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Abstract
We discuss the existence and uniqueness of solution for the second boundary value
problem of potential theory often referred to as the Neumann problem, on a gauge
ball for the canonical sub-Laplacian in H-type groups. In this way we extend the
classical results of the problem as well as its generalization to the Heisenberg group.
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1 Introduction
In the study of partial differential equations, two boundary value problems associated with
the Laplace equation occupy a special place, namely the Dirichlet and Neumann problems.
While the Dirichlet problem asks to obtain a harmonic function in a domain whose value
agrees with a prescribed (continuous) function on the boundary, the Neumann problem
requires the normal derivative of the solution function to agree with a prescribed function
[17]. If � denotes the Laplacian on the Euclidean space R

n, the Neumann problem for a
smooth domain Ω in R

n is finding a u ∈ C2(Ω) ∩ C1(Ω̄) such that

⎧
⎨

⎩

�u = 0 in Ω ,
∂u
∂n = f on ∂Ω ,

(1.1)

where f is a prescribed function on ∂Ω and n is the outward normal at the boundary
∂Ω . For domains having C1,α boundary where α is in (0, 1], for example, a unit ball, the
Dirichlet problem is solvable for any continuous boundary value (see, for details, [10])
whereas the Neumann problem is solvable under the essential condition that the integral
of the values assigned to the normal derivative vanishes over the boundary surface (see,
for details, [14]), i.e.,

∫

∂Ω

f ds = 0.
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A straight generalization of these boundary value problems involving the Laplacian in
the case of Rn by replacing the operator � with an arbitrary elliptic operator has been
vastly discussed, and an extensive literature is available [7, 10, 14, 18, 19]. These problems
become more interesting when the regularity of the differential operator involved is com-
promised. The conditions of being hypoelliptic and subelliptic, that are well exposed in the
classical book [4], are weaker than ellipticity. In some sense, the first and nicest example of
a subelliptic operator is the Kohn–Laplacian on the Heisenberg group. The discussions of
boundary value problems involving the sub-Laplacian sometimes are parallel to the clas-
sical cases, while are considerably different in certain other cases. The Dirichlet problem
for the Kohn–Laplacian on the Heisenberg groups was first discussed by Gaveau [9] and
then settled completely by Jerison [11, 12]. The Neumann boundary value problem on the
Heisenberg group has been recently discussed by Dubey et al. [6]. The Heisenberg group
case, however, comes with an explicit group law and the underlying manifold structure
same as that of the Euclidean space R

2n+1. Therefore, the case of Heisenberg group in [6],
up to a certain extent, is same as dealing with a subelliptic operator on Euclidean spaces.
The point where it shows contrast with the Euclidean setup is the Green’s-type identity
where, instead of the Lebesgue measure, one needs a different volume and surface element
in the integrals.

The immediate generalization, namely the H-type groups, is by definition the range of
the exponential map on an H-type Lie algebra. The group law on an H-type group, there-
fore, is not as explicit as in the case of Heisenberg group. Moreover, the manifold structure,
which is still trivial, does not enjoy a natural coordinate system and there arises a need to
find one that is most compatible with the Lie algebra structure. It is natural to see the
extent to which the techniques can be generalized and equally natural to start with the
H-type groups. The identification of characteristic points on the boundary and estima-
tion of integrals involved are two focal areas in the work of Dubey et al. [6]. The case of
H-type groups in this article has established that similar results are available in this setup
and hence opens the scope to study Neumann boundary value problems for subelliptic
operators on a more general class of 2-step nilpotent Lie groups [2, 3].

The plan of our article is as follows. In Sect. 2, we refer to [3, 5] and review some basic as-
pects of the H-type groups, sub-Laplacian, and the horizontal normal vectors. Analogous
to the normal derivative, we define a similar operator in Sect. 3 to deal with the charac-
teristic points and formulate the Neumann boundary value problem. In the subsequent
sections, we prove a few results as a build-up to the main result in this article.

2 H-type group and horizontal normal vectors
We first recall the definition of Heisenberg-type group (or H-type group) as a 2-step nilpo-
tent Lie group whose Lie algebra admits certain properties.

Let g be a real Lie algebra equipped with an inner product such that it can be represented
as an orthogonal direct sum

g = v⊕ z,

where z is the center of g, [v,v] ⊆ z and [v, z] = [z, z] = {0}. Define a linear mapping J : z →
End(v) as

〈
JZX, X ′〉 =

〈
Z,
[
X, X ′]〉 ∀X, X ′ ∈ v and Z ∈ z.
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Then g is called an H-type Lie algebra if for all Z ∈ z,

JZ
2 = –|Z|2I,

where I is the identity mapping. A connected and simply connected Lie group G with g as
the associated Lie algebra is called an H-type group. The Heisenberg group Hn is a trivial
example of an H-type group and a nontrivial example will be discussed in the next section.

We identify g with the corresponding simply connected Lie group G under the expo-
nential map. From [16], the product in G is given by

(X, Z)
(
X ′, Z′) =

(

X + X ′, Z + Z′ +
1
2
[
X, X ′]

)

. (2.1)

Denote by p and q the dimensions of v and z, respectively, so that p + 2q is the homoge-
neous dimension of G. When X is regarded as a left-invariant vector field on G at the point
(X ′, Z′), it can be represented as

X = DX +
1
2

D[X,X′]. (2.2)

We fix {X1, X2, . . . , Xp} and {Z1, Z2, . . . , Zq} as orthonormal bases for v and z, respectively,
so that {X1, X2, . . . Xp, Z1, Z2, . . . , Zq} is an orthonormal basis of g. Then X =

∑p
j=1〈X, Xj〉Xj

and Z =
∑q

j=1〈Z, Zj〉Zj for every X ∈ v and Z ∈ z.
The canonical sub-Laplacian on G is given by

�G =
p∑

j=1

Xj
2.

Define p(α) = ( |X|
16

4 + |Z|2)
1
4 as the gauge of an element α = (X, Z) ∈ G.

Theorem 2.1 (Kaplan [13]) There exists a positive constant c such that

g(α) := c
( |X|

16

4
+ |Z|2

)–(p+2q–2)/4

is the fundamental solution of the sub-Laplacian, that is,

�Ggβ = –δβ ,

where gβ (α) = g(β–1α) and δβ is the Dirac distribution with pole at β ∈ G.

Just for the sake of calculations, we use a slightly modified kernel Φ where

Φ(α,β) = 2gβ (α). (2.3)

Unless stated otherwise, all the derivatives of Φ would be taken with respect to the first
variable α.
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An infinitesimal metric that is consistent with the automorphisms of an H-type group
happens to be a sub-Riemannian metric obtained by Korányi in [15]. We define

〈
Y , Y ′〉

0 = –4b2B
(
Y , θY ′)

for all Y , Y ′ ∈ g where B denotes the killing form, θ is the Cartan involution, and 4b2 =
(p + 4q)–1.

Definition 2.2 A vector at any point α ∈ G is called horizontal if it is of the form Xα (X ∈
v). The length of a horizontal vector is given by ‖Xα‖0 = |X| where | · | denotes the norm
induced by 〈·, ·〉 on v.

Vectors that are not horizontal are said to have infinite length. We call the unique
horizontal vector ∇0f , the horizontal gradient of a function f on G which is defined as
〈∇0f , w〉0 = w · f for all horizontal vectors w. We also have

∇0f =
p∑

j=1

(Xjf )Xj, (2.4)

where {Xj}p
j=1 is an orthonormal basis in v.

The outward horizontal normal unit vector at each point of the boundary of a domain
{F < 0} where ‖∇0F‖0 = 0 is given by

∂

∂n0
=

1
‖∇0F‖0

∇0F . (2.5)

3 Formulation of the problem
The unit horizontal normal vector in Eq. (2.5) is undefined at the “characteristic” points,
i.e., the points where ∇0F vanishes. When F is smooth, the set of characteristic points
forms a lower-dimensional subset of the boundary. In the following example, we explicitly
calculate the set of characteristic points on an H-type group.

Example 3.1 Consider the group

G = R
4 ⊕R

2

with the following binary operation:

(x, z) ◦ (y,ω) =
(

x + y, z1 + ω1 +
1
2
〈
T1(x), y

〉
, z2 + ω2 +

〈
T2(x), y

〉
)

,

where x = (x1, x2, x3, x4) ∈ R
4, z = (z1, z2) ∈ R

2,

T1 =
1√
2

⎡

⎢
⎢
⎢
⎣

0 1 1 0
–1 0 0 –1
–1 0 0 1
0 1 –1 0

⎤

⎥
⎥
⎥
⎦

and T2 =
1√
2

⎡

⎢
⎢
⎢
⎣

0 –1 1 0
1 0 0 –1

–1 0 0 –1
0 1 1 0

⎤

⎥
⎥
⎥
⎦

.
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Here, R2 serves as the center of G. We consider the Euclidean inner product on G. The
left-invariant vector field Xj on G that equals ∂

∂xj
at the origin is given by

Xj =
∂

∂xj
+

1
2
∑

k=1,2

( 4∑

i=1

tk
(j,i)xi

)
∂

∂zk
,

where tk
(j,i) is the (j, i)th entry in Tk .

The left-invariant vector field Zj on G that equals ∂
∂zj

at the origin is given by Zj = ∂
∂zj

.
Denote by g the associated Lie algebra of G and represent it as

g = v⊕ z.

We also denote {Xj}4
j=1 and {Zk}k=1,2 as the orthonormal bases for v and z, respectively.

Clearly, [g, z] = {0} and [g, g] ⊆ z. For any X ∈ v and Z ∈ z, we define a map JZ : v → v as

JZX =
1√
2
{{

b1(a2 + a3) + b2(–a2 + a3)
}

X1 +
{

b1(–a1 – a4) + b2(a1 – a4)
}

X2

+
{

b1(–a1 + a4) + b2(–a1 – a4)
}

X3 +
{

b1(a2 – a3) + b2(a2 + a3)
}

X4
}

,

where X = a1X1 + a2X2 + a3X3 + a4X4, Z = b1Z1 + b2Z2, and each ai, bj is a smooth function
on G. As JZ

2 = –|Z|2I , we finally conclude that G is an H-type group.
Now, let F(X, Z) = |X|4

16 + |Z|2 – 1 = 0 be a smooth surface in G. Substituting ∇0F = 0, we
obtain

X1F =
1
2

x1|x|2 + z1(x2 + x3) + z2(–x2 + x3) = 0,

X2F =
1
2

x2|x|2 + z1(–x1 – x4) + z2(x1 – x4) = 0,

X3F =
1
2

x3|x|2 + z1(–x1 + x4) + z2(–x1 – x4) = 0,

X4F =
1
2

x4|x|2 + z1(x2 – x3) + z2(x2 + x3) = 0,

which further gives X = 0. Hence, the set of characteristic points is given by {(0, Z) : |Z|2 –
1 = 0} which is a sphere of dimension (q – 1). Thus, the set of characteristic points is a
lower-dimensional subset of the boundary, which finishes the example.

Now we formulate the Neumann problem. Let Ω be a bounded domain in G whose
boundary is given as a level set of a smooth function T , i.e., ∂Ω = {γ ∈ G : T(γ ) = 0}. To
deal with the set of characteristic points in G, we define a new class of functions

C(Ω) =
{

f ∈ C2(Ω) ∩ C(Ω̄) : lim
x→x0

∂

∂n0
f (x) exists for all characteristic points

x0 ∈ ∂Ω

}

,
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where the limit is taken with respect to the relative topology of Ω̄ . Define the operator
∂⊥ : C(Ω) → C(∂Ω) as

∂⊥f (γ0) =

⎧
⎨

⎩

limγ→γ0
∂f
∂n0

(γ ) if γ0 is a characteristic point on ∂Ω ,
∂f
∂n0

(γ0) if γ0 is non-characteristic point on ∂Ω .

As the set of characteristic points is a lower-dimensional subset of ∂Ω , the Green’s formula
[16, Eq. (1.9)] can be rewritten as

∫

Ω

(u�Gv – v�Gu) dμ =
∫

∂Ω

(
u∂⊥v – v∂⊥u

)
dS, (3.1)

where

dS =
‖∇0T‖0

‖∇T‖ ds

and ds is the surface element on ∂Ω determined by the Euclidean measure. The homoge-
neous Neumann problem for a domain Ω in G is to find a function u ∈ C(Ω) such that

⎧
⎨

⎩

�Gu = 0 in Ω ,

∂⊥u = g on ∂Ω ,
(3.2)

where g ∈ C(∂Ω).

4 Uniqueness
Definition 4.1 Given φ ∈ C(∂Ω), for β ∈ G \ ∂Ω , define

V (β) :=
∫

∂Ω

φ(α)Φ(α,β) dS(α) and Ṽ (β) :=
∫

∂Ω

φ(α)∂⊥Φ(α,β) dS(α).

Both V and Ṽ are �G-harmonic and are respectively called the single- and the double-
layer potentials with density φ.

Lemma 4.2 (Green’s first identity) Let Ω be any bounded domain in G having boundary
of class C∞ and u, v be C1 functions on Ω̄ , then

∫

∂Ω

v∂⊥u dS =
∫

Ω

(v�Gu + ∇0v · ∇0u) dμ. (4.1)

Proof The Divergence theorem [8, Corollary 3.11] when applied to v∇0u proves the above
lemma. �

Lemma 4.3 If ∇0u is zero on every open subset U of a connected domain Ω then u is
constant on Ω .

Proof The proof follows along similar lines as that of [6, Theorem 3.2] �

Theorem 4.4 Let Ω be a bounded domain with smooth boundary, then the solution of
(3.2), if it exists, is unique up to an additive constant.
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Proof The difference u = u1 – u2 of two solutions of the Neumann problem is a harmonic
function in Ω , continuous up to boundary, satisfying the homogeneous boundary condi-
tion ∂⊥u = 0 on ∂Ω . Using Lemma 4.2, we get

∫

Ω

|∇0u|2 dμ =
∫

∂Ω

u∂⊥u dS –
∫

Ω

u(�Gu) dμ = 0.

Thus, ∇0u = 0. Further using Lemma 4.3, u must be a constant. �

In the rest of the article, Ω will denote the open unit ball {α = (X, Z) ∈ G : p(α) < 1} in
G.

Lemma 4.5 Let ∂Ω be of class C2 and φ ∈ C(∂Ω). For β ∈ ∂Ω , the integral V (β) =
∫

∂Ω
φ(α)Φ(α,β) dS(α) exists and V is continuous throughout G.

Proof From Theorem 2.1 and Eq. (2.3), we have

∣
∣Φ(α,β)

∣
∣ = 2cp

(
β–1α

)–(p+2q–2).

Set m = –(p + 2q – 2). For each β ∈ ∂Ω , let Ωβ (R) = {α ∈ ∂Ω : p(β–1α) ≤ R}, R ∈ (0, 1). We
have

∣
∣
∣
∣

∫

Ωβ (R)
φ(α)Φ(α,β) dS(α)

∣
∣
∣
∣≤ 2c‖φ‖∞

∫

Ωβ (R)
p
(
β–1α

)m dS(α).

It can be observed from [16] that dS = 4|X|.|p(α)|2
(|X|4+64)

1
2

ds, where ds is the Euclidean surface ele-

ment. As Ωβ (R) is bounded, we have

∣
∣
∣
∣

∫

Ωβ (R)
φ(α)Φ(α,β) dS(α)

∣
∣
∣
∣≤ c1‖φ‖∞

∫

Ωβ (R)
p
(
β–1α

)m ds(α),

for some positive constant c1. Let n denote the unit inward normal to the surface ∂Ω at
the point β . We denote by Π the map Ωβ (R) � α �→ α – 〈α, n〉n. Clearly, Π is a projection
of the set Ωβ (R) onto the tangent space Tβ to ∂Ω at the point β . The range of Π lies
inside Pβ := Ωβ (R) ∩ Tβ and for sufficiently small R, the map Π is a bijection on its range.
Moreover, R may be chosen small enough so that the surface element ds satisfies

ds(α) ≤ M · ds
(
Π (α)

)
,

for some positive constant M. Let Pe denote the set {βα : α ∈ Pβ}. Then Pe = Ωe(R) ∩ L
where L is the hyperplane n · g = 0 in G. By translation invariance of the surface measure
ds induced by the Lebesgue measure, we have

∫

Pβ

p
(
β–1α

)m ds =
∫

Pe

p(α)m ds.

The group O(p)×O(q) acts on G via isometries given in [5] as (O1, O2)(X, Z) = (O1X, O2Z).
As the Euclidean surface measure is invariant under orthogonal maps, we may choose
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suitable (O1, O2) so that the substitution (X, Z) = (O1X̃, O2Z̃) gives

∫

Pe

p
(
(X, Z)

)m ds(X, Z) =
∫

Ωe(R)∩L0

p
(
(X̃, Z̃)

)m ds(X̃, Z̃),

where the equation of the hyperplane L0 is x1 = 0 when in standard local coordinates, X is
represented as (x1, x2, . . . , xp). From [1, Theorem 5.12], we parameterize Ωe(R) ∩ L0 using
the polar coordinates (a,ϕ, x̃, z̃) ∈ (0, R) × (0, π

2 ] × Sp–2 × Sq–1 in the following manner:

X̃ = a
√

cosϕx̃, Z̃ =
a2

4
sinϕz̃, (4.2)

where x̃ = 1
‖X̃‖ (x̃2, x̃3, . . . , x̃p), z̃ = Z̃

‖Z̃‖ , and the measure ds is given by

ds =
1
4q ap+2q–1 cos

p
2 –1 ϕ sinq–1 ϕ da dϕ dx̃ dz̃, (4.3)

where dx̃ and dz̃ denote the usual surface area measures on Sp–2 and Sq–1, respectively.
By the substitution relations, we have a = p(X̃, Z̃) = p(X, Z). If (X̃, Z̃) is a point that cor-
responds to Π (α) for α ∈ Ωβ (R) then a ≤ p(α) so that am ≥ p(α)m as m < 0. Using [1,
Eq. (1.1)], we have

∫

Pβ

p(α)m ds ≤ 1
4q

∫ R

0
a da

∫ π
2

0
cos

p
2 –1 ϕ sinq–1 ϕ dϕ

∫

Sp–2
dx̃
∫

Sq–1
dz̃.

Hence, the integral exists on Ωβ (R). Moreover, we have

∣
∣
∣
∣

∫

∂Ω\Ωβ (R)
φ(α)Φ(α,β) dS(α)

∣
∣
∣
∣≤ 2c‖φ‖∞

∫

∂Ω\Ωβ (R)
R–(p+2q–2) dS(α),

≤ 2c‖φ‖∞
R(p+2q–2) |∂Ω|.

Hence, the integral exists for all β ∈ ∂Ω . Further, since dS is a Radon measure, a routine
proof may be given to establish the uniform continuity of convolution of two integrable
functions with respect to dS over a compact set. In particular, V is continuous. �

For fixed β ∈ ∂Ω , define

Ṽ±(β) = lim
h→0+

Ṽ (β ± hβ̂) and ∂⊥V±(β) = lim
h→0+

β̂ · ∇V (β ± hβ̂),

where β̂ denotes the unit normal in the direction of β and limit is in the sense of uniform
convergence over the compact neighborhoods of β . In what follows, we show that the
limits exist and hence determine their values.

Lemma 4.6 The kernel Φ satisfies

∣
∣∂⊥Φ(α,β)

∣
∣≤ Cp

(
β–1α

)–(p+2q+2),

whenever β = α and for some C > 0, depending on α.
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Proof We have

Φ(α,β) = Φe
(
β–1α

)
= 2cp

(
β–1α

)–(p+2q–2).

It can be observed from [16, Eq. (1.12)] that

∂⊥ =
( |X|

16

6
+ |Z|2|X|2

)–1( |X|
4

4
+ JZ

)

X for all (X, Z) ∈ ∂Ω such that |X| = 0.

For α = (X, Z) and β = (X ′, Z′) in G for which |X| = 0, we write

∂

∂n0
Φ(α,β) = –

c
2

(p + 2q – 2)
(
p
(
β–1α

))–(p+2q+2)(|X|6 + 16|Z|2|X|2)–1
{

|X|4

× (|X|2 +
∣
∣X ′∣∣2) + 2|X|2∣∣X ′∣∣|P(R+Jz)X′ X|

(

X ′ · X +
q∑

j=1

JZjX ′ · X

)

– 2|X|4〈X ′, X
〉
– |X|2(|X|2 +

∣
∣X ′∣∣2)X ′.X + 4|X|2JZ′–ZX ′ · X

+ 8
∣
∣X ′∣∣|P(R+Jz)X′ X|

(

X ′ · JzX +
q∑

j=1

JZj X
′ · JzX

)

– 4
(|X|2 +

∣
∣X ′∣∣2)

× X ′ · JZX + 16JZ′X ′ · JZX – 16JZX ′ · JZX

}

, (4.4)

where “·” represents the Euclidean dot-product. Clearly,

lim|X|→0

∂

∂n0
Φ(α,β) = 0.

Hence Φ(·,β) ∈ C(Ω). Now for β ∈ ∂Ω there exists ε > 0 such that |σ (α)| > |σ (β)|
2 for every

α ∈ Bε(β) where Bε(β) = {α : p(α–1β) < ε} and σ (α) = σ (X, Z) = |X|
16

6 + |Z|2|X2|. Since Ω is
bounded, for β = α

∣
∣∂⊥Φ(α,β)

∣
∣≤ c′

(
p + 2q – 2

4

)

p
(
β–1α

)–(p+2q+2) (4.5)

for some c′ > 0. �

Lemma 4.7 On the boundary ∂Ω , the kernel Φ satisfies

∫

∂Ω

∂⊥Φ(α,β) dS(α) =

⎧
⎪⎪⎨

⎪⎪⎩

–2, β ∈ Ω ,

–1, β ∈ ∂Ω ,

0, β ∈ G \ Ω̄ .

Proof Using appropriate substitutions in (3.1), the value of the integral on Ω and G \ Ω̄

is obvious. For β ∈ ∂Ω and r > 0, set Ωβ (r) = {α ∈ G : p(β–1α) < r}. Now using Green’s
formula (3.1) with u = 1 and v = Φ(·,β) on Ω \ Ωβ (r), we have

∫

∂(Ω\Ωβ (r))
∂⊥Φ(α,β) dS(α) = 0,
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which implies

lim
r→0

∫

∂Ω\Ωβ (r)
∂⊥Φ(α,β) dS(α) = – lim

r→0

∫

Ω∩∂Ωβ (r)
∂⊥Φ(α,β) dS(α)

= –
1
2

lim
r→0

∫

∂Ωβ (r)
∂⊥Φ(α,β) dS(α).

From [16, Eq. (1.15)] and (2.3), we finally have

∫

∂Ω

∂⊥Φ(α,β) dS(α) = –1. �

Corollary 4.8 For φ ∈ C(∂Ω) and β ∈ ∂Ω ,

∫

∂Ω

φ(α)∂⊥Φ(α,β) dS(α) < ∞. (4.6)

Lemma 4.9 For sufficiently small h0 > 0, consider a small neighborhood N∂Ω (h0) of ∂Ω

that consists of points β ∈ G which can be represented uniquely in the form β = γ + hγ̂ ,
where γ ∈ ∂Ω and h ∈ [–h0, h0]. Define

u(β) =
∫

∂Ω

{
φ(α) – φ(γ )

}
∂⊥Φ(α,β) dS(α)

for β ∈ N∂Ω (h0) \ ∂Ω . Then

lim
h→0+

u(γ + hγ̂ ) = u(γ ), γ ∈ ∂Ω

uniformly over compact neighborhoods in N∂Ω (h0).

Proof Define ∂Ω(γ ; r) = ∂Ω ∩ Ω[γ ; r] where Ω[γ ; r] = {α ∈ G : p(α–1γ ) ≤ r} and let
p(β–1γ ) = λ. Take r < p(β–1γ ) for a sufficiently small r > 0. Using p(β–1γ ) ≤ p(β–1α) +
p(α–1γ ), we have λ – r ≤ p(β–1α).

Consider

∫

∂Ω(γ ;r)
∂⊥Φ(α,β) dS(α) ≤ c1

∫

∂Ω(γ ;r)
p
(
β–1α

)–(p+2q+2) dS(α),β = α

≤ c1

∫

∂Ω(γ ;r)

1
(λ – r)(p+2q+2) dS(α)

≤ c1
1

(λ – 1)(p+2q+2)

∣
∣∂Ω(γ ; r)

∣
∣, (4.7)

where p, q denote the dimension of v and z, respectively. The mean value theorem implies

∣
∣∂⊥Φ(α,β) – ∂⊥Φ(α,γ )

∣
∣≤ c2p

(
βγ –1)∣∣(∇γ )

(
∂⊥gβ (α)

)∣
∣

≤ c3
p(βγ –1)

p(γα–1)(p+2q+2) .
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Hence,

∫

∂Ω\∂Ω(γ ;r)

∣
∣∂⊥Φ(α,β) – ∂⊥Φ(α,γ )

∣
∣dS(α) ≤ c4

p(βγ –1)
p(γα–1)(p+2q+2) , (4.8)

for c4 > 0. Combining (4.7) and (4.8), we obtain

∣
∣u(β) – u(γ )

∣
∣≤ c

{

max
α∈Ω[γ ;r]

∣
∣φ(α) – φ(γ )

∣
∣ +

p(βγ –1)
r(p+2q+2)

}

for r sufficiently small and a positive constant c.
As φ is uniformly continuous on ∂Ω , for any given ε > 0, there exists δ > 0 such that

max
α∈Ω[γ ;r]

∣
∣φ(α) – φ(γ )

∣
∣≤ ε

2c

for all γ ∈ ∂Ω . Taking δ < εrp+2q+2

2c , we get |u(β) – u(γ )| < ε for all p(βγ –1) < δ. �

Theorem 4.10 Let φ ∈ C(∂Ω). Then it is possible to extend Ṽ from Ω to Ω̄ and from G\Ω̄

to G \ Ω in a continuous fashion with the following limiting values:

Ṽ±(β) =
∫

∂Ω

φ(α)∂⊥Φ(α,β) dS(α) ± φ(β), β ∈ ∂Ω . (4.9)

Proof By Corollary 4.8, the above integral is a continuous function on ∂Ω . Take N∂Ω (h0)
as in the previous lemma and write Ṽ in the following form:

Ṽ (β) = u(β) + φ(γ )ω(β), β = γ + hγ̂ ∈ N∂Ω (h0) \ ∂Ω ,

where

u(β) =
∫

∂Ω

{
φ(α) – φ(γ )

}
∂⊥Φ(α,β) dS(α)

and

ω(β) =
∫

∂Ω

∂⊥Φ(α,β) dS(α).

Now using Lemma 4.9, the proof follows. �

Theorem 4.11 For φ ∈ C(∂Ω), we have

∂⊥V±(β) =
∫

∂Ω

φ(α)∂⊥Φ(α,β) dS(α) ± φ(β), β ∈ ∂Ω .

Proof Let Ṽ and N∂Ω (h0) be as in the proof of Theorem 4.10. Then for β = γ + hγ̂ ∈
N∂Ω (h0) \ ∂Ω and using (∇)β (Φ(α,β) = (∇)α(Φ(α,β), we can write

γ̂ · ∇(V (β)
)

+ Ṽ (β) =
∫

∂Ω

{γ̂ + β̂} · ∇α(Φ(α,β)φ(α) dS(α).
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Analogous to Ṽ in Theorem 4.10, the right-hand side can be shown to be continuous on
N∂Ω (h0). Now, the remaining proof follows from Theorem 4.10. �

Theorem 4.12 The following limit holds uniformly for all β ∈ ∂Ω :

lim
h→0+

β̂ · {∇Ṽ (β + hβ̂) – ∇Ṽ (β – hβ̂)
}

= 0.

Proof The proof follows along similar lines to the proof of Theorem 4.10. �

5 Existence of solution
Define integral operators W1, W2 : C(∂Ω) → C(∂Ω) as

(W1φ)(β) :=
∫

∂Ω

φ(α)
(
∂⊥Φ(α,β)

)

α
dS(α), β ∈ ∂Ω

and

(W2ψ)(β) :=
∫

∂Ω

ψ(α)
(
∂⊥Φ(α,β)

)

β
dS(α), β ∈ ∂Ω .

As ∂Ω is of class C1 and by using the estimate (4.5), we can easily conclude that W1, W2

are compact. Also with respect to the dual system 〈C(∂Ω), C(∂Ω)〉, defined by

〈φ,ψ〉 :=
∫

∂Ω

φψ dS φ,ψ ∈ C(∂Ω),

the operators W1 and W2 are adjoint.

Theorem 5.1 The operators I + W1, I + W2 have one-dimensional nullspaces.

Proof Let N(I + W1) denote the nullspace of I + W1, φ ∈ N(I + W1) and let Ṽ be the corre-
sponding double layer potential. By Theorem 4.10, Ṽ is bounded and harmonic in G \ Ω .
By (4.9), Ṽ+ = φ + W1φ = 0 on ∂Ω and therefore Ṽ can be extended continuously on Ω

by zero. Let Ṽ ′ denote this extension. Then Ṽ ′ is bounded harmonic on G and by Liou-
ville theorem for the sub-Laplacian [3, Theorem 5.8.7], Ṽ ′ = 0 on G \ Ω̄ . Hence using
[3, Theorem 8.2.16], Ṽ = 0 a.e. on G \ Ω̄ . Moreover, from Theorem 4.12, ∂⊥Ṽ– = 0 on
∂Ω . Uniqueness of the exterior Neumann problem then implies that φ is constant on Ω .
Again from (4.9), we deduce that φ is constant on ∂Ω . So N(I + W1) ⊂ span{s}, where s is
a constant. Using Lemma 4.7, we have s + Ks = 0. and hence N(I + W1) = span{s}. By first
Fredholm theorem [17], N(I + W2) also has dimension one. �

Theorem 5.2 For ψ ∈ C(∂Ω), the single layer potential

V (β) :=
∫

∂Ω

ψ(α)Φ(α,β) dS(α), β ∈ Ω

is a solution of the interior Neumann problem provided ψ solves the following integral equa-
tion:

ψ(β) +
∫

∂Ω

ψ(α)∂⊥Φ(α,β) dS(α) = g(β), β ∈ ∂Ω .
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Proof The proof follows from Theorem 4.11. �

Theorem 5.3 The interior Neumann problem is solvable if and only if

∫

∂Ω

g dS = 0.

Proof (Necessity) This can be proved using the identity (3.1). For v = 1 and a solution u of
the interior Neumann problem (3.2), we have

∫

∂Ω

g dS = 0.

(Sufficiency) By Fredholm’s theorem, the inhomogeneous problem ψ + W2ψ = g has a so-
lution if and only if g is orthogonal to a solution of φ + W1φ = 0. By Theorem 5.1, it is
equivalent to 〈1, g〉 = 0, i.e.,

∫

∂Ω

g dS = 0.

Now using Theorem 5.2, the interior Neumann problem has a solution. �
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