τ

u′(s) ds + u(τ ) –
∫ τ

t–T
u′(s) ds

)
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≥ u(τ ) –
1
2

∣∣∣∣
∫ t

τ

u′(s) ds –
∫ τ

t–T
u′(s) ds

∣∣∣∣
≥ u(τ ) –

1
2

(∫ t

τ

∣∣u′(s)
∣∣ds +

∫ τ

t–T

∣∣u′(s)
∣∣ds

)

= u(τ ) –
1
2

∫ t

t–T

∣∣u′(s)
∣∣ds

≥ d1 –
1
2

∫ T

0

∣∣u′(s)
∣∣ds

≥ d1 –
1
2

T
1
2

(∫ T

0

∣∣u′(s)
∣∣ds

) 1
2

≥ d1 –
T 1

2 ‖e‖2

2γ2
:= M3 > 0,

since T
1
2 ‖e‖2
2γ

< d1. The remaining part of the proof is the same as that of Theorems 2.1. �

Comparing Theorems 2.1 to 2.2, Theorem 2.2 is applicable to weak as well as strong sin-
gularities, whereas Theorem 2.1 is only applicable to a strong singularity. Besides, equation

(1.2) is relatively weaker than condition T
1
2 ‖e‖2
2γ

< d1. On the other hand, Theorems 2.1 and
2.2 require that g possesses a singularity of repulsive type (i.e., limu→0+ g(u) = –∞). In the
following, we consider that g possesses a singularity of attractive type (i.e., limu→0+ g(u) =
+∞). It is obvious that the attractivity condition and equation (1.2) with (H2) contradict
each other. Therefore, we have to find other conditions to consider equation (1.1) with a
singularity of attractive type.

Theorem 2.3 Assume that (H1) holds. Furthermore, suppose the following conditions hold:
(H3) There exist two positive constants d3, d4 with d3 < d4 such that g(u) – e(t) > 0 for

(t, u) ∈ [0, T] × (0, d3) and g(u) – e(t) < 0 for (t, u) ∈ [0, T] × (d4, +∞).
(H4) (Strong singularity of attractive type)

lim
u→0+

g(u) = +∞ and lim
u→0+

∫ 1

u
g(ν) dν = –∞.

Then equation (1.1) has at least one positive periodic solution.

Proof We follow the same strategy and notation as in the proof of Theorem 2.1. Next, we
consider

∫ T
0 |g(u(t))|dt. From equations (2.12) and (2.13), we see that

∫ T

0

∣∣g(
u(t)

)∣∣dt =
∫

g(u(t))≥0
g
(
u(t)

)
dt –

∫
g(u(t))≤0

g
(
u(t)

)
dt

= –2
∫

g(u(t))≤0
g–(

u(t)
)

dt –
∫ T

0
f
(
t, u(t)

)
u′(t) dt +

∫ T

0
e(t) dt

≤ 2
∫ T

0

∣∣g–(
u(t)

)∣∣dt +
∫ T

0

∣∣f (t, u(t)
)∣∣∣∣u′(t)

∣∣dt +
∫ T

0

∣∣e(t)
∣∣dt, (2.16)

where g–(u) := min{g(u), 0}. Since g–(u(t)) ≤ 0, form conditions (H3) and (H4), we know
that there exists a positive constant d∗

4 with d∗
4 > d3 such that u(t) ≥ d∗

4 . Therefore, from
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equations (2.9) and (2.10), equation (2.16) implies

∫ T

0

∣∣g(
u(t)

)∣∣dt ≤ 2T
∥∥g–

M1

∥∥ + M2T‖fM1‖ + T
1
2 ‖e‖2,

where ‖g–
M1

‖ := maxd∗
4≤u≤M1 |g–(u)|. The remaining part of the proof is the same as that of

Theorem 2.1. �

By Theorems 2.2 and 2.3, we obtain the following conclusion.

Theorem 2.4 Assume that conditions (H1) and (H3) hold. If T
1
2 ‖e‖2
2γ

< d3, then equation
(1.1) has at least one positive periodic solution.

Finally, we illustrate our results with two numerical examples.

Example 2.1 Consider the following prescribed mean curvature Liénard equation with a
strong singularity of repulsive type

(
u′(t)√

1 + (u′(t))2

)′
+

(
(sin t + 3)u4(t) + 1

)
u′(t) +

n∑
i=1

ui(t) =
6

uμ(t)
+ ecos t , (2.17)

where μ is a positive constant and μ ≥ 1, n is a positive integer.
It is clear that T = 2π , f (t, u) = (sin t + 3)u4 + 1, g(u) =

∑n
i=1 ui – 6

uμ , e(t) = ecos t . We know
that |f (t, u)| = (sin t + 3)u4 + 1 ≥ 1. Take γ = 1, d1 = 0.01, d2 = 3. Then conditions (H1) and
(H2) hold. Since limu→0+

∫ 1
u g(ν) dν = limu→0+

∫ 1
u (

∑n
i=1 νi – 6

νμ ) dν = +∞, equation (1.2) is
satisfied. Therefore, by Theorem 2.1, equation (2.17) has at least one positive 2π-periodic
solution.

Example 2.2 Consider the following prescribed mean curvature Liénard equation with a
weak singularity of attractive type:

(
φp

(
u′(t)√

1 + (u′(t))2

))′
–

(
(cos 2t + 5)u6(t) + 100

)
u′(t) – u5(t) +

4
u 1

2 (t)
= sin 2t, (2.18)

where p > 1.
It is obvious that T = π , f (t, u) = –(cos 2t + 5)u6 – 100, g(u) = –u5 + 4

u
1
2

, e(t) = sin 2t.
Taking γ = 100, d3 = 0.09, d4 = 4, conditions (H1) and (H3) are satisfied. Furthermore, we
consider

T 1
2 ‖e‖2

2γ
=

π

200
< 0.09.

Hence, applying Theorem 2.4, equation (2.18) has at least one positive π-periodic solution.

3 Positive periodic solution for equation (1.1) when p > 1 and p �= 2
In the following, by Lemma 2.1 and Theorem 2.1, we prove the existence of a positive
periodic solution for equation (1.1) with a singularity of repulsive type.
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Theorem 3.1 Assume that conditions (H1), (H2) and p �= 2 hold. Then equation (1.1) has
at least one positive periodic solution.

Proof Let t∗, t∗ ∈ (0, T) be the maximum and minimum points of u(t), and u′(t∗) = u′(t∗) =
0. Besides, we claim that there exists a positive constant ε such that

u′(t) ≥ 0, for t ∈ (
t∗ – ε, t∗ + ε

)
. (3.1)

Assume, by way of contradiction, that inequality (3.1) does not hold. Then u′(t) < 0 for
t ∈ (t∗ –ε, t∗ +ε). Therefore, u(t) is strictly decreasing for t ∈ (t∗ –ε, t∗ +ε), this contradicts
the definition of t∗. Hence, equation (3.1) is true. Since

(
φp

(
u′(t)√

1 + (u′(t))2

))′
=

(∣∣∣∣ u′(t)√
1 + (u′(t))2

∣∣∣∣
p–2( u′(t)√

1 + (u′(t))2

))′
. (3.2)

Applying equations (3.1) into (3.2), we get

(
φp

(
u′(t)√

1 + (u′(t))2

))′
=

((
u′(t)√

1 + (u′(t))2

)p–1)′

= (p – 1)
(

u′(t)√
1 + (u′(t))2

)p–2(2u′′(t) + u′′(t)(u′(t))2√
1 + (u′(t))2

)
, (3.3)

for t ∈ (t∗ – ε, t∗ + ε). From equation (3.3) and p �= 2, we obtain

(
φp

(
u′(t∗)√

1 + (u′(t∗))2

))′
= 0. (3.4)

From equations (2.2) and (3.4), we have

g
(
t∗, u

(
t∗)) – e

(
t∗) = 0.

By condition (H2), we get

d1 ≤ u
(
t∗) ≤ d2. (3.5)

Similarly, by condition (H2), we obtain

d1 ≤ u(t∗) ≤ d2. (3.6)

Therefore, from equations (3.5) and (3.6), we see that

d1 ≤ u(t) ≤ d2, for t ∈R. (3.7)

By Theorem 2.1, we get that there exist a positive constant M∗
2 such that

∥∥u′∥∥ ≤ M∗
2.

The remaining part of the proof is the same as that of Theorem 2.1. �
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Comparing Theorems 2.1 and 3.1, Theorem 3.1 is applicable to weak and strong singu-
larities. Theorem 2.1 is only applicable to a strong singularity. However, Theorem 3.1 does
not cover the case of p = 2, while Theorem 2.1 covers the case of p = 2. Therefore, Theo-
rem 2.1 can be more general. Besides, Theorem 3.1 requires that g possesses a singularity
of repulsive type. In the following, we consider that g possesses a singularity of attractive
type. It is obvious that attractivity condition and (H2) contradict each other. By Theorems
2.3 and 3.1, we obtain the following conclusion.

Theorem 3.2 Assume that conditions (H1), (H3) and p �= 2 hold. Then equation (1.1) has
at least one positive periodic solution.

It is worth mentioning that the method of Theorem 3.1 is also applicable to the case
where g is nonautonomous, i.e., g(u(t)) = g(t, u(t)). Then equation (1.1) is rewritten as the
following form:

(
φp

(
u′(t)√

1 + (u′(t))2

))′
+ f

(
t, u(t)

)
u′(t) + g

(
t, u(t)

)
= e(t). (3.8)

Applying Lemma 2.1 and Theorem 3.1, we obtain the following conclusion.

Theorem 3.3 Assume that conditions (H1) and p �= 2 hold. Furthermore, suppose the fol-
lowing condition holds:

(H5) There exist two positive constants d5, d6 with d5 < d6 such that g(t, u) – e(t) < 0 for
(t, u) ∈ [0, T] × (0, d5) and g(t, u) – e(t) > 0 for (t, u) ∈ [0, T] × (d6, +∞).

Then equation (3.8) has at least one positive periodic solution.

Proof Consider the following equation:

(
φp

(
u′(t)√

1 + (u′(t))2

))′
+ λf

(
t, u(t)

)
u′(t) + λg

(
t, u(t)

)
= λe(t), (3.9)

where λ ∈ (0, 1). From equation (3.7) and (H5), we get

d1 ≤ u(t) ≤ d2, for t ∈R. (3.10)

Multiplying both sides of equation (3.9) by u′(t) and integrating from 0 to T , we have

∫ T

0

(
φp

(
u′(t)√

1 + (u′(t))2

))′
u′(t) dt + λ

∫ T

0
f
(
t, u(t)

)
u′(t) dt + λ

∫ T

0
g
(
t, u(t)

)
u′(t) dt

= λ

∫ T

0
e(t)u′(t) dt. (3.11)

Substituting
∫ T

0 (φp( u′(t)√
1+(u′(t))2

))′u′(t) dt = 0 into equation (3.11), it is clear that

∣∣∣∣
∫ T

0
f
(
t, u(t)

)
u′(t) dt

∣∣∣∣ =
∣∣∣∣–

∫ T

0
g
(
t, u(t)

)
u′(t) dt +

∫ T

0
e(t)u′(t) dt

∣∣∣∣.
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By condition (H1) and equation (3.10), the above equation imply

γ

∫ T

0

∣∣u′(t)
∣∣2 dt ≤

∣∣∣∣
∫ T

0
f
(
t, u(t)

)
u′(t) dt

∣∣∣∣
≤

∫ T

0

∣∣g(
t, u(t)

)∣∣∣∣u′(t)
∣∣dt +

∫ T

0

∣∣e(t)
∣∣∣∣u′(t)

∣∣dt

≤ ‖g1‖T
1
2

(∫ T

0

∣∣u′(t)
∣∣2 dt

) 1
2

+
(∫ T

0

∣∣e(t)
∣∣2 dt

) 1
2
(∫ T

0

∣∣u′(t)
∣∣2 dt

) 1
2

≤ (‖g1‖T
1
2 + ‖e‖2

)(∫ T

0

∣∣u′(t)
∣∣2 dt

) 1
2

,

where ‖g1‖ := maxd1≤u(t)≤d2 |g(t, u)|. Since
∫ T

0 |u′(t)|2 dt �= 0 and γ > 0, we arrive at

(∫ T

0

∣∣u′(t)
∣∣2 dt

) 1
2 ≤ ‖g1‖T 1

2 + ‖e‖2

γ
:= M′′

2 , (3.12)

From equation (3.12), using Hölder inequality, we get

∥∥u′∥∥ =
1
T

∫ T

0

∥∥u′∥∥dt ≤ T– 1
2

(∫ T

0

∥∥u′∥∥2 dt
) 1

2 ≤ T– 1
2 M′′

2 := M∗∗
2 . (3.13)

The remaining part of the proof is the same as that of Theorem 2.1. �

Theorem 3.3 requires that g of equation (3.8) possesses a singularity of repulsive type.
In the following, by Theorems 2.3 and 3.3, we discuss equation (3.8) with a singularity of
attractive type.

Theorem 3.4 Assume that conditions (H1) and p �= 2 hold. Furthermore, suppose the fol-
lowing condition holds:

(H6) There exist two positive constants d7, d8 with d7 < d8 such that g(t, u) – e(t) > 0 for
(t, u) ∈ [0, T] × (0, d7) and g(t, u) – e(t) < 0 for (t, u) ∈ [0, T] × (d8, +∞).

Then equation (3.8) has at least one positive periodic solution.

Finally, we illustrate our results with one numerical example.

Example 3.1 Consider the following prescribed mean curvature Liénard equation with a
weak singularity of repulsive type

(
φp

(
u′(t)√

1 + (u′(t))2

))′
+

((
sin2 t

)
u8(t) + 1

)
u′(t) +

(
cos2 t + 2

)
u3(t) –

sin2 t + 1

u
1
5 (t)

= ecos 2t , (3.14)

where p = 5.
It is clear that T = π , f (t, u) = (sin2 t)u8(t) + 1, g(t, u) = (cos2 t + 2)u3(t) – sin2 t+1

u
1
5 (t)

, e(t) =

ecos 2t . Take γ = 1, d5 = 0.01, d6 = 3. Then conditions (H1) and (H5) hold. Therefore, by
Theorem 3.3, equation (3.14) has at least one positive π-periodic solution.
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4 Conclusions
In this paper, applying an extension of Mawhin’s continuation theorem, we first investi-
gate the existence of a periodic solution for equation (1.1) in the case that p > 1, where
g possesses weak and strong singularities of attractive type, or weak and strong singu-
larities of repulsive type, and g may satisfy sublinearity, semilinearity, or superlinearity
conditions at infinity. After that, we consider the existence of a periodic solution for equa-
tion (1.1) when p > 1 and p �= 2. Note that the conditions which f , g satisfy and the work
of estimating a priori bounds of positive periodic solutions for equation (1.1) are more
complex than in [7, 9, 17, 18]. Firstly, the friction term f (u(t))u′(t) in [7, 9, 17, 18] satisfies∫ T

0 f (u(t))u′(t) dt = 0, which is crucial to estimate a priori bounds of positive periodic solu-
tions for these equations. However, the friction term of this paper, f (t, u(t))u′(t), may not
satisfy

∫ T
0 f (t, u(t))u′(t) dt = 0. Secondly, g of this paper possesses weak and strong singu-

larities of attractive type (or weak and strong singularities of repulsive type) at the origin.
Thirdly, g of this paper may satisfy sublinearity, semilinearity, or superlinearity conditions
at infinity. Therefore, we extend and improve the results in [7, 9, 17, 18].
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