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Abstract
In this paper, we study a nonlinear fractional differential equation involving two
mixed fractional orders with nonlocal boundary conditions. By using some new
techniques, we introduce a formula of solutions for above problem, which can be
regarded as a novelty item. Moreover, under the weak assumptions and using
Leray–Schauder degree theory, we obtain the existence result of solutions for above
problem. Furthermore, we discuss the Ulam–Hyers stability of the above fractional
differential equation. Three examples illustrate our results.
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1 Introduction
The fractional derivatives provide an excellent tool to describe the memory and hered-
itary properties of various materials and processes. The fractional differential equations
can model some engineering and scientific disciplines in the fields of physics, chemistry,
electrodynamics of complex medium, polymer rheology, etc. [1–12]. In particular, the for-
ward and backward fractional derivatives provide an excellent tool for the description of
some physical phenomena such as the fractional oscillator equations and the fractional
Euler–Lagrange equations [3–7, 13]. Recently, many researchers have focused on the ex-
istence of solutions for boundary value problems involving both the right Caputo and
the left Riemann–Liouville fractional derivatives (see [6, 7, 13], and the references cited
therein).

Moreover, the Ulam stability problem [14] has attracted many researchers (see [15, 16]
and the references therein). Recently, the Ulam–Hyers stability of fractional differential
equations has been gaining much importance and attention [17–20].
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Sousa et al. [19] studied the ψ-Hilfer fractional derivative and the Hyers–Ulam–Rassias
and Hyers–Ulam stability of the Volterra integrodifferential equation:

⎧
⎨

⎩

HDα,β ;ψ
0+ u(t) = f (t, u(t)) +

∫ t
0 K(t, s, u(t)) ds, t ∈ [0, T],

I1–γ

0+ u(0) = σ ,

where α ∈ (0, 1),β ∈ [0, 1],γ ∈ [0, 1), σ is a constant, HDα,β ;ψ
0+ is the ψ-Hilfer fractional

derivative and I1–γ

0+ is the ψ-Riemann–Liouville fractional integral.
Chalishajar et al. [20] studied the existence, uniqueness, and Ulam–Hyers stability of

solutions for the coupled system of fractional differential equations with integral boundary
conditions:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cDα
0+ x(t) = f (t, y(t)), t ∈ [0, 1],

cDβ

0+ y(t) = g(t, x(t)), t ∈ [0, 1],

px(0) + qx′(0) =
∫ 1

0 a1(x(s)) ds, px(1) + qx′(1) =
∫ 1

0 a2(x(s)) ds,

p̃y(0) + q̃y′(0) =
∫ 1

0 ã1(y(s)) ds, p̃y(1) + q̃y′(1) =
∫ 1

0 ã2(y(s)) ds,

where α,β ∈ (1, 2], p, q, p̃, q̃ ≥ 0 are constants, a1, a2, ã1, ã2 are continuous functions.
In this paper, we study the following boundary value problem of fractional differential

equation with two different fractional derivatives:

{ cDβ
1– (LDα

0+ + λ)u(t) = f (t, u(t)), t ∈ J := (0, 1], (1.1)

(I1–α
0+ u)(0) = u0,

∑m
i=1 u(ξi) = (ρIγ

0+ u)(η), (1.2)

where α,β ,α + β ∈ (0, 1), λ > 0, γ > 1, ρ > 0, α + ρ > 1 and ξi,η ∈ (0, 1](i = 1, 2, . . . , m). cDβ
1–

is the right-sided Caputo fractional derivative, LDα
0+ is the left-sided Riemann–Liouville

fractional derivative, I1–α
0+ is the left-sided Riemann–Liouville fractional integral, ρIγ

0+ is a
Katugampola fractional integral.

Different from the previous results, the boundary conditions considered in this paper
include the nonlocal Katugampola fractional integral, moreover, under the weak assump-
tions and using Leray–Schauder degree theory, we obtain the existence result of solutions
for the above problem (Theorem 5.3). However, to the best of our knowledge, few papers
can be found in the literature dealing with the existence result and the Ulam–Hyers sta-
bility of differential equation involving the forward and backward fractional derivatives.

The rest of this paper is organized as follows. In Sect. 2, we collect some concepts of frac-
tional calculus. In Sect. 3, we prove some properties of classical and generalized Mittag-
Leffler functions. In Sect. 4, we present the definition of solution to (1.1)–(1.2). In Sect. 5,
we obtain the existence and uniqueness of solutions to problem (1.1)–(1.2). In Sect. 6, we
present Ulam–Hyers stability result for Eq. (1.1). Three examples are given in Sect. 7 to
demonstrate the applicability of our result.

2 Preliminaries
In this section, we introduce some notations and definitions of fractional calculus.
Throughout this paper, we denote by C(J ,R) the Banach space of all continuous func-
tions from J to R, by AC([a, b],R) the space of absolutely continuous functions on [a, b].
Γ (·) and B(·, ·) are the gamma and beta functions, respectively.
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Definition 2.1 ([3, 4]) The left-sided and the right-sided fractional integrals of order δ for
a function x(t) ∈ L1 are defined by

(
Iδ

a+ x
)
(t) =

1
Γ (δ)

∫ t

a
(t – s)δ–1x(s) ds, t > a, δ > 0,

and

(
Iδ

b– x
)
(t) =

1
Γ (δ)

∫ b

t
(s – t)δ–1x(s) ds, t < b, δ > 0,

respectively.

Definition 2.2 ([3, 4]) If x(t) ∈ AC([a, b],R), then the left-sided Riemann–Liouville frac-
tional derivative LDδ

a+ x(t) of order δ exists almost everywhere on [a, b] and can be written
as

(LDδ
a+ x

)
(t) =

1
Γ (1 – δ)

(
d
dt

)∫ t

a
(t – s)–δx(s) ds =

d
dt

(
I1–δ

a+ x
)
(t), t > a, 0 < δ < 1.

Definition 2.3 ([3, 4]) If x(t) ∈ AC([a, b],R), then the right-sided Caputo fractional
derivative cDδ

b– x(t) of order δ exists almost everywhere on [a, b] and can be written as

(cDδ
b– x

)
(t) =

(LDδ
b–

[
x(s) – x(b)

])
(t), t < b, 0 < δ < 1.

Definition 2.4 ([21]) For ρ, q > 0, the Katugampola fractional integral of y(t) is defined by

(
ρIq

a+ y
)
(t) =

ρ1–q

Γ (q)

∫ t

a

(
tρ – τρ

)q–1
τρ–1y(τ ) dτ , t > a.

3 Properties of the Mittag-Leffler functions
In this section, we prove some properties of the Mittag-Leffler functions.

Definition 3.1 ([3, 4]) For μ,ν > 0, z ∈ R, the classical Mittag-Leffler function Eμ(z) and
the generalized Mittag-Leffler function Eμ,ν(z) are defined by

Eμ(z) =
∞∑

k=0

zk

Γ (μk + 1)
, Eμ,ν(z) =

∞∑

k=0

zk

Γ (μk + ν)
.

Clearly, Eμ,1(z) = Eμ(z).

Lemma 3.2 ([4, 22]) Let α ∈ (0, 1). Then the nonnegative functions Eα , Eα,α , Eα,α+1 have
the following properties:

(i) For any t ∈ J , Eα(–λtα) ≤ 1, Eα,α(–λtα) ≤ 1
Γ (α) , Eα,α+1(–λtα) ≤ 1

Γ (α+1) .
(ii) For any t1, t2 ∈ J ,

∣
∣Eα

(
–λtα

2
)

– Eα

(
–λtα

1
)∣
∣ = O

(|t2 – t1|α
)
, as t2 → t1,

∣
∣Eα,α

(
–λtα

2
)

– Eα,α
(
–λtα

1
)∣
∣ = O

(|t2 – t1|α
)
, as t2 → t1,

∣
∣Eα,α+1

(
–λtα

2
)

– Eα,α+1
(
–λtα

1
)∣
∣ = O

(|t2 – t1|α
)
, as t2 → t1.
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Lemma 3.3 Let γ ,μ,ν,λ > 0, t > 0, 0 < α,β < 1, then the following formulas are valid:
(i) d

dt [tν–1Eμ,ν(–λtμ)] = tν–2Eμ,ν–1(–λtμ) (ν > 1) and d
dt Eμ(–λtμ) = –λtμ–1Eμ,μ(–λtμ);

(ii) Iγ

0+ (sν–1Eμ,ν(–λsμ))(t) = 1
Γ (γ )

∫ t
0 (t – s)γ –1sν–1Eμ,ν(–λsμ) ds = tγ +ν–1Eμ,γ +ν(–λtμ);

(iii) [LDν
0+ sβ–1Eα,β (–λsα)](t) = tβ–ν–1Eα,β–ν(–λtα), (β > ν);

(iv) [cDβ
1–

LDα
0+ sαEα,α+1(–λsα)](t) + λ[cDβ

1– sαEα,α+1(–λsα)](t) = 0;
(v) [cDβ

1–
LDα

0+ sα–1Eα,α(–λsα)](t) + λ[cDβ
1– sα–1Eα,α(–λsα)](t) = 0;

(vi) [ρIγ

0+ sν–1Eα,ν(–λsα)](t) = tγρ+ν–1

ργ Γ (γ )
∫ 1

0 s
ν–1
ρ (1 – s)γ –1Eα,ν(–λtαs

α
ρ ) ds, ν = α or ν = α + 1.

Proof It follows from the results in [3] that (i)–(iii) hold. Moreover,

[LDα
0+ sα–1Eα,α

(
–λsα

)]
(t) =

1
Γ (1 – α)

d
dt

∫ t

0
(t – s)–αsα–1Eα,α

(
–λsα

)
ds

=
d
dt

[
Eα

(
–λtα

)]
= –λtα–1Eα,α

(
–λtα

)
.

Similarly, we have [LDα
0+ sαEα,α+1(–λsα)](t) = Eα(–λtα). Furthermore, we get

[cDβ
1–

LDα
0+ sαEα,α+1

(
–λsα

)]
(t) + λ

[cDβ
1– sαEα,α+1

(
–λsα

)]
(t)

=
[cDβ

1–
(
Eα

(
–λsα

)
+ λsαEα,α+1

(
–λsα

))]
(t)

=
(cDβ

1– 1
)
(t) = 0.

This yields (iv). (v) can be obtained in a similar way. Clearly, for ν = α or ν = α + 1, the
integral

∫ t
0 (1 – τ )γ –1τ

ν–1
ρ Eα,ν(–λtατ

α
ρ ) dτ exists, then

[
ρIγ

0+ sν–1Eα,ν
(
–λsα

)]
(t) =

ρ1–γ

Γ (γ )

∫ t

0

(
tρ – sρ

)γ –1sρ+ν–2Eα,ν
(
–λsα

)
ds

=
tργ +ν–1

ργ Γ (γ )

∫ 1

0
(1 – τ )γ –1τ

ν–1
ρ Eα,ν

(
–λtατ

α
ρ
)

dτ .

Thus we have proved (vi). �

4 Solutions for problem (1.1)–(1.2)
In this section, we present the formula of the solution to the problem (1.1)–(1.2).

Lemma 4.1 ([3]) For θ > 0, a general solution of the fractional differential equation
cDθ

1– u(t) = 0 is given by

u(t) =
n–1∑

i=0

ci(1 – t)i,

where ci ∈ R, i = 0, 1, 2, . . . , n – 1(n = [θ ] + 1), and [θ ] denotes the integer part of the real
number θ .

Similar to the arguments in [3], we can obtain the following result.

Lemma 4.2 For α,β ∈ (0, 1), h ∈ L1(0, 1), if cDβ
1– (LDα

0+ + λ)u(t) = h(t), t ∈ J , then

u(t) = c0tαEα,α+1
(
–λtα

)
+ c1tα–1Eα,α

(
–λtα

)
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+
1

Γ (β)

∫ t

0

∫ 1

s
(t – s)α–1(τ – s)β–1Eα,α

(
–λ(t – s)α

)
h(τ ) dτ ds, t ∈ J .

Formally, by Lemma 4.1, for c0 ∈R, we have (LDα
0+ + λ)u(t) = c0 + (Iβ

1– h)(t). Based on the
arguments in Sect. 4.1.1 of [3], we obtain

u(t) = c1tα–1Eα,α
(
–λtα

)
+

∫ t

0
(t – s)α–1Eα,α

(
–λ(t – s)α

)(
c0 +

(
Iβ

1– h
)
(s)

)
ds

= c0tαEα,α+1
(
–λtα

)
+ c1tα–1Eα,α

(
–λtα

)

+
1

Γ (β)

∫ t

0

∫ 1

s
(t – s)α–1(τ – s)β–1Eα,α

(
–λ(t – s)α

)
h(τ ) dτ ds.

We define C1–α([0, 1],R) = {u ∈ C(J ,R) : t1–αu(t) ∈ C([0, 1],R)} with the norm ‖u‖1–α =
maxt∈[0,1] t1–α|u(t)| and abbreviate C1–α([0, 1],R) to C1–α .

We need the following assumptions.
(H1) f : J ×R →R satisfies f (·,ω) : J →R is measurable for all ω ∈ R and there exist

Lf > 0 and σ ∈ [0, 1) such that

∣
∣f (t,ω) – f (t, ω̃)

∣
∣ ≤ Lf |ω – ω̃|σ .

(H2) Mf := supt∈J |f (t, 0)| < ∞.
For convenience of the following presentation, we set

(Fβu)(s) =
(
Iβ

1– f
)
(s) =

1
Γ (β)

∫ 1

s
(τ – s)β–1f

(
τ , u(τ )

)
dτ ,

(Gu)(t) =
∫ t

0
(t – s)α–1Eα,α

(
–λ(t – s)α

)
(Fβu)(s) ds,

(Gu)(t) =
tργ

ργ Γ (γ )

∫ 1

0
(1 – s)γ –1(Gu)

(
ts

1
ρ
)

ds,

A(θ , t) =
tγρ+θ

ργ Γ (γ )

∫ 1

0
s

θ
ρ (1 – s)γ –1Eα,θ+1

(
–λtαs

α
ρ
)

ds,

Ã(θ , t) = A(θ , t) –
m∑

i=1

ξ θ
i Eα,θ+1

(
–λξα

i
)
.

Since
∫ 1

s (τ – s)β–1τα–1 dτ < sα–1

β
,
∫ t

0 (t – s)α–1sα–1 ds = t2α–1B(α,α) ≤ tα–1B(α,α) and

∣
∣f

(
t, u(t)

)∣
∣ ≤ ∣

∣f
(
t, u(t)

)
– f (t, 0)

∣
∣ +

∣
∣f (t, 0)

∣
∣ ≤ Lf tα–1‖u‖σ ,1–α + Mf , (4.1)

where ‖u‖σ ,1–α = maxt∈[0,1] t1–α|u(t)|σ , one can find

∣
∣(Fβu)(s)

∣
∣ ≤ Lf ‖u‖σ ,1–α

Γ (β)

∫ 1

s
(τ – s)β–1τα–1 dτ +

Mf

Γ (β)

∫ 1

s
(τ – s)β–1 dτ

≤ Lf sα–1‖u‖σ ,1–α + Mf

Γ (β + 1)
, (4.2)

∣
∣(Gu)(t)

∣
∣ ≤ 1

Γ (α)

∫ t

0
(t – s)α–1∣∣(Fβu)(s)

∣
∣ds ≤ αLf tα–1B(α,α)‖u‖σ ,1–α + Mf

Γ (α + 1)Γ (β + 1)
. (4.3)
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Lemma 4.3 For 0 < t1 < t2 ≤ 1,

∫ t1

0

[
(t1 – s)α–1 – (t2 – s)α–1]∣∣(Fβu)(s)

∣
∣ds → 0, as t2 → t1, (4.4)

∫ t2

t1

(t2 – s)α–1∣∣(Fβu)(s)
∣
∣ds → 0, as t2 → t1, (4.5)

∫ t1

0
(t1 – s)α–1∣∣Eα,α

(
–λ(t1 – s)α

)
– Eα,α

(
–λ(t2 – s)α

)∣
∣ · ∣∣(Fβu)(s)

∣
∣ds → 0,

as t2 → t1. (4.6)

Proof By the mean value theorem and Lemma 3.2, we obtain

∫ t1

0

[
(t1 – s)α–1 – (t2 – s)α–1]sα–1 ds

=
∫ t1

0
(t1 – s)α–1sα–1 ds –

∫ t2

0
(t2 – s)α–1sα–1 ds +

∫ t2

t1

(t2 – s)α–1sα–1 ds

≤ ∣
∣t2α–1

1 – t2α–1
2

∣
∣B(α,α) +

tα–1
1
α

(t2 – t1)α → 0, as t2 → t1, (4.7)
∫ t1

0
(t1 – s)α–1∣∣Eα,α

(
–λ(t1 – s)α

)
– Eα,α

(
–λ(t2 – s)α

)∣
∣sα–1 ds

= t2α–1
1 B(α,α)O

(
(t2 – t1)α

) → 0, as t2 → t1. (4.8)

Then, using the inequality tα
2 – tα

1 ≤ (t2 – t1)α and Eqs. (4.2), (4.7) and (4.8), we get

∫ t1

0

[
(t1 – s)α–1 – (t2 – s)α–1]∣∣(Fβu)(s)

∣
∣ds

≤ Lf ‖u‖σ ,1–α

Γ (β + 1)

∫ t1

0

[
(t1 – s)α–1 – (t2 – s)α–1]sα–1 ds +

2Mf (t2 – t1)α

αΓ (β + 1)

→ 0, as t2 → t1,
∫ t2

t1

(t2 – s)α–1∣∣(Fβu)(s)
∣
∣ds

≤ Lf ‖u‖σ ,1–α

Γ (β + 1)

∫ t2

t1

(t2 – s)α–1sα–1 ds +
Mf (t2 – t1)α

αΓ (β + 1)

≤ [
Lf ‖u‖σ ,1–αtα–1

1 + Mf
] (t2 – t1)α

αΓ (β + 1)

→ 0, as t2 → t1,

and
∫ t1

0
(t1 – s)α–1∣∣Eα,α

(
–λ(t1 – s)α

)
– Eα,α

(
–λ(t2 – s)α

)∣
∣ · ∣∣(Fβu)(s)

∣
∣ds

≤ Lf ‖u‖σ ,1–α

Γ (β + 1)

∫ t1

0
(t1 – s)α–1∣∣Eα,α

(
–λ(t1 – s)α

)
– Eα,α

(
–λ(t2 – s)α

)∣
∣sα–1 ds

+
tα
1 Mf · O((t2 – t1)α)

αΓ (β + 1)
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→ 0, as t2 → t1. �

Lemma 4.4 Assume that (H1) and (H2) hold. For u ∈ C1–α , t ∈ J , we have
(i) (Gu)(t) ∈ AC(J ,R);

(ii) [LDα
0+ (Gu)(s)](t) = –λ(Gu)(t) + (Iβ

1– f )(t);
(iii) [cDβ

1–
LDα

0+ (Gu)(s)](t) + λ[cDβ
1– (Gu)(s)](t) = f (t, u(t));

(iv) [ρIγ

0+ (Gu)(s)](t) = tγρ

ργ Γ (γ )
∫ 1

0 (1 – s)γ –1(Gu)(ts
1
ρ ) ds.

Proof (i)–(iii) For every finite collection {(aj, bj)}1≤j≤n on J with
∑n

j=1(bj – aj) → 0, using
the inequalities bα

j – aα
j ≤ (bj – aj)α , j = 1, 2, . . . , n, and Eqs. (4.4)–(4.6), we arrive at

n∑

j=1

∣
∣(Gu)(bj) – (Gu)(aj)

∣
∣

=
n∑

j=1

∣
∣
∣
∣

∫ bj

0
(bj – s)α–1Eα,α

(
–λ(bj – s)α

)
(Fβu)(s) ds

–
∫ aj

0
(aj – s)α–1Eα,α

(
–λ(aj – s)α

)
(Fβu)(s) ds

∣
∣
∣
∣

≤ 1
Γ (α)

[ n∑

j=1

∫ aj

0

[
(aj – s)α–1 – (bj – s)α–1]∣∣(Fβu)(s)

∣
∣ds

+
n∑

j=1

∫ bj

aj

(bj – s)α–1∣∣(Fβu)(s)
∣
∣ds

]

+
n∑

j=1

∫ aj

0
(aj – s)α–1∣∣Eα,α

(
–λ(aj – s)α

)
– Eα,α

(
–λ(bj – s)α

)∣
∣ · ∣∣(Fβu)(s)

∣
∣ds

→ 0.

Then, (Gu)(t) is absolutely continuous on J . Hence, for almost all t ∈ J , [LDα
0+ (Gu)(s)](t)

exists and from Lemma 3.3 it follows that

[LDα
0+ (Gu)(s)

]
(t)

=
1

Γ (1 – α)
d
dt

∫ t

0

∫ s

0
(t – s)–α(s – τ )α–1Eα,α

(
–λ(s – τ )α

)(
Iβ

1– f
)
(τ ) dτ ds

=
1

Γ (1 – α)
d
dt

∫ t

0

(
Iβ

1– f
)
(τ )

∫ t

τ

(t – s)–α(s – τ )α–1Eα,α
(
–λ(s – τ )α

)
dsdτ

=
d
dt

∫ t

0

(
Iβ

1– f
)
(τ )Eα

(
–λ(t – τ )α

)
dτ

= –λ(Gu)(t) +
(
Iβ

1– f
)
(t).

Furthermore,

[cDβ
1–

LDα
0+ (Gu)(s)

]
(t) + λ

[cDβ
1– (Gu)(s)

]
(t)

=
[cDβ

1–
(
–λ(Gu)(s) +

(
Iβ

1– f
)
(s)

)]
(t) + λ

[cDβ
1– (Gu)(s)

]
(t)
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= f
(
t, u(t)

)
.

(iv) It follows from (4.3) that ρIγ

0+ (Gu)(t) exists, and

[
ρIγ

0+ (Gu)(s)
]
(t) =

ρ1–γ

Γ (γ )

∫ t

0

(
tρ – sρ

)γ –1sρ–1(Gu)(s) ds

=
tγρ

ργ Γ (γ )

∫ 1

0
(1 – s)γ –1(Gu)

(
ts

1
ρ
)

ds. �

Lemma 4.5 Assume that (H1) and (H2) hold. A function u is a solution of the following
fractional integral equation:

u(t) = (Pu)(t) + (Qu)(t) (4.9)

if and only if u is a solution of the problem (1.1)–(1.2), where

(Pu)(t) =
[

–
Ã(α – 1,η)

Ã(α,η)
tαEα,α+1

(
–λtα

)
+ tα–1Eα,α

(
–λtα

)
]

u0,

(Qu)(t) = –
(Gu)(η) –

∑m
i=1(Gu)(ξi)

Ã(α,η)
tαEα,α+1

(
–λtα

)
+ (Gu)(t).

Proof (Sufficiency) Let u be the solution of (1.1)–(1.2), Lemma 3.3, Lemma 4.2 and Lemma
4.4 imply

u(t) = c0tαEα,α+1
(
–λtα

)
+ c1tα–1Eα,α

(
–λtα

)
+ (Gu)(t), t ∈ J ,

(
I1–α

0+ u
)
(t) = c0tEα,2

(
–λtα

)
+ c1Eα

(
–λtα

)
+

[
I1–α

0+ (Gu)
]
(t),

(
ρIγ

0+ u
)
(t) = c0A(α, t) + c1A(α – 1, t) + (Gu)(t),

where c0, c1 are constants. Using the boundary value condition (1.2), we derive that c1 = u0

and

c0

m∑

i=1

ξα
i Eα,α+1

(
–λξα

i
)

+ u0

m∑

i=1

ξα–1
i Eα,α

(
–λξα

i
)

+
m∑

i=1

(Gu)(ξi)

= c0A(α,η) + u0A(α – 1,η) + (Gu)(η),

then

c0 = –
(Gu)(η) –

∑m
i=1(Gu)(ξi) + u0Ã(α – 1,η)

Ã(α,η)
.

Now we can see that (4.9) holds.
(Necessity) Let u satisfy (4.9). From Lemma 3.3(iv), (v) and Lemma 4.4(iii), it follows

that [cDβ
1–

LDα
0+ u](t) exists and cDβ

1– (LDα
0+ +λ)u(t) = f (t, u(t)) for t ∈ J . Clearly, the boundary

value condition (1.2) holds and hence the necessity is proved. �
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5 Existence results for problem (1.1)–(1.2)
In this section, we deal with the existence and uniqueness of solutions to the problem
(1.1)–(1.2).

Lemma 5.1 Let v ∈ C([0, 1],R) satisfy the following inequality:

∣
∣v(t)

∣
∣ ≤ a + b

∫ t

0

∫ 1

s
t1–α(t – s)α–1(τ – s)β–1τσ (α–1)∣∣v(τ )

∣
∣σ dτ ds

+ c
m∑

i=1

∫ ξi

0

∫ 1

s
t1–α(ξi – s)α–1(τ – s)β–1τσ (α–1)∣∣v(τ )

∣
∣σ dτ ds

+ d
∫ 1

0

∫ ηs
1
ρ

0

∫ 1

τ

t1–α(1 – s)γ –1(ηs
1
ρ – τ

)α–1(ζ – τ )β–1ζ σ (α–1)∣∣v(ζ )
∣
∣σ dζ dτ ds,

where a, b, c, d > 0 are constants. Then |v(t)| ≤ M, where M is the only positive solution of
the equation

M = a +

[

b + c
m∑

i=1

ξα–σ
i + dηα–σ B

(

γ ,
α – σ + ρ

ρ

)]
B(α, 1 – σ )

β
Mσ .

Proof Let m = maxt∈[0,1] |v(t)|, using the following estimates:

∫ 1

s
(τ – s)β–1τσ (α–1) dτ ≤ sσ (α–1)(1 – s)β

β
<

sσ (α–1)

β
, (5.1)

∫ t

0

∫ 1

s
(t – s)α–1(τ – s)β–1τσ (α–1) dτ ds

<
1
β

∫ t

0
(t – s)α–1sσ (α–1) ds <

tα–σ

β
B(α, 1 – σ ), (5.2)

∫ 1

0

∫ ts
1
ρ

0

∫ 1

τ

(1 – s)γ –1(ts
1
ρ – τ

)α–1(ζ – τ )β–1ζ σ (α–1) dζ dτ ds

≤ B(α, 1 – σ )
β

∫ 1

0
(1 – s)γ –1(ts

1
ρ
)α–σ ds =

B(α, 1 – σ )B(γ , α–σ+ρ

ρ
)

β
tα–σ , (5.3)

we conclude that

m < a +

[

b + c
m∑

i=1

ξα–σ
i + dηα–σ B

(

γ ,
α – σ + ρ

ρ

)]
B(α, 1 – σ )

β
mσ ,

thus m ≤ M. �

Lemma 5.2 Let ṽ ∈ C([0, 1],R) satisfy the following inequality:

∣
∣̃v(t)

∣
∣ ≤ ã

∫ t

0

∫ 1

s
t1–α(t – s)α–1(τ – s)β–1τα–1∣∣̃v(τ )

∣
∣dτ ds

+ b̃
m∑

i=1

∫ ξi

0

∫ 1

s
t1–α(ξi – s)α–1(τ – s)β–1τα–1∣∣̃v(τ )

∣
∣dτ ds
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+ c̃
∫ 1

0

∫ ηs
1
ρ

0

∫ 1

τ

t1–α(1 – s)γ –1(ηs
1
ρ – τ

)α–1(ζ – τ )β–1ζ α–1∣∣̃v(ζ )
∣
∣dζ dτ ds,

where ã, b̃, c̃ > 0 are constants. If (̃a + b̃
∑m

i=1 ξα–1
i + c̃ηα–1B(γ , α–1+ρ

ρ
)) B(α,α)

β
< 1, then ṽ(t) ≡ 0.

Proof Let m̃ = maxt∈[0,1] |̃v(t)|, from the following inequalities:

∫ 1

s
(τ – s)β–1τα–1 dτ ≤ sα–1

β
,

∫ t

0

∫ 1

s
(t – s)α–1(τ – s)β–1τα–1 dτ ds ≤ tα–1B(α,α)

β
, (5.4)

∫ 1

0

∫ ηs
1
ρ

0

∫ 1

τ

(1 – s)γ –1(ηs
1
ρ – τ

)α–1(ζ – τ )β–1ζ α–1 dζ dτ ds

≤ ηα–1
∫ 1

0
(1 – s)γ –1s

α–1
ρ ds

B(α,α)
β

=
ηα–1

β
B(α,α)B

(

γ ,
α – 1 + ρ

ρ

)

, (5.5)

we deduce that

m̃ ≤
(

ã + b̃
m∑

i=1

ξα–1
i + c̃ηα–1B

(

γ ,
α – 1 + ρ

ρ

))
m̃B(α,α)

β
,

thus m̃ = 0. �

Next, we study the existence result of solutions for (1.1)–(1.2). For convenience of the
following presentation, we set

M1 =
[ |Ã(α – 1,η)|

|Ã(α,η)| + α

] |u0|
Γ (α + 1)

; M2 =
1

|Ã(α,η)|Γ (α + 1)
;

M3 =
1

ργ Γ (α)Γ (β)Γ (γ )
; M4 =

1
αβ

[
M2M3

γ
+

mM2 + 1
Γ (α)Γ (β)

]

.

Theorem 5.3 Assume that (H1) and (H2) are satisfied, then the problem (1.1)–(1.2) has
at least one solution u ∈ C1–α .

Proof We consider an operator F : C1–α → C1–α defined by

(Fu)(t) = (Pu)(t) + (Qu)(t).

Clearly, F is well defined, and the fixed point of F is the solution of the problem (1.1)–
(1.2).

Let {un} be a sequence such that un → u in C1–α , then there exists ε > 0 such that ‖un –
u‖1–α < ε for n sufficiently large. By (H1), we have |f (t, un(t)) – f (t, u(t))| ≤ Lf tσ (α–1)εσ .
Moreover, from (5.1)–(5.3), we have

∣
∣(Fβun)(s) – (Fβu)(s)

∣
∣
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≤ 1
Γ (β)

∫ 1

s
(τ – s)β–1∣∣f

(
τ , un(τ )

)
– f

(
τ , u(τ )

)∣
∣dτ

≤ Lf ε
σ

Γ (β)

∫ 1

s
(τ – s)β–1τσ (α–1) dτ ≤ Lf sσ (α–1)

Γ (β + 1)
εσ ,

∣
∣(Gun)(t) – (Gu)(t)

∣
∣

≤ 1
Γ (α)

∫ t

0
(t – s)α–1∣∣(Fβun)(s) – (Fβu)(s)

∣
∣ds

≤ Lf ε
σ

Γ (α)Γ (β + 1)

∫ t

0
(t – s)α–1sσ (α–1) ds

≤ tα–σ B(α, 1 – σ )Lf

Γ (α)Γ (β + 1)
εσ ,

∣
∣(Gun)(t) – (Gu)(t)

∣
∣

≤ 1
ργ Γ (γ )

∫ 1

0
(1 – s)γ –1∣∣(Gun)

(
ts

1
ρ
)

– (Gu)
(
ts

1
ρ
)∣
∣ds

≤ M3tα–σ B(α, 1 – σ )Lf ε
σ

β

∫ 1

0
(1 – s)γ –1s

α–σ
ρ ds

=
M3tα–σ B(α, 1 – σ )B(γ , α–σ+ρ

ρ
)Lf

β
εσ ,

furthermore,

t1–α
∣
∣(Fun)(t) – (Fu)(t)

∣
∣ ≤ t1–α

∣
∣(Qun)(t) – (Qu)(t)

∣
∣

≤ M2

[
∣
∣(Gun)(η) – (Gu)(η)

∣
∣ +

m∑

i=1

∣
∣(Gun)(ξi) – (Gu)(ξi)

∣
∣

]

+ t1–α
∣
∣(Gun)(t) – (Gu)(t)

∣
∣

→ 0, as n → ∞.

Now we see that F is continuous.
For 0 < t1 < t2 < 1, from (4.4)–(4.6), we find

∣
∣(Gu)(t2) – (Gu)(t1)

∣
∣

=
∣
∣
∣
∣

∫ t2

0
(t2 – s)α–1Eα,α

(
–λ(t2 – s)α

)
(Fβu)(s) ds

–
∫ t1

0
(t1 – s)α–1Eα,α

(
–λ(t1 – s)α

)
(Fβu)(s) ds

∣
∣
∣
∣

≤ 1
Γ (α)

[∫ t1

0

[
(t1 – s)α–1 – (t2 – s)α–1]∣∣(Fβu)(s)

∣
∣ds +

∫ t2

t1

(t2 – s)α–1∣∣(Fβu)(s)
∣
∣ds

]

+
∫ t1

0
(t1 – s)α–1∣∣Eα,α

(
–λ(t1 – s)α

)
– Eα,α

(
–λ(t2 – s)α

)∣
∣ · ∣∣(Fβu)(s)

∣
∣ds

→ 0, as t2 → t1,

moreover, according to (4.3) and Lemma 3.2, we know that |(Qu)(t2) – (Qu)(t1)| → 0 and
|(Pu)(t2) – (Pu)(t1)| → 0 as t2 → t1. Hence the operator F is equicontinuous.
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We just need to prove the existence of at least one solution u ∈ C1–α satisfying u = Fu.
Hence, we show that F : BR → C1–α satisfies the condition

u 
= θFu, ∀u ∈ ∂BR,∀θ ∈ [0, 1], (5.6)

where BR = {u ∈ C1–α : t1–α|u(t)| < R, R > 0}. We define H(θ , u) = θFu, u ∈ C1–α , θ ∈ [0, 1].
By the Arzela–Ascoli theorem, a continuous map hθ defined by hθ (u) = u – H(θ , u) = u –
θFu is completely continuous.

If (5.6) is true, then the Leray–Schauder degrees are well defined and from the homotopy
invariance of topological degree, it follows that

deg(hθ , BR, 0) = deg(I – θF , BR, 0) = deg(h1, BR, 0)

= deg(h0, BR, 0) = deg(I, BR, 0) = 1 
= 0, 0 ∈ BR.

Let v(t) = t1–αu(t), we obtain the following estimate:

∣
∣(Fβu)(s)

∣
∣ ≤ 1

Γ (β)

∫ 1

s
(τ – s)β–1∣∣f

(
τ , u(τ )

)∣
∣dτ

≤ Lf

Γ (β)

∫ 1

s
(τ – s)β–1τσ (α–1)∣∣v(τ )

∣
∣σ dτ +

Mf

Γ (β + 1)
,

and hence

∣
∣(Gu)(t)

∣
∣ ≤ Lf

Γ (α)Γ (β)

∫ t

0

∫ 1

s
(t – s)α–1(τ – s)β–1τσ (α–1)∣∣v(τ )

∣
∣σ dτ ds

+
Mf

Γ (α + 1)Γ (β + 1)
,

then

∣
∣(Gu)(η)

∣
∣

≤ ηργ

ργ Γ (γ )

∫ 1

0
(1 – s)γ –1∣∣(Gu)

(
ηs

1
ρ
)∣
∣ds

≤ M3

[

Lf

∫ 1

0

∫ ηs
1
ρ

0

∫ 1

τ

(1 – s)γ –1(ηs
1
ρ – τ

)α–1(ζ – τ )β–1ζ σ (α–1)∣∣v(ζ )
∣
∣σ dζ dτ ds

+
Mf

αβγ

]

.

Applying (5.2) and (5.3), we obtain

∣
∣v(t)

∣
∣ =

∣
∣t1–αu(t)

∣
∣ ≤ t1–α

[∣
∣(Pu)(t)

∣
∣ +

∣
∣(Qu)(t)

∣
∣
]

≤ M1 + t1–α

[

M2

(
∣
∣(Gu)(η)

∣
∣ +

m∑

i=1

∣
∣(Gu)(ξi)

∣
∣

)

+
∣
∣(Gu)(t)

∣
∣

]

≤ ā + b
∫ t

0

∫ 1

s
t1–α(t – s)α–1(τ – s)β–1τσ (α–1)∣∣v(τ )

∣
∣σ dτ ds
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+ c
m∑

i=1

∫ ξi

0

∫ 1

s
t1–α(ξi – s)α–1(τ – s)β–1τσ (α–1)∣∣v(τ )

∣
∣σ dτ ds

+ d̄
∫ 1

0

∫ ηs
1
ρ

0

∫ 1

τ

t1–α(1 – s)γ –1(ηs
1
ρ – τ

)α–1(ζ – τ )β–1ζ σ (α–1)∣∣v(ζ )
∣
∣σ dζ dτ ds,

where

a = M1 + Mf M4, b =
Lf

Γ (α)Γ (β)
, c =

M2Lf

Γ (α)Γ (β)
, d̄ = M2M3Lf .

Then from Lemma 5.1, we find ‖u‖1–α ≤ M̃, where M̃ satisfies

M̃ = a +

[

b + c
m∑

i=1

ξα–σ
i + d̄ηα–σ B

(

γ ,
α – σ + ρ

ρ

)]
B(α, 1 – σ )

β
M̃σ .

Set R = M̃ + 1, then (5.6) holds. This completes the proof. �

Next, we study the uniqueness of solution, for this purpose, we give the following as-
sumptions.

(H1′) f : J × R → R satisfies f (·,ω) : J → R is measurable for all ω ∈ R and there exist
L′

f , M̃f > 0 and σ̃ ∈ [0, 1) such that

∣
∣f (t,ω)

∣
∣ ≤ L′

f |ω|σ̃ + M̃f .

(H2′) There exists a constant L̃f > 0 such that

∣
∣f (t,ω) – f (t, ω̃)

∣
∣ ≤ L̃f |ω – ω̃|, for ω, ω̃ ∈R, t ∈ J .

Theorem 5.4 Assume that (H1′) and (H2′) hold, then the problem (1.1)–(1.2) has a unique
solution u ∈ C1–α , provided that

(
1 + M2

∑m
i=1 ξα–1

i
Γ (α)Γ (β)

+ M2M3η
α–1B

(

γ ,
α – 1 + ρ

ρ

))
B(α,α)L̃f

β
< 1.

Proof By (H1′) and the proof of Theorem 5.3, it is not difficult to see that (1.1)–(1.2) has
a solution u(·) ∈ C1–α . Let ũ(·) be another solution of the problem (1.1)–(1.2). According
to (H2′), we find

∣
∣(Fβu)(s) – (Fβ ũ)(s)

∣
∣

≤ L̃f

Γ (β)

∫ 1

s
(τ – s)β–1∣∣u(τ ) – ũ(τ )

∣
∣dτ ,

∣
∣(Gu)(t) – (Gũ)(t)

∣
∣

≤ 1
Γ (α)

∫ t

0
(t – s)α–1∣∣(Fβu)(s) – (Fβ ũ)(s)

∣
∣ds

≤ L̃f

Γ (α)Γ (β)

∫ t

0

∫ 1

s
(t – s)α–1(τ – s)β–1∣∣u(τ ) – ũ(τ )

∣
∣dτ ds,
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∣
∣(Gu)(t) – (Gũ)(t)

∣
∣

≤ 1
ργ Γ (γ )

∫ 1

0
(1 – s)γ –1∣∣(Gu)

(
ts

1
ρ
)

– (Gũ)
(
ts

1
ρ
)∣
∣ds

≤ M3L̃f

∫ 1

0

∫ ts
1
ρ

0

∫ 1

τ

(1 – s)γ –1(ts
1
ρ – τ

)α–1(ζ – τ )β–1∣∣u(ζ ) – ũ(ζ )
∣
∣dζ dτ ds.

Let ṽ(t) = t1–α(u(t) – ũ(t)), then

∣
∣ṽ(t)

∣
∣

= t1–α
∣
∣u(t) – ũ(t)

∣
∣

= t1–α
∣
∣(Qu)(t) – (Qũ)(t)

∣
∣

≤ M2

[

M3L̃f

∫ 1

0

∫ ηs
1
ρ

0

∫ 1

τ

t1–α(1 – s)γ –1(ηs
1
ρ – τ

)α–1(ζ – τ )β–1ζ α–1∣∣ṽ(ζ )
∣
∣dζ dτ ds

+
L̃f

Γ (α)Γ (β)

m∑

i=1

∫ ξi

0

∫ 1

s
t1–α(ξi – s)α–1(τ – s)β–1τα–1∣∣ṽ(τ )

∣
∣dτ ds

]

+
L̃f

Γ (α)Γ (β)

∫ t

0

∫ 1

s
t1–α(t – s)α–1(τ – s)β–1τα–1∣∣ṽ(τ )

∣
∣dτ ds.

Furthermore, from Lemma 5.2, it follows that u(t) – ũ(t) ≡ 0. This yields the uniqueness
of solution to the problem (1.1)–(1.2). �

In order to obtain another result for uniqueness of the solutions, we make the following
assumption:

(H3) There exists a constant Lf > 0 such that

∣
∣f

(
t, tα–1ω

)
– f

(
t, tα–1ω̃

)∣
∣ ≤ Lf |ω – ω̃|, t ∈ J ,ω, ω̃ ∈R.

Theorem 5.5 Assume that (H3) holds, then the problem (1.1)–(1.2) has a unique solution
u ∈ C1–α , provided that

M :=
Lf

Γ (β + 1)Γ (α + 1)

[

1 +
M2(1 + mργ Γ (γ + 1))

ργ Γ (γ + 1)

]

< 1.

Proof We consider an operator F : C1–α → C1–α defined by

(Fu)(t) = (Pu)(t) + (Qu)(t).

Clearly, F is well defined. According to (H3), we find

∣
∣(Fβu)(s) – (Fβ ũ)(s)

∣
∣

≤ Lf

Γ (β)

∫ 1

s
(τ – s)β–1τ 1–α

∣
∣u(τ ) – ũ(τ )

∣
∣dτ ≤ Lf

Γ (β + 1)
‖u – ũ‖1–α ,

∣
∣(Gu)(t) – (Gũ)(t)

∣
∣
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≤ 1
Γ (α)

∫ t

0
(t – s)α–1∣∣(Fβu)(s) – (Fβ ũ)(s)

∣
∣ds ≤ Lf

Γ (β + 1)Γ (α + 1)
‖u – ũ‖1–α ,

∣
∣(Gu)(t) – (Gũ)(t)

∣
∣

≤ 1
ργ Γ (γ )

∫ 1

0
(1 – s)γ –1∣∣(Gu)

(
ts

1
ρ
)

– (Gũ)
(
ts

1
ρ
)∣
∣ds

≤ Lf ‖u – ũ‖1–α

ργ Γ (β + 1)Γ (α + 1)Γ (γ + 1)
.

Then

∣
∣(Fu)(t) – (F ũ)(t)

∣
∣

=
∣
∣(Qu)(t) – (Qũ)(t)

∣
∣

≤ |(Gu)(η) – (Gũ)(η)| +
∑m

i=1 |(Gu)(ξi) – (Gũ)(ξi)|
|Ã(α,η)|Γ (α + 1)

+
∣
∣(Gu)(t) – (Gũ)(t)

∣
∣

≤ M‖u – ũ‖1–α ,

this means that F is a contraction, and by the Banach fixed point theorem there exists a
unique solution u ∈ C1–α . �

6 Ulam–Hyers stability
Let ε̃ be a positive real number. We consider Eq. (1.1) with inequality

|cDβ
1–

(LDα
0+ + λ

)
x(t) – f

(
t, x(t)

)| ≤ ε̃, t ∈ J . (6.1)

Definition 6.1 Equation (1.1) is Ulam–Hyers stable if there exists c > 0 such that for each
ε̃ > 0 and for each solution x(t) of the inequality (6.1) there exists a solution y of Eq. (1.1)
with

∣
∣x(t) – y(t)

∣
∣ ≤ c̃ε, t ∈ J .

Remark 6.2 A function x ∈ C1–α is a solution of the inequality (6.1) if and only if there
exists a function g ∈ C1–α such that (i) |g(t)| ≤ ε̃; (ii) cDβ

1– (LDα
0+ + λ)x(t) = f (t, x(t)) + g(t).

Let

x̃(t) =
[

–
Ã(α – 1,η)

Ã(α,η)
tαEα,α+1

(
–λtα

)
+ tα–1Eα,α

(
–λtα

)
]

u0

–
(Gx)(η) –

∑m
i=1(Gx)(ξi)

Ã(α,η)
tαEα,α+1

(
–λtα

)
+ (Gx)(t),

where

(Gx)(t) =
1

Γ (β)

∫ t

0

∫ 1

s
(t – s)α–1(τ – s)β–1Eα,α

(
–λ(t – s)α

)
f
(
τ , x(τ )

)
dτ ds,

(Gx)(t) =
tργ

ργ Γ (γ )

∫ 1

0
(1 – s)γ –1(Gx)

(
ts

1
ρ
)

ds.
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Remark 6.3 Let x ∈ C1–α be a solution of the inequality (6.1) with (I1–α
0+ x)(0) = u0,

∑m
i=1 x(ξi) = (ρIγ

0+ x)(η). Then x is a solution of the inequality |x(t) – x̃(t)| ≤ M3 ε̃

αβγ
.

Indeed, by Remark 6.2, one can see

cDβ
1–

(LDα
0+ + λ

)
x(t) = f

(
t, x(t)

)
+ g(t),

(
I1–α

0+ x
)
(0) = u0,

m∑

i=1

x(ξi) =
(
ρIγ

0+ x
)
(η).

Then we have

x(t) =
[

–
Ã(α – 1,η)

Ã(α,η)
tαEα,α+1

(
–λtα

)
+ tα–1Eα,α

(
–λtα

)
]

u0

–
(Hx)(η) –

∑m
i=1(Hx)(ξi)

Ã(α,η)
tαEα,α+1

(
–λtα

)
+ (Hx)(t),

where

(Hx)(t) =
1

Γ (β)

∫ t

0

∫ 1

s
(t – s)α–1(τ – s)β–1Eα,α

(
–λ(t – s)α

)[
f
(
τ , x(τ )

)
+ g(τ )

]
dτ ds,

(Hx)(t) =
tργ

ργ Γ (γ )

∫ 1

0
(1 – s)γ –1(Hx)

(
ts

1
ρ
)

ds.

It is easy to check that |x(t) – x̃(t)| ≤ M3 ε̃

αβγ
.

Theorem 6.4 Assume that (H3) is satisfied. If M < 1, then Eq. (1.1) is Ulam–Hyers stable.

Proof Let x ∈ C1–α be a solution of the inequality (6.1) with (I1–α
0+ x)(0) = u0,

∑m
i=1 x(ξi) =

(ρIγ

0+ x)(η). y denotes the unique solution of the following problem:

⎧
⎨

⎩

cDβ
1– (LDα

0+ + λ)y(t) = f (t, y(t)), t ∈ J ,

(I1–α
0+ y)(0) = u0,

∑m
i=1 u(ξi) = (ρIγ

0+ y)(η).

It follows from (H3) that

∣
∣(Gx)(t) – (Gy)(t)

∣
∣

≤ Lf ‖x – y‖1–α

Γ (α)Γ (β)

∫ t

0

∫ 1

s
(t – s)α–1(τ – s)β–1 dτ ds ≤ Lf ‖x – y‖1–α

Γ (β + 1)Γ (α + 1)
,

∣
∣(Gx)(t) – (Gy)(t)

∣
∣

≤ M3Lf ‖x – y‖1–α

∫ 1

0

∫ ts
1
ρ

0

∫ 1

τ

(1 – s)γ –1(ts
1
ρ – τ

)α–1(ζ – τ )β–1 dζ dτ ds

≤ Lf ‖x – y‖1–α

ργ Γ (β + 1)Γ (α + 1)Γ (γ + 1)
.
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Then we have

∣
∣x(t) – y(t)

∣
∣

≤ ∣
∣x(t) – x̃(t)

∣
∣ +

∣
∣x̃(t) – y(t)

∣
∣

≤ M3̃ε

αβγ
+

|(Gx)(η) – (Gy)(η)| +
∑m

i=1 |(Gx)(ξi) – (Gy)(ξi)|
|Ã(α,η)|Γ (α + 1)

+
∣
∣(Gx)(t) – (Gy)(t)

∣
∣

≤ M3̃ε

αβγ
+ M‖x – y‖1–α ,

which implies ‖x – y‖1–α ≤ M3 ε̃

αβγ (1–M) , furthermore

∣
∣x(t) – y(t)

∣
∣ ≤ M3̃ε

αβγ
+

MM3̃ε

αβγ (1 – M)
=

M3̃ε

αβγ (1 – M)
,

that is, Eq. (1.1) is Ulam–Hyers stable. �

7 Examples
In this section, we give two examples to illustrate our results.

Example 7.1 We consider the following boundary value problem:

⎧
⎪⎨

⎪⎩

cD
2
5
1– (LD

1
5
0+ + 2)u(t) = 10

5√t
sin(7t 2

3 |u(t)| 1
2 + 3t 1

4 ), t ∈ J := (0, 1], (7.1)

(I
4
5

0+ u)(0) = u0,
∑100

i=1 u( 1
2i ) = ( 7

8 I2
0+ u)( 1

3 ). (7.2)

Corresponding to (1.1)–(1.2), we have α = 1
5 , β = 2

5 , λ = 2, ρ = 7
8 , γ = 2, ξi = 1

2i (i =
1, 2, . . . , 100), η = 1

3 and

f
(
t, u(t)

)
=

10
5√t

sin
(
7t

2
3
∣
∣u(t)

∣
∣

1
2 + 3t

1
4
)
.

We define the space C 4
5

= {u ∈ C(J ,R) : t
4
5 u(t) ∈ C([0, 1],R)} with the norm ‖u‖ 4

5
=

maxt∈[0,1] t
4
5 |u(t)|.

Obviously, |f (t, u(t)) – f (t, ũ(t))| ≤ 70|u(t) – ũ(t)| 1
2 and |f (t, 0)| = 10

5√t
| sin 3t 1

4 | ≤ 30. By
Theorem 5.3, the problem (7.1)–(7.2) has at least one solution.

Example 7.2 We consider the following boundary value problem for nonlinear fractional
differential equation:

⎧
⎪⎨

⎪⎩

cD
1
5
1– (LD

3
5
0+ + 3)u(t) = 1

1+99et · u(t)
|u(t)|+

√
1+|u(t)| + 1

10 , t ∈ J := (0, 1], (7.3)

(I
2
5

0+ u)(0) = u0, u( 1
5 ) + u( 1

4 ) = (2I3
0+ u)( 1

2 ). (7.4)

Set

f
(
t, u(t)

)
=

1
1 + 99et · u(t)

|u(t)| +
√

1 + |u(t)| +
1

10
.
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For t ∈ J , we have

∣
∣f

(
t, u(t)

)∣
∣

≤ 1
100

|u(t)|
|u(t)| + (1 + |u(t)|) 1

2
+

1
10

<
1

100
∣
∣u(t)

∣
∣

1
2 +

1
10

,

∣
∣f (t, u) – f (t, ũ)

∣
∣

≤ 1
100

∣
∣
∣
∣

u
|u| +

√
1 + |u| –

ũ
|ũ| +

√
1 + |ũ|

∣
∣
∣
∣

≤ 1
100

[
2|u – ũ||ũ| + |u – ũ|√1 + |ũ| + |ũ||√1 + |u| –

√
1 + |ũ||

(|u| +
√

1 + |u|)(|ũ| +
√

1 + |ũ|)
]

≤ 1
25

|u – ũ|.

Let α = 3
5 , β = 1

5 , λ = 3, ρ = 2, γ = 3, ξ1 = 1
5 , ξ2 = 1

4 , η = 1
2 , L′

f = 1
100 , σ̃ = 1

2 , M̃f = 1
10

and L̃f = 1
25 . We define the space C 2

5
= {u ∈ C(J ,R) : t

2
5 u(t) ∈ C([0, 1],R)} with the norm

‖u‖ 2
5

= maxt∈[0,1] t
2
5 |u(t)|.

By direct computation, we have

A
(

3
5

,
1
2

)

=
1

2
53
5

∫ 1

0
s

3
10 (1 – s)2E 3

5 , 8
5

(

–
3s 3

10

2
3
5

)

ds ≈ 6.7 × 10–5;

Ã
(

3
5

,
1
2

)

= A
(

3
5

,
1
2

)

–
[(

1
5

) 3
5

E 3
5 , 8

5

(

–3 ×
(

1
5

) 3
5
)

+
(

1
4

) 3
5

E 3
5 , 8

5

(

–3 ×
(

1
4

) 3
5
)]

≈ –0.43;

M2 =
1

|Ã( 3
5 , 1

2 )|Γ ( 8
5 )

≈ 2.61; M3 =
1

8Γ ( 3
5 )Γ ( 1

5 )Γ (3)
≈ 9.14 × 10–3.

Then

(
1 + M2

∑m
i=1 ξα–1

i
Γ (α)Γ (β)

+ M2M3η
α–1B

(

γ ,
α – 1 + ρ

ρ

))
B(α,α)L̃f

β

=
1
5

[
1 + M2(5

2
5 + 4

2
5 )

Γ ( 3
5 )Γ ( 1

5 )
+ 2

2
5 M2M3B

(

3,
4
5

)]

B
(

3
5

,
3
5

)

≈ 0.75 < 1.

Thus by Theorem 5.4, the problem (7.3)–(7.4) has a unique solution.

Example 7.3 We consider the following boundary value problem for nonlinear fractional
differential equation:

⎧
⎪⎨

⎪⎩

cD
1
6
1– (LD

2
3
0+ + 2)u(t) = 1

10 9√t
sin(1 + t 1

2 u(t)), t ∈ J := (0, 1], (7.5)

(I
1
3

0+ u)(0) = u0, u( 1
2 ) = ( 2

3 I5
0+ u)( 1

10 ). (7.6)
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Set

f
(
t, u(t)

)
=

1
10 9√t

sin
(
1 + t

1
2 u(t)

)
.

For t ∈ J , we have

∣
∣f

(
t, t– 1

3 u(t)
)

– f
(
t, t– 1

3 ũ(t)
)∣
∣ ≤ t

1
6

10 9√t
∣
∣u(t) – ũ(t)

∣
∣ ≤ 1

10
∣
∣u(t) – ũ(t)

∣
∣.

Let α = 2
3 , β = 1

6 , λ = 2, ρ = 2
3 , γ = 5, ξ1 = 1

2 , η = 1
10 , Lf = 1

10 . We define the space C 1
3

= {u ∈
C(J ,R) : t 1

3 u(t) ∈ C([0, 1],R)} with the norm ‖u‖ 1
3

= maxt∈[0,1] t 1
3 |u(t)|.

By direct computation, we get

A
(

2
3

,
1

10

)

=
1

104Γ (5)( 2
3 )5

∫ 1

0
s(1 – s)4E 2

3 , 5
3

(

–
2s

10 2
3

)

ds ≈ 1.07 × 10–6;

Ã
(

2
3

,
1

10

)

= A
(

2
3

,
1

10

)

–
(

1
2

) 2
3

E 2
3 , 5

3

(
–2

1
3
) ≈ –0.33; M2 =

1
|Ã( 2

3 , 1
10 )|Γ ( 5

3 )
≈ 3.34;

M =
Lf

Γ (β + 1)Γ (α + 1)

[

1 +
M2(1 + mργ Γ (γ + 1))

ργ Γ (γ + 1)

]

=
1

10Γ ( 7
6 )Γ ( 5

3 )

[

1 +
M2(1 + ( 2

3 )5Γ (6))
( 2

3 )5Γ (6)

]

≈ 0.54 < 1.

Then by Theorem 6.4, the problem (7.5)–(7.6) has a unique solution and Eq. (7.5) is Ulam–
Hyers stable.
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