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Abstract
In this paper, we investigate the zero Mach number limit for the three-dimensional
compressible Euler–Korteweg equations in the regime of smooth solutions. Based on
the local existence theory of the compressible Euler–Korteweg equations, we
establish a convergence-stability principle. Then we show that when the Mach
number is sufficiently small, the initial-value problem of the compressible
Euler–Korteweg equations has a unique smooth solution in the time interval where
the corresponding incompressible Euler equations have a smooth solution. It is
important to remark that when the incompressible Euler equations have a global
smooth solution, the existence time of the solution for the compressible
Euler–Korteweg equations tends to infinity as the Mach number goes to zero.
Moreover, we obtain the convergence of smooth solutions for the compressible
Euler–Korteweg equations towards those for the incompressible Euler equations with
a convergence rate.
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1 Introduction
In this paper, we are concerned with the three-dimensional compressible Euler–Korteweg
system

⎧
⎨

⎩

∂tρ + div(ρu) = 0,

∂t(ρu) + div(ρu ⊗ u) + ∇p(ρ) = κρ∇�ρ,
(1.1)

for (x, t) ∈ Ω × [0, +∞). Throughout this paper, Ω is assumed to be the three-dimensional
torus. Here, the unknown functions are the density ρ and the velocity u ∈ R

3, p(ρ) is a
given pressure function, and κ is the Weber number. This compressible Euler–Korteweg
system results from a modification of the standard Euler equations governing the motion
of compressible inviscid fluids through the adjunction of the Korteweg stress tensor, and
arises as a mathematical model for a lot of phenomena in vortex dynamics, quantum hy-
drodynamics and hydrodynamics, e.g., flow of capillary fluids: liquid-vapor mixtures (for
instance, highly pressurized and hot water in nuclear reactors cooling system), superfluids
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(for instance, helium near absolute zero), or even regular fluids at sufficiently small scales
(for instance, ripples on shallow water or other thin films). We can see more details in [34]
and [22] for the early developments of the theory of capillarity and, for instance, [21, 35]
for the derivation of the equations of motion. Note that when κ = 0, (1.1) reduces to the
compressible Euler equations.

Recently, some results regarding the well-posedness of the compressible Euler–
Korteweg system have been obtained. Benzoni-Gavage, Danchin and Descombes [6] ad-
dressed the well-posedness of the Cauchy problem for the Euler–Korteweg model in the
one-dimensional case by reformulating the equations in Lagrangian coordinates. Benzoni-
Gavage, Danchin and Descombes [7] also considered the multidimensional case in Eule-
rian formulation and established a blow-up criterion. Audiard [2] constructed a Kreiss
symmetrizer and obtained the well-posedness of the Euler–Korteweg system in a half-
space. Audiard [3] obtained some dispersive smoothing effect of the Euler–Korteweg sys-
tem both in one dimension and in higher dimensions. Audiard and Haspot [5] justified the
global well-posedness of the multi-dimensional Euler–Korteweg equations for small irro-
tational initial data under a natural stability condition on the pressure. Giesselmann and
Tzavaras [18] showed the weak-strong uniqueness, the large friction limit, and the vanish-
ing capillarity limit of the Euler–Korteweg system under the relative energy framework.
Audiard [4] obtained the existence of traveling waves for Euler–Korteweg equations with
arbitrarily small energies in two dimensions and found that the standard for the linear
instability of traveling waves implied nonlinear instability in one dimension.

Moreover, it is well known that the incompressible limit of compressible fluid dynam-
ical equations is an important and challenging mathematical problem. Klainerman and
Majda [23] first justified the convergence of the incompressible limit by using the par-
tial differential equation method and singular limit approach of symmetric hyperbolic
equations. Lin [26] proved the incompressible limit of the assumed weak solutions for
the time-discretized compressible Navier–Stokes equations with big initial data by the
uniform entropy-energy inequality. Hoff [19] proved that a compressible Navier–Stokes
system with well-prepared initial data converged to an incompressible Navier–Stokes sys-
tem as the Mach number goes to zero. Nevertheless, no smallness hypothesis is set on
the external forces or on the initial data. Lions and Masmoudi [27] studied the incom-
pressible limit of global weak solutions of compressible isentropic Navier–Stokes systems
without size restrictions on the initial data. Desjardins and Grenier [13] researched the low
Mach number limit for weak solutions of the compressible Navier–Stokes equations on
the whole space by using a different method based on Strichartz’s estimates for the linear
wave equation, and gained better convergence results and simpler proof than former sim-
ilar papers. Desjardins, Grenier, Lions and Masmoudi [14] investigated the limit of global
weak solutions of the compressible isentropic Navier–Stokes equations in a bounded do-
main. They stated that the velocity of the compressible equations converged weakly to the
global weak solution of the incompressible Navier–Stokes equations as the Mach number
approached to 0, and the convergence became strong under certain geometrical assump-
tions on the domain. These results have been extended or improved by many others, e.g.,
the authors of Refs. [1, 8, 12, 15, 16, 20, 25, 31, 33].

To the best of our knowledge, no results about the incompressible limit of this Euler–
Korteweg model can be found, except for Giesselmann [17], who gave a low Mach
asymptotic-preserving scheme for the Euler–Korteweg model. In this paper, we analyze
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the incompressible limit of smooth solutions for the compressible Euler–Korteweg equa-
tions (1.1) with well-prepared initial data on the basis of the convergence-stability crite-
rion, which was first formulated in [37]. Since then, this method has commonly been used
in dealing with the singular limit of the partial differential equations. Yong [38] considered
the zero Mach number limit of the smooth solution to the isentropic compressible Euler
equations based on the convergence-stability principle. Li [24] presented the incompress-
ible limit from the compressible MHD equations to ideal incompressible MHD equations
under the framework of the convergence-stability principle. In fact, this approach is de-
rived from singular perturbation theory [36], which is extensively used in the research
of partial differential equations. For instance, Marin and Bhatti [29] studied the head-on
collision model between capillary–gravity solitary waves using the singular perturbation
method. This model was appropriate for shallow water waves and deep water waves and
was investigated to find that the surface tension and the free parameter tended to remark-
ably decrease the solitary-wave profile. For similar methods, see [11, 30].

The main difficulty in the analysis of this model, a third-order system of conservation
laws, is the absence of dissipative regularization since the viscosity is neglected. To over-
come this difficulty, we need more refined treatments, which is different from the com-
pressible Navier–Stokes–Korteweg equation in [25]. See the treatments of the terms I4

and H3 in Sect. 5 for the difference. In addition, our approach in this paper is simpler than
that adopted in previous work [23, 28], and the requirements on the initial data and limit
solution are fewer.

From a physical standpoint, when the density becomes almost constant, the velocity is
very small, and we observe that at large time scales, the compressible fluid should act like
the incompressible fluid. Therefore we introduce the following scaling:

ρ(x, t) = ρε(x, εt), u(x, t) = εuε(x, εt)

and assume that the capillarity coefficient κ is small and scaled as

κ = εκ ′

with ε ∈ (0, 1) a small parameter. With such scalings, the compressible Euler–Korteweg
equations (1.1) take the form

⎧
⎨

⎩

∂tρ
ε + div(ρεuε) = 0,

∂t(ρεuε) + div(ρεuε ⊗ uε) + ∇p(ρε)
ε2 = κ ′ ρε∇�ρε

ε
,

(1.2)

with the initial data

ρε(x, 0) = 1, uε(x, 0) = u0(x). (1.3)

Formally, letting ε → 0, we obtain from the momentum Eq. (1.2)2 that ρε converges to a
positive constant ρ∗ due to the periodic boundary conditions. Without loss of generality,
let us assume that ρ∗ = 1. Then, passing to the limit in the mass conservation equation of
(1.2), we obtain div uε = 0. Therefore, by denoting the formal limits of ∇p(ρε)–κ ′ερε∇�ρε

ε2 and
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uε by ∇p0 and u0, respectively, we can formally obtain the incompressible Euler equations:

⎧
⎨

⎩

∂tu0 + u0 · ∇u0 + ∇p0 = 0,

div u0 = 0,
(1.4)

with the initial data

u0(x, 0) = u0(x). (1.5)

To justify the above formal procedure, we first follow [25, 38] and reformulate the com-
pressible Euler–Korteweg equations (1.2) in terms of the pressure variable pε = p(ρε) and
the velocity uε . Assume that p(ρε) is a smooth function with p′(ρε) > 0 for ρε > 0, then it
has an inverse function ρε = ρ(pε). Set q(pε) = [ρ(pε)p′(ρ(pε))]–1. Then the compressible
Euler–Korteweg equations (1.2) for a smooth solution can be rewritten as

⎧
⎨

⎩

q(pε)(pε
t + uε · ∇pε) + div uε = 0,

ρ(pε)(uε
t + uε · ∇uε) + ε–2∇pε = ε–1κ ′ρ(pε)∇�ρ(pε),

(1.6)

with the initial data

pε(x, 0) = p0, uε(x, 0) = u0(x), (1.7)

with p0 = p(1) > 0. Further, we introduce

p̃ε =
(
pε – p0

)
/ε, ũε = uε .

Then (1.6) can be rewritten as

⎧
⎨

⎩

q(p0 + εp̃ε)(p̃ε
t + ũε · ∇p̃ε) + ε–1 div ũε = 0,

ρ(p0 + εp̃ε)(ũε
t + ũε · ∇ũε) + ε–1∇p̃ε = ε–1κ ′ρ(p0 + εp̃ε)∇�ρ(p0 + εp̃ε),

(1.8)

with the initial data

p̃ε(x, 0) = 0, ũε(x, 0) = u0(x). (1.9)

2 Main result
The main result can be stated as follows.

Theorem 2.1 Suppose that p(ρε) is a smooth function with p′(ρε) > 0 for ρε > 0, and
u0(x) ∈ H6(Ω) is divergence-free. Denote by T0 > 0 the life-span of the unique classical so-
lution u0(x, t) ∈ C([0, T0], H6(Ω)) to the initial-value problem (1.4)–(1.5). If T0 < ∞, then,
for a sufficiently small ε > 0, the initial-value problem (1.2)–(1.3) has a unique solution
(ρε , uε)(x, t) satisfying

ρε – 1 ∈ C
(
[0, T0], H5(Ω)

)
, uε ∈ C

(
[0, T0], H4(Ω)

)
.
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Moreover, there exists a constant K > 0, independent of ε but dependent on T0, such that

sup
t∈[0,T0]

(∥
∥
∥
∥
ρε(·, t) – 1

ε

∥
∥
∥
∥

4
+

∑

|α|=5

∥
∥ε

1
2 ∂α

x
(
ρε – 1

)
(·, t)

∥
∥ +

∥
∥
(
uε – u0)(·, t)

∥
∥

4

)

≤ Kε. (2.1)

In case T0 = ∞, the maximal existence time Tε of (ρε , uε)(x, t) tends to infinity as ε goes to
zero.

Remark 2.1 The initial data

ρε(x, 0) = 1, uε(x, 0) = u0(x)

can be relaxed as

ρε(x, 0) = 1 + O
(
ε2), uε(x, 0) = u0(x) + O(ε)

without changing our arguments. Here, we do not know whether the convergence rate in
(2.1) is optimal, in particular, the velocity convergence rate. Using the arguments in [9], we
will try to address this topic in the future. However, with the method here, we can obtain
the sharp convergence rate (2.1), and no smallness condition on the initial data is required.

Remark 2.2 Here, we only consider the zero-Mach limit of the smooth solutions for the
compressible Euler–Korteweg equations with well-prepared initial data. It is more inter-
esting to consider the similar problem of the compressible Euler–Korteweg equations for
general initial data (ill-prepared initial data). That is, we should take into account acous-
tic waves that propagate with the high speed 1

ε
in the space domain, as in [23, 28, 33].

Moreover, we hope that similar results can be obtained for the limit of the compressible
Euler–Korteweg equations in critical space. These issues are what our efforts should aim
at in the future.

Recalling a local-in-time existence theory due to Benzoni-Gavage, Danchin and De-
scombes [7] for (1.2), we have the local-in-time existence of the classical solution to the
compressible Euler–Korteweg equations (1.2) as follows.

Lemma 2.1 (See [7]) Let p(ρε) be a smooth function with p′(ρε) > 0 for ρε > 0. Assume that
ū(x) ∈ H4 and ρ̄(x) – 1 ∈ H5 with inf ρ̄(x) > 0. Then there exists a positive constant T such
that equation (1.2) with initial data (ρ̄, ū)(x) has a unique solution (ρε , uε) = (ρε , uε)(x, t),
satisfying ρε(x, t) > 0 for all (x, t) ∈ Ω × [0, T] and

ρε – 1 ∈ C
(
[0, T], H5) ∩ L2([0, T], H6),

uε ∈ C
(
[0, T], H4) ∩ L2([0, T], H5).

For initial-value problem (1.8)–(1.9), we see immediately from Lemma 2.1 that

Corollary 2.1 Under the assumptions of Lemma 2.1, there exists a positive constant Tε > 0
such that Eqs. (1.8) with initial data ( p(ρ̄)–p0

ε
, ū) have a unique classical solution (p̃ε , ũε) =
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(p̃ε , ũε)(t, x), satisfying εp̃ε(x, t) + p0 > 0 for all (x, t) ∈ Ω × [0, Tε] and

p̃ε(t, x) ∈ C
(
[0, Tε], H5) ∩ L2([0, Tε], H6),

ũε(t, x) ∈ C
(
[0, Tε], H4) ∩ L2([0, Tε], H5).

Thus, for initial-value problem (1.8)–(1.9), Theorem 2.1 can be stated as follows.

Theorem 2.2 Under the assumptions of Theorem 2.1, for a sufficiently small ε > 0, the
initial-value problem (1.8)–(1.9) has a unique solution (p̃ε , ũε)(x, t) satisfying

p̃ε(x, t) ∈ C
(
[0, T0], H5), ũε(x, t) ∈ C

(
[0, T0], H4).

Moreover, there exists a constant K > 0, independent of ε but dependent on T0, such that

sup
t∈[0,T0]

(
∥
∥p̃ε – εp0∥∥

4 +
∑

|α|=5

∥
∥ε

1
2 ∂α

x
(
p̃ε – εp0)∥∥ +

∥
∥ũε – u0∥∥

4

)

≤ Kε. (2.2)

In case T0 = ∞, the maximal existence time Tε of (p̃ε , ũε)(x, t) tends to infinity as ε goes to
zero. Here, (p0, u0)(x, t) is given in Lemma 1.4 and satisfies (4.3).

From Theorem 2.2, we immediately have Theorem 2.1. In the following, we focus on the
proof of Theorem 2.2.

Let us outline the idea of the proof as follows. On the basis of a local-in-time existence
theory due to Benzoni-Gavage, Danchin and Descombes [7] for (1.2), we first establish a
convergence-stability principle, which is similar to those developed in [36, 37] for singular
limit problems of symmetrizable hyperbolic systems. Thus, instead of deriving ε-uniform
a priori estimates, we only need to make the error estimate (2.1) in the common time
interval [0, min{T0, Tε}), where both solutions (ρε , uε) and (ρ0, u0) are regular. Due to the
third-order term and the absence of dissipative regularization in (1.1) or (1.2), deriving
the error estimate requires some elaborated treatments. This is the difference from the
compressible Navier–Stokes–Korteweg equation in [25]. See the treatments of the terms
I4 and H3 in Sect. 5 for the difference.

The rest of this paper is organized as follows. In the next section, we make some prelim-
inaries. That is, we give some notations and Moser-type calculus inequalities. Then, we
prove the convergence-stability principle in Sect. 4. Finally, all required (error) estimates
are obtained in Sect. 5.

3 Preliminaries
In this section, we mainly make some preliminaries.

Notation |U| denotes some norm of a vector or matrix U . For a nonnegative integer k,
Hk = Hk(Ω) denotes the usual L2-type Sobolev space of order k. We write ‖ · ‖k for the
standard norm of Hk and ‖ · ‖ for ‖ · ‖0. When U is a function of another variable t as
well as x ∈ Ω , we write ‖U(·, t)‖ to recall that the norm is taken with respect to x while
t is viewed as a parameter. In addition, we denote by C([0, T], X) (resp. L2([0, T], X)) the
space of continuous (resp. square integrable) functions on [0, T] with values in a Banach
space X.
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In the subsequent proof process, we need the following Moser-type calculus inequalities
in Sobolev spaces (refer to Proposition 2.1 in [28]).

Lemma 3.1
(i) For s ≥ 2, Hs = Hs(Ω) is an algebra. Namely, for all multi-indices α with |α| ≤ s and

f (x), g(x) ∈ Hs(Ω), we have ∂α
x (fg) ∈ L2(Ω) and

∥
∥∂α

x (fg)
∥
∥ ≤ Cs‖f ‖s‖g‖s.

(ii) For s ≥ 3, let f (x) ∈ Hs(Ω) and g(x) ∈ Hs–1(Ω). Then, for all multi-indices α with
|α| ≤ s, we have the commutator [∂α

x , f ]g ∈ L2(Ω) and

∥
∥
[
∂α

x , f
]
g
∥
∥ ≤ Cs‖∇f ‖s–1‖g‖s–1.

(iii) Assume that g(u) is a smooth function on G, u(x) is a continuous function with
u(x) ∈ G1, Ḡ1 ⊂⊂ G, and u(x) ∈ L∞(Ω) ∩ Hs(Ω). Then, for s ≥ 1,

∥
∥Dsg(u)

∥
∥ ≤ Cs

∣
∣
∣
∣
∂g
∂u

∣
∣
∣
∣
s–1,Ḡ1

‖u‖s–1
L∞

∥
∥Dsu

∥
∥.

Here, | · |r,Ḡ1 is the Cr-norm on the set Ḡ1 and Cs is a generic constant depending only on s.

4 Convergence-stability principle
In fact, our proof of Theorem 2.2 is guided by the spirit of the convergence-stability prin-
ciple developed in [36, 37] for singular limit problems of symmetrizable hyperbolic sys-
tems. Fix ε > 0 in (1.8). According to Corollary 2.1, there is a time interval [0, T] such that
the equations (1.8) with initial data (p̄, ū)(x, ε) have a unique solution (p̃ε , ũε) satisfying
εp̃ε + p0 > 0 for all (x, t) ∈ Ω × [0, T] and

p̃ε(x, t) ∈ C
(
[0, T], H5), ũε(x, t) ∈ C

(
[0, T], H4).

Define

Tε = sup

{

T > 0 : p̃ε(x, t) ∈ C
(
[0, T], H5), ũε(x, t) ∈ C

(
[0, T], H4);

–
1
2

p0 ≤ p̃ε(x, t) ≤ 2p0,∀(x, t) ∈ Ω × [0, T]
}

. (4.1)

(Here, 2 can be replaced with any positive number larger than 1.) Namely, [0, Tε) is the
maximal time interval of H5 × H4-existence. Note that Tε may tend to 0 as ε goes to 0.

To show that limε→0 Tε > 0, we follow the convergence-stability principle [37] and seek
a formal approximation of (p̃ε , ũε)(x, t). To this end, we consider the initial-value problem
of the incompressible Euler equations:

⎧
⎨

⎩

∂tu0 + u0 · ∇u0 + ∇p0 = 0,

div u0 = 0, u0(x, 0) = u0(x).
(4.2)

Since u0 ∈ H6 and div u0 = 0, we have the following from [22, 32].
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Lemma 4.1 There exists T0 ∈ (0, +∞) such that the IVP (4.2) of the incompressible Euler
equation has a unique smooth solution

(
u0,∇p0) ∈ C

(
[0, T0], H6) × C

(
[0, T0], H5)

satisfying

M0 =: sup
0≤t≤T0

(∥
∥u0(·, t)

∥
∥

6 +
∥
∥∇p0(·, t)

∥
∥

5 +
∥
∥∂tu0(·, t)

∥
∥

5 +
∥
∥∂t∇p0(·, t)

∥
∥

4

)
< ∞. (4.3)

In the next section, we will prove the following theorem.

Theorem 4.1 Under the conditions of Theorem 2.1, there exist constants K = K(T0) and
ε0 = ε0(T0) such that, for all ε ≤ ε0,

∥
∥
(
p̃ε – εp0)(·, t)

∥
∥

4 +
∑

|α|=5

∥
∥ε

1
2 ∂α

x
(
p̃ε – εp0)(·, t)

∥
∥ +

∥
∥
(
ũε – u0)(·, t)

∥
∥

4 ≤ Kε (4.4)

for t ∈ [0, min{T0, Tε}).

Having this theorem, we slightly modify the arguments in [25, 36] to prove a theorem.

Theorem 4.2 Under the conditions of Theorem 2.1, there exists a constant ε0 = ε0(T0) such
that, for all ε ≤ ε0,

Tε > T0.

Proof Otherwise, there is a sequence {εk}k≥1 such that limk→∞ εk = 0 and Tεk ≤ T0.
Thanks to the error estimate in Theorem 4.1, (4.3) and Sobolev’s inequality, there exists a
k such that 4p̃εk (x, t) ∈ (–3p0, 5p0) for all x and t. Next, we deduce from

∥
∥p̃εk (·, t)

∥
∥

5 +
∥
∥ũεk (·, t)

∥
∥

4 ≤ ∥
∥p̃εk (·, t) – εkp0(·, t)

∥
∥

5 +
∥
∥εkp0(·, t)

∥
∥

5

+
∥
∥ũεk (·, t) – u0(·, t)

∥
∥

4 +
∥
∥u0(·, t)

∥
∥

4,

(4.3) in Lemma 4.1 and (4.4) in Theorem 4.1 that ‖p̃εk (·, t)‖5 + ‖ũεk (·, t)‖4 is bounded uni-
formly with respect to t ∈ [0, Tεk ). Now, we could apply Corollary 2.1, beginning at a time
t less than Tεk (k is fixed here), to continue this solution beyond Tεk . This contradicts the
definition of Tεk in (4.1).

Finally, Theorem 2.2 is proved by combining Theorem 4.1 and Theorem 4.2. �

We conclude this section with the following interesting remark, which is a by-product
of our approach.

Remark 4.1 The proof of Theorem 4.1 requires that T0 < ∞. However, when the initial-
value problem (4.2) of the incompressible Euler equations has a global-in-time regular so-
lution, T0 can be any positive number. Hence, we have an almost global-in-time existence
result for (1.8):

lim
ε→0

Tε = +∞.
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5 Error estimate
In this section, we prove the error estimate in Theorem 4.1. We notice that, with u0 and
p0 in Lemma 4.1,

(pε , uε) :=
(
εp0, u0)

satisfies
⎧
⎨

⎩

q(p0 + εpε)(pεt + uε · ∇pε) + ε–1 div uε = εR1,

ρ(p0 + εpε)(uεt + uε · ∇uε) + ε–1∇pε = R2,
(5.1)

with

R1 = q
(
p0 + ε2p0)(p0

t + u0 · ∇p0),

R2 =
(
ρ
(
p0 + ε2p0) – ρ(p0)

)(
u0

t + u0 · ∇u0).

Note that Lemma 4.1 and Sobolev’s inequality imply – 1
2 p0 ≤ εpε(= ε2p0) ≤ p0 for ε � 1,

which yields 1
2 p0 ≤ p0 + εpε ≤ 2p0. Further, ρ(p0 + εpε) is strictly increasing, then we have

ρ

(
1
2

p0

)

≤ ρ(p0 + εpε) ≤ ρ(2p0). (5.2)

From the definition of q(p0 + εpε), we also have

1
2p′(2)

≤ q(p0 + εpε) ≤ 2
p′( 1

2 )
. (5.3)

Set

P = p̃ε – pε , U = ũε – uε .

Then we deduce from (1.8) and (5.1) that

Pt + ũε · ∇P + U · ∇pε + ε–1q–1(p0 + εp̃ε
)

div U = f1 (5.4)

and

Ut + ũε · ∇U + U · ∇uε + ε–1ρ–1(p0 + εp̃ε
)∇P = ε–1κ ′∇�ρ̃ε + f2. (5.5)

Here, we have used div uε = 0 and ρ̃ε = ρ(p0 + εp̃ε), and

f1 = –q–1(p0 + εpε)εR1,

f2 = –ρ–1(p0 + εpε)R2 –
(
ρ–1(p0 + εp̃ε

)
– ρ–1(p0 + εpε)

)∇p0.

From Lemma 4.1 and Lemma 3.1, it follows that, for t ∈ [0, T0],

‖f1‖4 ≤ C(M0)ε, ‖f2‖ ≤ C(M0)
(
ε + ‖P‖4

)
. (5.6)
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Here, and in the following, C > 0 is the generic constant and C(·) > 0 stands for the generic
constant depending on ·.

Let α be a multi-index with |α| ≤ 4. Differentiating the two sides of Eqs. (5.4) and (5.5)
with ∂α

x and setting

Pα = ∂α
x P, Uα = ∂α

x U , ρ̃ε
α = ∂α

x ρ̃ε ,

we obtain

∂tPα + ũε · ∇Pα + ε–1q–1(p0 + εp̃ε
)

div Uα

= –
[
∂α

x , ũε
]∇P – ∂α

x (U · ∇pε) – ε–1[∂α
x , q–1(p0 + εp̃ε

)]
div U + ∂α

x f1 (5.7)

and

∂tUα + ũε · ∇Uα + ε–1ρ–1(p0 + εp̃ε
)∇Pα

= –
[
∂α

x , ũε
]∇U – ∂α

x (U · ∇uε) – ε–1[∂α
x ,ρ–1(p0 + εp̃ε

)]∇P

+ ε–1κ ′∇�ρ̃ε
α + ∂α

x f2. (5.8)

Taking the inner product of (5.7) and (5.8) with q(p0 + εp̃ε)Pα and ρ(p0 + εp̃ε)Uα , respec-
tively, and summing up the two resultant equalities gives

1
2

d
dt

∫

Ω

(
qεP2

α + ρ̃ε|Uα|2)dx

=
∫

Ω

(
1
2

qε
t P2

α +
1
2
ρε

t |Uα|2 – qεPα

(
uε · ∇)

Pα – ρ̃εUα

(
uε · ∇)

Uα

)

dx

+
∫

Ω

(
–
([

∂α
x , ũε

]∇P + ∂α
x (U · ∇pε)

)
qεPα –

(
∂α

x (U · ∇uε) +
[
∂α

x , ũε
]∇U

)
ρεUα

)
dx

– ε–1
∫

Ω

(
qεPα

[
∂α

x , q–1(p0 + εp̃ε
)]

div U + ρεUα

[
∂α

x ,ρ–1(p0 + εp̃ε
)]∇P

)
dx

+ ε–1κ ′
∫

Ω

ρ̃εUα∇�ρ̃ε
α dx +

∫

Ω

(
qε∂α

x f1Pα + ρ̃ε∂α
x f2Uα

)
dx

=: I1 + I2 + I3 + I4 + I5. (5.9)

Here and below, we often use

ρ̃ε = ρ
(
p0 + εp̃ε

)
, qε = q

(
p0 + εp̃ε

)
.

To estimate the Ii, we first have the bounds of ρ ′(p0 + εp̃ε) and q′(p0 + εp̃ε) as follows.

Lemma 5.1 We have

c1 ≤ ρ ′(p0 + εp̃ε
) ≤ c2, c3 ≤ q′(p0 + εp̃ε

) ≤ c4,

where ci (i = 1, 2, 3, 4) are positive constants independent of ε.
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Proof Because p(ρε) is a smooth function with p′(ρε) > 0 and has an inverse function ρε =
ρ(pε), from the smoothness of ρ and 1

2 p0 ≤ p0 + εp̃ε ≤ 2p0, it is easy to see that there are
positive constants c1 and c2 such that

c1 ≤ ρ ′(p0 + εp̃ε
) ≤ c2.

Moreover, from the definition of q, similarly, we have

c3 ≤ q′(p0 + εp̃ε
) ≤ c4.

This completes the proof. �

Remark 5.1 Analogously, we can obtain the boundedness of higher derivatives of ρ(p0 +
εp̃ε) and q(p0 + εp̃ε).

Next, we follow [25, 36, 37] and formulate the following lemma.

Lemma 5.2 Set

D = D(t) =
√

∥
∥P(·, t)

∥
∥2

4 +
∑

|β|=5

∥
∥ε

1
2 ∂

β
x P(·, t)

∥
∥2 +

∥
∥U(·, t)

∥
∥2

4 (5.10)

for t ∈ [0, min{T0, Tε}). Then, for multi-indices γ satisfying |γ | ≤ 2, we have

∥
∥∂γ

x p̃ε
∥
∥

L∞ +
∥
∥∂γ

x ũε
∥
∥

L∞ ≤ C(M0)(1 + D).

Proof It is obvious from (4.3) in Lemma 4.1, (5.10) and Sobolev’s inequality that

∥
∥∂γ

x ũε
∥
∥

L∞ ≤ ∥
∥∂γ

x
(
ũε – uε

)∥
∥

L∞ +
∥
∥∂γ

x u0∥∥
L∞ ≤ C(M0)(1 + D).

The other estimates can be shown similarly. This completes the proof. �

Now we turn to estimating the Ii in (5.9). Using integration by parts and Lemma 5.1 and
Lemma 5.2, we deduce that

I1 =
1
2

∫

Ω

(
q′(p0 + εp̃ε

)
εp̃ε

t + qε div ũε + ũε · ∇qε
)
P2

α dx

+
1
2

∫

Ω

(
ρ ′(p0 + εp̃ε

)
εp̃ε

t + ρ̃ε div ũε + ũε · ∇ρ̃ε
)|Uα|2 dx

≤ C
(∥
∥div ũε

∥
∥

L∞ +
∥
∥ũε

∥
∥

L∞
∥
∥∇p̃ε

∥
∥

L∞
)(‖Pα‖2 + ‖Uα‖2)

≤ C(M0)
(
1 + D2)(‖Pα‖2 + ‖Uα‖2),

with the help of (1.8)1.



Li and Zhou Boundary Value Problems         (2020) 2020:99 Page 12 of 18

Thanks to Lemma 3.1, I2 can be simply treated as

I2 ≤ C‖Pα‖(∥∥∂α
x (U · ∇pε)

∥
∥ +

∥
∥
[
∂α

x , ũε
]∇P

∥
∥
)

+ C‖Uα‖(∥∥∂α
x (U · ∇uε)

∥
∥ +

∥
∥
[
∂α

x , ũε
]∇U

∥
∥
)

≤ C‖Pα‖(‖∇pε‖4‖U‖4 +
∥
∥∇ũε

∥
∥

3‖∇P‖3
)

+ C‖Uα‖(‖∇uε‖4‖U‖4 +
∥
∥∇ũε

∥
∥

3‖∇U‖3
)

≤ C(M0)(1 + D)
(‖U‖2

4 + ‖P‖2
4
)
.

For I3, from Lemma 5.2, we first compute

∥
∥∇ρ–1(p0 + εp̃ε

)∥
∥

3,
∥
∥∇q–1(p0 + εp̃ε

)∥
∥

3 ≤ C(M0)ε
(
1 + D4). (5.11)

Then we have

I3 ≤ 1
ε

(∥
∥
[
∂α

x , q–1(p0 + εp̃ε
)]

div U
∥
∥
∥
∥qεPα

∥
∥ +

∥
∥
[
∂α

x ,ρ–1(p0 + εp̃ε
)]∇P

∥
∥
∥
∥ρ̃εUα

∥
∥
)

≤ C
ε

(∥
∥∇q–1(p0 + εp̃ε

)∥
∥

3‖div U‖3‖Pα‖ +
∥
∥∇ρ–1(p0 + εp̃ε

)∥
∥

3‖∇P‖3‖Uα‖)

≤ C(M0)
(
1 + D4)(‖div U‖3‖Pα‖ + ‖∇P‖3‖Uα‖)

≤ C(M0)
(
1 + D4)(‖U‖2

4 + ‖P‖2
4
)
.

To estimate I4, we first use integration by parts to obtain

I4 = –ε–1κ ′
∫

Ω

�ρ̃ε
α

(
ερ ′(p0 + εp̃ε

)
Uα∇p̃ε + ρ̃ε div Uα

)
dx

≤ C(M0)(1 + D)
∥
∥�ρ̃ε

α

∥
∥‖Uα‖ – ε–1κ ′

∫

Ω

ρ̃ε�ρ̃ε
α div Uα dx. (5.12)

As

ρ̃ε div Uα = ρ̃ε div ∂α
x ũε = –

(
∂tρ̃

ε
α + ∂α

x
(
ũε · ∇ρ̃ε

)
+

[
∂α

x , ρ̃ε
]

div ũε
)
,

the second term on the right-hand side of (5.12) can be estimated as

–ε–1κ ′
∫

Ω

ρ̃ε�ρ̃ε
α div Uα dx

= ε–1κ ′
∫

Ω

�ρ̃ε
α∂tρ̃

ε
α dx + ε–1κ ′

∫

Ω

�ρ̃ε
α

(
∂α

x
(
ũε · ∇ρ̃ε

)
+

[
∂α

x , ρ̃ε
]

div ũε
)

dx

≤ –
κ ′

2ε

d
dt

∫

Ω

∣
∣∇ρ̃ε

α

∣
∣2 dx + Cε–1∥∥�ρ̃ε

α

∥
∥
∥
∥ũε

∥
∥

4

∥
∥∇ρ̃ε

∥
∥

4.

Since

∇ρ̃ε = ερ ′(p0 + εp̃ε
)∇p̃ε = ερ ′(p0 + εp̃ε

)
(∇P + ∇pε)
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and

�ρ̃ε
α = ερ ′(p0 + εp̃ε

)
�Pα + ε

[
∂α

x ,ρ ′(p0 + εp̃ε
)]

�P + ε∂α
x
(
ρ ′(p0 + εp̃ε

)
�pε

)

+ ε2∂α
x
(
ρ ′′(p0 + εp̃ε

)(∇p̃ε
)2), (5.13)

we have

∥
∥∇ρ̃ε

∥
∥

4 ≤ C(M0)
(

ε
∑

|α|=4

‖∇Pα‖ + ε
(
1 + D4)‖∇P‖3 + ε2

)

and

∥
∥�ρ̃ε

α

∥
∥ ≤ C(M0)

(
ε‖�Pα‖ + ε

(
1 + D4)‖�P‖3 + ε

(
1 + D5)‖P‖4 + ε2). (5.14)

Moreover, due to

∇ρ̃ε
α = ε∂α

x
(
ρ ′(p0 + εp̃ε

)∇p̃ε
)

= ερ ′(p0 + εp̃ε
)∇Pα + ε

[
∂α

x ,ρ ′(p0 + εp̃ε
)]∇P + ε∂α

x
(
ρ ′(p0 + εp̃ε

)∇pε

)
,

a straightforward calculation yields

–
d
dt

∫

Ω

∣
∣∇ρ̃ε

α

∣
∣2 dx

= –ε2 d
dt

∫

Ω

∣
∣ρ ′(p0 + εp̃ε

)∇Pα

∣
∣2 dx

– 2ε2
∫

Ω

(
∂α

x
(
ρ ′(p0 + εp̃ε

)∇pε

)
+

[
∂α

x ,ρ ′(p0 + εp̃ε
)]∇P

+ ρ ′(p0 + εp̃ε
)∇Pα

) · ∂α
x
(
ρ ′(p0 + εp̃ε

)∇pεt + ερ ′′(p0 + εp̃ε
)
p̃ε

t ∇pε

)
dx

– 2ε2
∫

Ω

([
∂α

x ,ρ ′(p0 + εp̃ε
)]∇P + ρ ′(p0 + εp̃ε

)∇Pα + ∂α
x
(
ρ ′(p0 + εp̃ε

)∇pε

))

· ([∂α
x ,ρ ′(p0 + εp̃ε

)]∇Pt +
[
∂α

x , ερ ′′(p0 + εp̃ε
)
p̃ε

t
]∇P

)
dx

– 2ε2
∫

Ω

(
ρ ′(p0 + εp̃ε

)∇Pαt

+ ερ ′′(p0 + εp̃ε
)
p̃ε

t ∇Pα

) · ([∂α
x ,ρ ′(p0 + εp̃ε

)]∇P + ∂α
x
(
ρ ′(p0 + εp̃ε

)∇pε

))
dx

=: –ε2 d
dt

∫

Ω

∣
∣ρ ′(p0 + εp̃ε

)∇Pα

∣
∣2 dx + I41 + I42 + I43. (5.15)

Using (1.8)2 and Lemma 4.1, Lemma 3.1, Lemma 5.1–5.2, and integration by parts, it is
easy to obtain

I41 = –2ε2
∫

Ω

F · ∂α
x
(
ρ ′(p0 + εp̃ε

)∇pεt
)

dx

+ 2ε2
∫

Ω

F · ∂α
x
(
ρ ′′(p0 + εp̃ε

)(
q
(
p0 + εp̃ε

)–1
div uε

+ ε(U + uε)∇(P + pε)
)∇pε

)
dx
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– 2ε2
∫

Ω

∇(
q
(
p0 + εp̃ε

)–1F
) · ∂α

x U dx + 2ε2
∫

Ω

F · [∂α
x , q

(
p0 + εp̃ε

)–1]
div U dx

≤ C(M0)
(
1 + D8)(‖P‖2

4 +
∥
∥ε

1
2 ∇Pα

∥
∥2 + ‖U‖2

4
)

+
δ

3
∥
∥ε

1
2 �Pα

∥
∥2 + C(M0)ε2

with F = ∂α
x (ρ ′(p0 + εp̃ε)∇pε) + [∂α

x ,ρ ′(p0 + εp̃ε)]∇P + ρ ′(p0 + εp̃ε)∇Pα , here and in the
following, δ is a proper positive constant, which is determined. Moreover, with the help
of (5.1)1 and using Lemma 4.1, Lemma 3.1, and Lemma 5.1–5.2, we can obtain

I42 ≤ C(M0)
(
1 + D10)(‖P‖2

4 +
∥
∥ε

1
2 ∇Pα

∥
∥2 + ‖U‖2

4
)

+
δ

3
∥
∥ε

1
2 �Pα

∥
∥2 + C(M0)ε2.

Similarly, using (5.4), Lemma 4.1, Lemma 3.1, and Lemma 5.1–5.2, we can obtain

I43 ≤ C(M0)
(
1 + D10)(‖P‖2

4 +
∥
∥ε

1
2 ∇Pα

∥
∥2 + ‖U‖2

4
)

+
δ

3
∥
∥ε

1
2 �Pα

∥
∥2 + C(M0)ε2.

Therefore, substitution of the above inequalities and (5.15) into (5.12) yields

I4 ≤ –
κ ′ε
2

d
dt

∫

Ω

∣
∣ρ ′(p0 + εp̃ε

)∇Pα

∣
∣2 dx + 2δ

∥
∥ε

1
2 �Pα

∥
∥2

+ C(M0)
(
1 + D10)(‖P‖2

4 +
∥
∥ε

1
2 ∇Pα

∥
∥2 + ‖U‖2

4
)

+ δ
∥
∥ε

1
2 �Pα

∥
∥2 + C(M0)ε2.

Finally, from (5.6), we deduce that

I5 ≤ C(M0)ε2 + C(M0)(1 + D)
(‖P‖2

4 + ‖Uα‖2).

Hence, putting the estimates of Ii (i = 1, 2, . . . , 5) into (5.9), we have

1
2

d
dt

∫

Ω

(
qεP2

α + ρ̃ε|Uα|2 + κ ′ε
∣
∣ρ ′(p0 + εp̃ε

)∇Pα

∣
∣2)dx

≤ C(M0)
(
ε2 +

(
1 + D10)(∥∥ε

1
2 ∇Pα

∥
∥2 + ‖P‖2

4 + ‖U‖2
4
))

+ δ
∥
∥ε

1
2 �Pα

∥
∥2. (5.16)

To control the term with δ, we multiply (5.8) by ερ(p0 + εp̃ε)∇Pα and integrate the re-
sultant equality by parts over Ω to obtain

d
dt

∫

Ω

ερ̃εUα∇Pα dx +
∫

Ω

|∇Pα|2 dx

=
(

ε

∫

Ω

ρ̃εUα∇Pαt dx + ε

∫

Ω

ρ̃ε
t Uα∇Pα dx

)

– ε

∫

Ω

ρ̃ε∇Pα

(
ũε · ∇Uα + ∂α

x (U · ∇uε)

+
[
∂α

x , ũε
]∇U + ε–1[∂α

x ,ρ–1(p0 + εp̃ε
)]∇P

)
dx

+ κ ′
∫

Ω

ρ̃ε∇�ρ̃ε
α∇Pα dx + ε

∫

Ω

ρ̃ε∂α
x f2∇Pα dx

=: H1 + H2 + H3 + H4. (5.17)
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We estimate the Hi as follows. By using integration by parts, it follows from (5.7), (1.8)1,
Lemma 3.1, and Lemma 5.1–5.2 that

H1 = ε

∫

Ω

(
ρ
(
p0 + εp̃ε

)
div Uα + ερ ′(p0 + εp̃ε

)∇p̃εUα

)(
ũε · ∇Pα +

[
∂α

x , ũε
]∇P

+ ∂α
x (U · ∇pε) + ε–1[∂α

x , q–1(p0 + εp̃ε
)]

div U – ∂α
x f1

)
dx

– ε

∫

Ω

ρ ′(p0 + εp̃ε
)(

εũε∇p̃ε + q–1(p0 + εp̃ε
)

div ũε
)
Uα∇Pα dx

≤ Cε
(‖div Uα‖ + ε

∥
∥∇p̃εUα

∥
∥
)(∥

∥ũε∇Pα

∥
∥ +

∥
∥
[
∂α

x , ũε
]∇P

∥
∥ +

∥
∥∂α

x (U · ∇pε)
∥
∥

+ ε–1∥∥
[
∂α

x , q–1(p0 + εp̃ε
)]

div U
∥
∥ +

∥
∥∂α

x f1
∥
∥
)

≤ Cε
(‖div Uα‖ + ε

∥
∥∇p̃ε

∥
∥

L∞‖Uα‖)

× (∥
∥ũε

∥
∥

L∞‖∇Pα‖ +
∥
∥∇ũε

∥
∥

3‖∇P‖3 + ‖U‖4‖∇pε‖4

+ ε–1∥∥∇q–1(p0 + εp̃ε
)∥
∥

3‖div U‖3 +
∥
∥∂α

x f1
∥
∥
)

≤ δ

3
∥
∥ε

1
2 �Pα

∥
∥2 + C(M0)ε2 + C(M0)

(
1 + D4)(‖P‖2

4 +
∥
∥ε

1
2 ∇Pα

∥
∥2 + ‖U‖2

4
)
.

Next, as for I2, I3 and I5, it is easy to compute

H2 ≤ δ

3
∥
∥ε

1
2 �Pα

∥
∥2 + C(M0)

(
1 + D8)(‖P‖2

4 +
∥
∥ε

1
2 ∇Pα

∥
∥2 + ‖U‖2

4
)

and

H4 ≤ C(M0)ε2 + C(M0)
∥
∥ε

1
2 ∇Pα

∥
∥2.

Finally, noting (5.13) and (5.14), we have

H3 = –κ ′
∫

Ω

(
ρ
(
p0 + εp̃ε

)
�ρ̃ε

α�Pα + ερ ′(p0 + εp̃ε
)
�ρ̃ε

α∇p̃ε∇Pα

)
dx

= –κ ′ε
∫

Ω

ρ
(
p0 + εp̃ε

)
ρ ′(p0 + εp̃ε

)
(�Pα)2 dx

– κ ′ε
∫

Ω

ρ
(
p0 + εp̃ε

)
�Pα

([
∂α

x ,ρ ′(p0 + εp̃ε
)]

�P

+ ∂α
x
(
ρ ′(p0 + εp̃ε

)
�pε

)
+ ε∂α

x
(
ρ ′′(p0 + εp̃ε

)(∇p̃ε
)2))dx

– κ ′ε
∫

Ω

ρ ′(p0 + εp̃ε
)∇p̃ε∇Pα

(
ρ ′(p0 + εp̃ε

)
�Pα +

[
∂α

x ,ρ ′(p0 + εp̃ε
)]

�P

+ ε∂α
x
(
ρ ′(p0 + εp̃ε

)
�pε

)
+ ε∂α

x
(
ρ ′′(p0 + εp̃ε

)(∇p̃ε
)2))dx

≤ –κ ′ε
∫

Ω

ρ
(
p0 + εp̃ε

)
ρ ′(p0 + εp̃ε

)
(�Pα)2 dx +

δ

3
∥
∥ε

1
2 �Pα

∥
∥2

+ C(M0)
(
1 + D10)(‖P‖2

4 +
∥
∥ε

1
2 ∇P

∥
∥2

4

)
+ C(M0)ε2.
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Hence, inserting the above estimates of the Hi into (5.17) yields

d
dt

∫

R3
ερ

(
p0 + εp̃ε

)
Uα∇Pα dx +

∫

R3

(|∇Pα|2 + κ ′ερ
(
p0 + εp̃ε

)
ρ ′(p0 + εp̃ε

)
(�Pα)2)dx

≤ δ
∥
∥ε

1
2 �Pα

∥
∥2 + C(M0)

(
1 + D10)(‖P‖2

4 +
∥
∥ε

1
2 ∇P

∥
∥2

4 + ‖U‖2
4
)

+ C(M0)ε2. (5.18)

Finally, choose the proper constant λ > 0, which satisfies

1
2
(
ρ̃ε|Uα|2 + κ ′ε

∣
∣ρ ′(p0 + εp̃ε

)∇Pα

∣
∣2) + λερ

(
p0 + εp̃ε

)
Uα∇Pα ≥ 1

4
(|Uα|2 + κ ′ε|∇Pα|2).

Further, let us take δ > 0 with δ < λ
2(λ+1)κ

′ρ( 1
2 p0)c1. Therefore, combining (5.16) and (5.18),

we obtain

d
dt

(

‖P‖2
4 + ‖U‖2

4 +
∑

|β|=5

∥
∥ε

1
2 ∂β

x P
∥
∥2

)

+
(

‖∇U‖2
4 + ‖∇P‖2

4 +
∑

|γ |=4

∥
∥ε

1
2 �∂γ

x P
∥
∥2

)

≤ C(M0)
(
1 + D10)

(

‖P‖2
4 + ‖U‖2

4 +
∑

|β|=5

∥
∥ε

1
2 ∂β

x P
∥
∥2

)

+ C(M0)ε2. (5.19)

Then we integrate (5.19) from 0 to T with [0, T] ⊂ [0, min{Tε , T0}) to obtain

‖P‖2
4 + ‖U‖2

4 +
∑

|β|=5

∥
∥ε

1
2 ∂β

x P
∥
∥2 +

∫ T

0

(

‖∇U‖2
4 + ‖∇P‖2

4 +
∑

|γ |=4

∥
∥ε

1
2 �∂γ

x P
∥
∥2

)

dt

≤ C(M0)Tε2 + C(M0)
∫ T

0

(
1 + D10)

(

‖P‖2
4 + ‖U‖2

4 +
∑

|β|=5

∥
∥ε

1
2 ∂β

x P
∥
∥2

)

dt. (5.20)

Here, we have used the fact that the initial data are in equilibrium. Furthermore, we apply
Gronwall’s inequality (refer to Theorem 6.2 in [10]) to (5.20) to obtain

‖P‖2
4 + ‖U‖2

4 +
∑

|β|=5

∥
∥ε

1
2 ∂β

x P
∥
∥2 ≤ C(M0)T0ε

2 exp

[

C(M0)
∫ T

0

(
1 + D10)dt

]

. (5.21)

Denote by εQ(T) the right-hand side of (5.21), that is,

Q(T) = C(M0)T0ε exp

[

C(M0)
∫ T

0

(
1 + D10)dt

]

.

Recall that ‖P‖2
4 +‖U‖2

4 +
∑

|β|=5 ‖ε 1
2 ∂

β
x P‖2 = D2; then, due to (5.21) and ε ∈ (0, 1), it follows

that

D(T)2 ≤ εQ(T) ≤ Q(T). (5.22)

Moreover,

Q′(t) = C(M0)
(
1 + D10)Q(t) ≤ C(M0)Q(t) + C(M0)Q6(t), t ∈ [0, T].
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Applying the nonlinear Gronwall-type inequality (refer to Lemma 6.3 in [36]) to the last
inequality yields

Q(t) ≤ eCT0

for t ∈ [0, T] ⊂ [0, min{T0, Tε}) if we choose ε so small that

Q(0) = C(M0)T0ε ≤ e–C(M0)T0 .

That is, Q(T) is uniformly bound. Because of (5.22), there exists a constant c, independent
of ε, such that

D(T) ≤ c, (5.23)

for T ∈ [0, min{T0, Tε}). Finally, estimate (4.4) holds from (5.21) and (5.23). This completes
the proof of Theorem 4.1.
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