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Abstract
In this paper, a fast multiscale Galerkin algorithm is developed for solving the
boundary value problem of the fractional Bagley–Torvik equation. For this purpose,
we employ multiscale orthogonal functions having vanishing moments as the basis
of the trial space, and we propose a truncation strategy for the coefficient matrix of
the corresponding discrete system which leads to a fast algorithm. We show the
algorithm has nearly linear computational complexity (up to a logarithmic factor).
Numerical experiments are presented to illustrate the efficiency, accuracy and
convergence of the proposed algorithm. Also, comparisons with some other existing
methods are made to confirm the reliability of the algorithm

Keywords: Fast multiscale algorithm; Matrix truncation; Caputo fractional derivative;
Fractional Bagley–Torvik equation

1 Introduction
Over the last few decades, fractional calculus has attracted significant interest of many re-
searchers. Both fractional integral operators and derivative operators are non-local opera-
tors, which makes these operators very suitable for describing long term memory, asymp-
totic scaling and hereditary properties of various phenomena. Therefore, the fractional
equations appear frequently in many fields such as viscoelasticity, fluid mechanics, bio-
chemistry, signal processing, digital control theory, bioengineering, finance and thermoe-
lastic materials; see [1–9] and the references therein. Motivated by increasing applications
of fractional equations, the analytical and numerical methods [10–21] for the solution of
the fractional equations became a subject of intensive investigations.

In this paper, we consider the following Bagley–Torvik equation:

u′′(t) + θDαu(t) + σu(t) = f (t), 0 ≤ t ≤ 1, (1)

subject to boundary conditions:

u(0) = u(1) = 0,
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where θ , σ and 0 < α < 1 are constants, and f (t) is a continuous function defined on the
interval [0, 1]. Here the notation Dα represents the Caputo fractional derivative defined
by

Dαu(t) :=
1

Γ (1 – α)

∫ t

0

u′(s)
(t – s)α

ds, 0 < α < 1,

where Γ (·) is the gamma function defined by

Γ (s) :=
∫ ∞

0
e–xxs–1 dx.

The Bagley–Torvik equation was first introduced by Bagley and Torvik and treated as
a mathematical model of the motion of a thin rigid plate immersed in a Newtonian fluid
[22]. It was then widely used to simulate the dynamic responses of viscoelastically damped
structures [23]. Many numerical approaches have been developed for solving the Bagley–
Torvik equation. These methods include the modified Galerkin method [10], collocation
methods [12, 13], the wavelet method [14, 15], the finite difference method [16], the spline
method [17–19] and the hybridizable discontinuous Galerkin method [20], and the oper-
ational Tau method [21]. However, due to the non-local property of the fractional differ-
ential operators, the numerical methods for fractional equation including Bagley–Torvik
equation lead to dense coefficient matrices. When the dimension of coefficient matrix is
large, the computational cost for generating the matrix and then solving the corresponding
linear system is huge.

The main purpose of this paper is to develop a fast multiscale Galerkin algorithm for
solving the Bagley–Torvik equation. We introduce a matrix truncation strategy by choos-
ing multiscale orthogonal basis functions having vanishing moments, which forms a basis
for the fast algorithm for solving Eq. (1). Specifically, the multiscale orthonormal basis
constructed in [24] is employed to discretize the Bagley–Torvik equation, which leads to
a linear system with a numerically sparse coefficient matrix. That is, the absolute values of
most of the entries of the matrix are very small. We then set the entries with small value
to zero by a matrix truncation strategy, which yields a sparse matrix. We show that the
number of nonzero entries of the truncated matrix is linear (up to a logarithmic factor)
with respect to the dimensions of the matrix. This method cannot only generate the coef-
ficient matrix rapidly, but also make it easy to solve the resulting linear system with sparse
coefficient matrix.

This paper is organized as follows. In Sect. 2, the multiscale orthonormal bases in
Sobolev space H1

0 (0, 1) is introduced. In Sect. 3, the fast multiscale Galerkin algorithm
with a practical matrix truncation strategy is proposed to solve the Bagley–Torvik equa-
tion boundary value problem. Some numerical examples are presented in Sect. 4, and the
conclusion is included in the last section.

2 Multiscale orthonormal bases
The multiscale orthonomal bases for Sobolev space on the unit interval I = [0, 1] were
constructed by Chen, Wu and Xu in Ref. [24] for solving differential equations. For the
convenience of the reader, we briefly introduce the construction and properties of this
multiscale orthonomal bases, which are required necessarily for designing the fast algo-
rithm for the Bagley–Torvik equation.
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We start with some useful notations. Let N := {1, 2, . . . }, N0 := N ∪ {0} and Zn :=
{0, 1, 2, . . . , n – 1}, for n ∈ N. We denote by (·, ·) the inner product on the space L2(I) with
the L2 norm ‖ · ‖2. Let H1

0 (I) denote the Sobolev space of elements u vanishing at the
endpoints that u(0) = u(1) = 0. The inner product and norm of H1

0 (I) are defined by

〈u, v〉1 :=
(
u′, v′) =

∫ 1

0
u′(t)v′(t) dt, u, v ∈ H1

0 (I),

and

‖u‖1 :=
√〈u, u〉1, u ∈ H1

0 (I),

respectively. Let �n be the uniform mesh which divides the interval I into 2n pieces, and
let Xn be the piecewise polynomial space of order k associated with the partition �n. It is
concluded that the sequence of Xn is nested, i.e.,

Xn ⊂Xn+1, n ∈N0,

which yields the decomposition

Xn = Xn–1 ⊕⊥
Wn,

where Wn is the orthogonal complement of Xn–1 in Xn in the sense of the inner prod-
uct 〈·, ·〉1. Repeating this decomposition, we have the multiscale space decomposition as
follows:

Xn = W0 ⊕⊥
W1 ⊕⊥ · · · ⊕⊥

Wn,

where W0 := X0. Denoting x(n) := dimXn and w(n) := dimWn, by the definition of Xn we
have

x(n) = (k – 1)2n – 1, w(n) = x(n) – x(n – 1) = (k – 1)2n–1.

The following lemma shows that when the bases of X0 and W1 are constructed, the basis
of the space Xn can be recursively generated, and the sequence of Xn is ultimately dense
in the Sobolev space H1

0 (I).

Lemma 2.1 (See [24]) Let wij, j ∈ Zw(i), be an orthonormal basis of the space Wi, i ≥ 1.
Then the orthonormal basis of the space Wi+1 can be recursively constructed by

wi+1,j(t) =
√

2
2

wij(2t),

wi+1,w(i)+j(t) =
√

2
2

wij(2t – 1),

t ∈ [0, 1], j ∈ Zw(i), i ≥ 1.

Furthermore,

H1
0 (I) = W0 ⊕⊥ W1 ⊕⊥ · · · ⊕⊥ Wn ⊕⊥ · · ·.
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We define Jn := {(i, j), j ∈ Zw(i), i ∈ Zn+1} and assume that Wi has an orthonormal basis
{wij : j ∈ Zw(i)}, then {wij : (i, j) ∈ Jn} forms an orthonormal basis ofXn. The basis has several
important properties, we describe parts of them that are relevant to our algorithm.

(P1) (Compact support) The support Sij := supp wij holds that di ∼ 2–i, where
di := max{diam(Sij) : j ∈ Zw(i)}. For any i ∈N and j ∈ Zω(i), there are at most ρ

(independent of i and j) numbers of wij′+, j′ ∈ Zω(i), such that meas(Sij ∩ Sij′ ) �= 0.
(P2) (Orthogonality) For any i, i′ ∈N0,

〈wij, wi′j′ 〉1 = δii′δjj′ , j ∈ Zω(i), j′ ∈ Zω(i′),

where δii′ is the Kronecker delta.
(P3) (Vanishing moment) For any i ≥ 1 and p ∈ Zk–1,

〈
wij, tp〉

1 = 0, j ∈ Zω(i).

This, with integration by parts, implies that (wij, f ) = 0, where f is an arbitrary
polynomial with order ≤ k – 2.

(P4) (Boundedness) There exists a constant c > 0 such that

‖wij‖1 = 1 and ‖ wij ‖∞≤ c2–i/2, i ∈ N0, j ∈ Zω(i).

To end this section, we give the concrete multiscale linear basis functions which will
be used in our numerical experiments. For linear case, k = 2, dim(Wi) = 2i–1, for i ≥ 1.
Obviously, 0 is the only linear function which vanishes at both 0 and 1. That is X0 = {0}.
The basis of the space W1 is given by (see [24])

w10(t) =

{
t, 0 ≤ t < 1

2 ,
1 – t, 1

2 ≤ t ≤ 1.

Using w10(t) and Lemma 2.1, we can generate the bases of the spaces W2,W3, . . . ,Wn in
turn, and then we obtain the basis of the approximation subspaceXn. We illustrate in Fig. 1
the graph of the basis functions for X6.

Figure 1 Multiscale orthonormal basis for X6
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3 Fast multiscale Galerkin algorithm
In this section, we first present a Galerkin scheme associate with the multiscale basis in-
troduced in last section for solving Eq. (1). Then a matrix truncation strategy is proposed,
which leads to the fast multiscale Galerkin algorithm.

We begin with the variational (weak) formulation of the (1) subject to the boundary
conditions u(0) = u(1) = 0, which reads: find u ∈ H1

0 (I) such that

–
(
u′, v′) + θ

(
Dαu, v

)
+ σ (u, v) = (f , v), ∀v ∈ H1

0 (I). (2)

Making use of the basis of Xn, the Galerkin scheme for solving Eq. (2) is to seek a vector
cn := [cij : (i, j) ∈ Jn]� such that

un(t) :=
∑

(i,j)∈Jn

cijwij(t) ∈Xn,

satisfies

∑
(i,j)∈Jn

[
–
(
w′

ij, w′
i′j′

)
+ θ

(
Dαwij, wi′j′

)
+ σ (wij, wi′j′ )

]
cij = (f , wi′j′ ),

(
i′, j′

) ∈ Jn. (3)

To distinguish the method from the traditional Galerkin method, the scheme (3) is called
the multiscale Galerkin method due to the use of the multiscale basis {wij, (i, j) ∈ Jn}. Let

Ii′j′ ;ij :=
(
w′

ij, w′
i′j′

)
, Di′j′ ;ij :=

(
Dαwij, wi′j′

)
, Ei′j′ ;ij := (wij, wi′j′ ).

We define the matrices

In :=
[
Ii′j′ ;ij :

(
i′, j′

)
, (i, j) ∈ Jn

]
, Dn :=

[
Di′j′ ;ij :

(
i′, j′

)
, (i, j) ∈ Jn

]
,

En :=
[
Ei′j′ ;ij :

(
i′, j′

)
, (i, j) ∈ Jn

]
,

and vector fn := [–(f , wi′j′ ) : (i′, j′) ∈ Jn]�. Using these notations, we write the linear system
(3) in matrix form

(In – θDn – σEn)cn = fn. (4)

From the properties (P1) and (P2), it is easily seen that both matrices In and En are sparse.
In fact, In is an identity. However, Dn is a dense matrix because of the non-local property
of the fractional order differential operator. Moreover, all the entries of Dn are defined by
singular integrals

Di′j′ ,ij =
∫ 1

0

(∫ t

0

w′
ij(s)

(t – s)α
ds

)
· wi′j′ (t) dt, (i, j),

(
i′, j′

) ∈ Jn.

Therefore, it is computationally costly to establish such a matrix numerically, which be-
comes an obvious computational deficiency of the Galerkin method for solving such a
kind of equations. Fortunately, we observe that the matrix Dn is numerically sparse under
the multiscale orthonormal basis. That is, a large number of the entries are very small in
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Figure 2 D7 with respect to the multiscale orthonormal basis

magnitude. To visualize this observation, we plot in Fig. 2 the matrix Dn with respect to
the multiscale basis with n = 7 and α = 1

2 .
According to the different scales of spaces, we partition matrix Dn into a block matrix

Dn = [Dii′ : i, i′ ∈ Zn+1] with Dii′ = [Dij,i′j′ : j ∈ Zw(i), j′ ∈ Zw(i′)]. We can see from Fig. 2 that
the absolute values of the entries lying outside the diagonals of the blocks are small, which
is similar to the case of multiscale methods for solving the Fredholm integral equation
[25–27]. This observation motivates us to “truncate” the small entries to zero by the same
matrix truncation strategy as the references [25–27]. Specifically, For (i, j), (i′, j′) ∈ Jn, we
define

D̃ij,i′j′ =

{
Dij,i′j′ , dist(Sij, Si′j′ ) ≤ εn

ii′ ,
0, otherwise,

(5)

where dist(Sij, Si′j′ ) is the distance between Sij and Si′j′ , and the truncation parameter εn
ii′

are chosen as [25]

εn
ii′ := max

{
μ2–n+λ(n–i)+λ′(n–i′),ρ

(
2–i + 2–i′)}

for some positive constants μ, λ, λ′ and ρ > 1. Then we obtain a truncation matrix

D̃n :=
[
D̃ii′ , i, i′ ∈ Zn+1

]
,

where

D̃ii′ := D̃
(
εn

ii′
)

ii′ =
[
D̃ij,i′j′ , j ∈ Zw(i), j′ ∈ Zw(i′)

]
.

Replacing Dn in Eq. (4) by D̃n leads to the fast multiscale Galerkin algorithm (FMGA): find
c̃n := [c̃ij, (i, j) ∈ Jn]� such that

(In – θD̃n – σEn)c̃n = fn. (6)

Solving c̃n from Eq. (6), we then obtain the fast multiscale Galerkin solution

ũn(t) :=
∑

(i,j)∈Jn

c̃ijwij(t).
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Similar to the analysis of [26, 27] or Theorem 3.3 of [25], we have the following lemma
about the computational complexity of the fast multiscale Galerkin scheme (6), which is
measured by the number of nonzero entries of the truncation matrix D̃n.

Theorem 3.1 For any n ∈N, we have

N (D̃n) = O
(
n2n) = O

(
x(n) log x(n)

)
,

where N (M) denotes the number of nonzero entries of matrix M.

The above theorem shows that the truncation matrix D̃n is sparse, which is very bene-
ficial to the solution of the resulting large linear system by iterative method. More impor-
tantly, it greatly reduces the computational burden for calculating all the entries of matrix,
in other words, it greatly saves the time for generating the coefficient matrix.

4 Numerical examples
In this section, we present some numerical illustrations for the solution of the boundary
value problem of the Bagley–Torvik equation to show the accuracy and the efficiency of
the proposed method. All the numerical calculations are implemented with Matlab 2012a
in OS Windows 10 with 2.5 G CPU and 8 G memory.

Example 1 Consider the following Bagley–Torvik equation [17–19]:

u′′(t) + θDαu(t) + σu(t) = f (t), 0 ≤ t ≤ 1,

u(0) = u(1) = 0,

where f (t) = (λ– 1)(λt –λ+ 2)tλ–3 +θ (λ–1)!
Γ (λ–α) ( λt

λ–α
– 1)tλ–α–1 +σ tλ–1(t – 1). The exact solution

of this equation is u∗(t) = tλ–1(t – 1). We use the linear multiscale basis to discretize the
equation. In order to illustrate the computational efficiency of the FMGA, we solve the
equation by both the original scheme (4) (OMGM) and the truncated scheme (6) (FMGA).
In all three examples, we choose μ = ρ = 2, λ = 1 and λ′ = 5

6 in the truncation parameter εn
ii′ .

The numerical results for θ = 0.5, σ = 1, λ = 5 and α = 0.5 are reported in Tables 1 and 2.
In the two tables, n, x(n) and T (T̃ ) denote the level number of approximation space, the
dimension of approximation space and the time of OMGM (FMGA) for generating the
coefficient matrix, respectively. The notations ‖ · ‖1 and ‖ · ‖2 stand for the H1

0 -error and
L2-error, respectively, and the corresponding convergence orders (C.O.) are computed by
the formulas

C.O. := log2
‖u∗ – ũn–1‖p

‖u∗ – ũn‖p
, C.O. := log2

‖u∗ – un–1‖p

‖u∗ – un‖p
,

where p = 1 or 2; ũn and un are the numerical solutions solved by FMGA and OMGM,
respectively. It is seen from Table 1 that FMGA and OMGM have the same optimal con-
vergence orders 1 and 2 in the H1

0 norm and L2 norm, respectively, and they have almost
the same accuracy, which implies that our truncation strategy does not affect the overall
accuracy. However, the computational time in Table 2 and Fig. 3 indicate that FMGA is re-
markably faster than OMGM. To measure the degree of sparsity of the truncation matrix,
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Table 1 Numerical results for Example 1 (θ = 0.5, σ = 1, λ = 5, α = 0.5)

n x(n) FMGA OMGM
‖u∗ – ũn‖1 C.O. ‖u∗ – ũn‖2 C.O. ‖u∗ – un‖1 C.O. ‖u∗ – un‖2 C.O.

4 15 4.3753e-2 8.8248e-4 4.3753e-2 8.8244e-4
5 31 2.1963e-2 0.9943 2.2097e-4 1.9977 2.1963e-2 0.9943 2.2089e-4 1.9982
6 63 1.0992e-2 0.9986 5.5325e-5 1.9978 1.0992e-2 0.9986 5.5278e-5 1.9986
7 127 5.4975e-3 0.9996 1.3886e-5 1.9943 5.4975e-3 0.9996 1.3867e-5 1.9950
8 255 2.7489e-3 0.9999 3.4821e-6 1.9956 2.7489e-3 0.9999 3.4757e-6 1.9963
9 511 1.3745e-3 1.0000 8.7666e-7 1.9899 1.3745e-3 1.0000 8.7453e-7 1.9907
10 1023 6.8724e-3 1.0000 2.2071e-7 1.9899 6.8724e-3 1.0000 2.1997e-7 1.9912

Table 2 Comparison of the computational time for FMGA and OMGM for Example 1

n
4 5 6 7 8 9 10

C.R. 62.2% 44.3% 29.3% 18.5% 11.2% 6.69% 3.89%
T̃ (s) 0.01 0.03 0.09 0.24 0.68 1.95 4.88
T (s) 0.01 0.04 0.17 0.69 2.82 11.5 47.4

Figure 3 Growth of computational time for Example 1

we denote by C.R. in Table 2 the ratio of number of nonzero entries to the total number
of entries of D̃n. We observe that the larger the dimension of D̃n, the smaller the ratio. For
example, C.R. is only 0.0389 or 3.89% for n = 10, which means you can only calculate less
than 4 out of 100 entries. To visualize the sparseness of the matrix, we plot in Fig. 4 the
distribution of nonzero entries of D10 and D̃10, in which the nonzero entries are identified
by a black region.

A comparison of the absolute error between our method (FMGA) and the methods in
[17–19] is reported in Table 3, which reveals that the our results have superiority in accu-
racy.

Example 2 Consider the following Bagley–Torvik equation [17, 28]:

u′′(t) + θDαu(t) = –1 – et–1, 0 ≤ t ≤ 1,

u(0) = u(1) = 0.
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Figure 4 Distribution of nonzero entries of matrices Dn (left) and D̃n (right) with n = 10

Table 3 Comparison of the absolute error with methods in [17–19] for Example 1

x Our method GD in [17] NSGD in [17] 3-WSGD in [17] Method in [18] Method in [19]

0.125 2.56e-7 8.36e-5 3.05e-5 8.16e-6 2.00e-3 1.73e-4
0.250 1.06e-6 1.59e-4 5.80e-5 1.73e-5 4.08e-3 5.35e-4
0.375 2.19e-6 2.09e-4 7.31e-5 2.70e-5 5.83e-3 7.98e-4
0.500 5.03e-6 2.01e-4 6.24e-5 3.56e-5 6.85e-3 6.74e-4
0.625 8.82e-6 1.34e-4 1.60e-5 4.06e-5 6.81e-3 9.50e-5
0.750 1.11e-5 1.12e-5 6.18e-5 3.86e-5 5.57e-3 1.78e-3
0.875 1.27e-5 7.81e-5 1.51e-4 2.60e-5 3.26e-3 3.42e-3

Figure 5 Exact and numerical solutions for Example 2 for different α

The exact solution for θ = –1, α = 1 is u∗(t) = t(1 – et–1). For general values of α, the exact
solution is not known. We set up this example to test the effectiveness of our algorithm. Let
θ = –1, we solve the equation by FMGA for α = 0.4, 0.6, 0.8, 0.9, 0.95. The corresponding
numerical solutions are shown in Fig. 5. We observe that as α approaches 1, the solutions
of the fractional order equation converge to the exact solution of the integer order (α = 1)
equation.
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Example 3 As the last example we consider the equation [12, 17, 28]

u′′(t) + Dαu(t) = g(t) + t1–αp(t), 0 ≤ t ≤ 1,

u(0) = u(1) = 0,

where

g(t) = 20t3 –
174

5
t2 +

456
25

t –
339
125

,

p(t) =
120

Γ (6 – α)
t4 –

348
5Γ (5 – α)

t3 +
456

25Γ (4 – α)
t2 –

339
125Γ (3 – α)

t +
27

125Γ (2 – α)
.

The exact solution is

u∗(t) = t5 –
29
10

t4 +
76
25

t3 –
339
250

t2 +
27

125
t.

The numerical results obtained by FMGA are presented to show the accuracy, conver-
gence and computing time in Table 4, Fig. 6 and Fig. 7. We also compare the absolute
error of our method with that of the methods in [12, 17, 28] and listed in Table 5, where
n∗ – 1 and m are the number of the spline and Bessel functions used in the approximate
solution in [17] and [12, 28], respectively. These results show that our algorithm has better
accuracy with fewer basis functions (x(3) = 7).

Table 4 Numerical results for Example 3

n x(n) ‖u∗ – ũn‖1 C.O. ‖u∗ – ũn‖2 C.O. ‖u∗ – ũn‖∞ C.O. C.R. T

3 7 2.3740e-2 9.2810e-4 3.3646e-3 77.6% <0.01
4 15 1.2346e-2 0.94328 2.4402e-4 1.9273 9.5997e-4 1.8094 62.2% 0.01
5 31 6.2333e-3 0.98597 6.2106e-5 1.9742 2.7120e-4 1.8236 44.3% 0.04
6 63 3.1242e-3 0.99651 1.5368e-5 2.0148 6.1689e-5 2.1363 29.3% 0.12
7 127 1.5630e-3 0.99913 3.8719e-6 1.9888 1.7795e-5 1.7935 18.5% 0.29
8 255 7.8164e-4 0.99978 9.9052e-7 1.9668 3.3084e-6 2.5501 11.2% 0.73
9 511 3.9084e-4 0.99994 2.8535e-7 1.7954 1.0062e-6 1.5944 6.69% 2.03

Figure 6 Errors of the numerical solution for Example 3 with α = 0.5
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Figure 7 Exact and numerical solution for Example 3 with α = 0.5, n = 9

Table 5 Comparison of the absolute error with the methods in [12, 17, 28] for Example 3

x Our method Method in [17] Method in [12] Method in [28]

n = 3 n∗ = 10 m = 8 m = 8

0.1 1.91e-3 2.00e-3 1.08e-2 3.59e-3

0.2 6.30e-4 1.74e-3 8.96e-2 1.58e-3

0.3 4.17e-4 1.53e-3 3.78e-2 1.79e-3

0.4 4.38e-4 1.32e-3 1.44e-7 1.63e-3

0.5 7.23e-5 1.11e-3 1.01e-3 1.16e-3

0.6 1.45e-4 8.92e-4 6.62e-8 5.84e-4

0.7 1.87e-4 6.53e-4 1.26e-3 1.27e-4

0.8 2.19e-4 4.19e-4 1.28e-4 1.19e-4

0.9 3.06e-4 2.02e-4 2.07e-8 5.54e-4

5 Conclusion
In this paper, a fast multiscale Galerkin algorithm based on a matrix truncation strategy for
solving boundary value problem of the Caputo fractional Bagley–Torvik equation is pre-
sented. The algorithm reduces the computational complexity from O(N2) to O(N log N)
(N is the dimension of the approximation space), which makes the algorithm efficient. Ex-
amples are presented to illustrate the performance of our algorithm by comparing it with
the original Galerkin scheme (OMGM) from accuracy, convergence order and computing
time. It shows that they have the same convergence orders and accuracy, but FMGA is
much faster than OMGM. Numerical results are also compared with some recent meth-
ods, which demonstrate the effectiveness of our algorithm and its superiority in accuracy.
The proposed algorithm still needs rigorous theoretical analysis, which constitutes the
subject of our ongoing work.
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