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Abstract
This research work is dedicated to investigating a class of impulsive fractional order
differential equations under the Robin boundary conditions via the application of
topological degree theory (TDT). We establish some adequate results for the
existence of at most one solution for the consider problem. Further, the whole
analysis is illustrated by providing a pertinent example. We keep in mind that the
conditions we develop by using TDT are much weaker than using ordinary fixed point
theory. Hence TDT can be used as powerful tool for the theoretical analysis of many
linear and nonlinear problems.
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1 Introduction
In previous few decades, the area devoted to studying fractional calculus and derivatives
and integrals of real or complex order has got proper attention. Fractional ordinary dif-
ferential equations (FODEs) have numerous applications in the fields of physical science,
biological sciences and engineering disciplines (for further details, see [1–7] and the ref-
erences therein). The concerned area has the ability to model hereditary and memory
process of many real world problems more comprehensively than classical derivatives and
integral. Recently, some new differential operators of fractional order of nonsingular type
have also attracted attention. Various researchers are working on it, it having also many
applications in modeling real world problems. In this regard, some authors recently pub-
lished very good work [8–10].

In real world problems, many phenomena face abrupt or sudden changes in their state
of motion or rest. These abrupt changes are modeled by using impulsive differential equa-
tions. The area which addresses the aforementioned problems has been established very
well in respect of ordinary derivatives and integrals. For the concerned investigations, re-
searchers have used fixed point theory and nonlinear analysis tools. Further some results
regarding numerical analysis corresponding to impulsive problems have also established
[11, 12]. On the other hand the investigation of impulsive problems under the concept of
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fractional calculus has also developed properly. The problem related to the moments of
sudden changes like heartbeat, earthquake, temperature, shock, and so forth occurs in our
daily life problems. All of these sudden changes are concerned with the impulsive differen-
tial equations, for these types of sudden changes the investigation of impulsive differential
equations is an important tool for analysis. Large numbers of articles can be found in this
regard [13–17].

An important aspect to be investigated of the physical problems is whether the problem
physically exists or not. For the existence theory, fixed point theory has been utilized in
the last many years. But one thing which restricted the application of fixed point theory
is the requirement of strong conditions. Because when we deal with problems of integral
or differential equations by fixed point theory, we first convert it to operator equations for
which we search fixed points. To achieve this goal often we impose strong compact con-
ditions on the concerned operator, which restricts the applicability of the area to a limited
class of problems. Therefore it is necessary to search some more sophisticated methods
and theories to relax the criteria. Therefore Mawhin [18] used TDT for the first time to
deal with integral equations. Later on Isaia [19] used the same theory to investigate some
integral equations. During 2012 Wang [20] investigated some classes of initial value prob-
lems of FODEs by using the TDT including the following problem of impulsive FODEs:

⎧
⎪⎪⎨

⎪⎪⎩

Dγ Ψ (t) = h(t,Ψ (t)), t �= ti, 0 < γ ≤ 1,

δΨ (ti) = Ii(Ψi),

Ψ (0) = Ψ0,

where i = 1, 2, . . . , l, h is a nonlinear function and Ii : R → R is a nonlinear map which
is the size of the jump at ti. As from present literature, the mentioned method has been
used to investigate the usual initial and “boundary value problems” (BVPs) of FODEs (for
details, see [21–23]).

On the other hand BVPs have many applications in engineering disciplines; see [24,
25]. The above-mentioned problems involve different kinds of boundary conditions like
“Neumann boundary conditions and Dirichlet boundary conditions”. When the aforesaid
boundary conditions are mixed then for the problem the mixed boundary conditions are
called Robin boundary conditions (RBCs) or impedance BVPs. The concerned problems
have many applications in heat transfer phenomena and electromagnetic theory. Further
problems under RBCs are increasingly used in solving Sturm–Liouville equations which
are largely used in engineering disciplines (see [26, 27]). Keeping in mind the mentioned
literature, we investigate the following nonlinear problem of impulsive FODEs under RBCs
for t ∈ [0, T]:

⎧
⎪⎪⎨

⎪⎪⎩

Dγ Ψ (t) = h(t,Ψ (t)), t �= ti, 1 < γ ≤ 2,

δΨ (ti) = Ii(Ψ (tj)), δΨ ′(ti) = Jj(Ψ (ti)),

aΨ (0) + bΨ (T) = g1(Ψ ), cΨ ′(0) + dΨ ′(T) = g2(Ψ ),

(1.1)

where j = 1, 2, . . . , l, 0 < γ ≤ 2 and the nonlinear function h is continuous and Ij, Jj are non-
linear maps which determine the size of the jump at ti, where 0 < t1 < t0 < t2 < t3 · · · < tl

and Ii(Ψ (ti)) = Ψ (t+
i ) – Ψ (t–

i ), Jj(Ψ ′(ti)) = Ψ ′(t+
i ) – Ψ ′(t–

i ), the notations Ψ (t+
i ), Ψ –(t+

i ), and
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Ψ (t–
i ), Ψ –(t–

i ) are right and left limits, respectively, and Dγ represents the Caputo deriva-
tive of various orders where 1 < γ ≤ 2. We use TDT to establish some adequate results
that ensure the existence of a solution to the considered problem. A pertinent example is
given to demonstrate the main contribution.

2 Background materials
Some basic notions and results [1, 2] which we need for our analysis are given as follows.

Proposition 2.1 The following statements hold:
(1) ψ(H) = 0, iff H is relatively compact;
(2) ψ is of semi-norm, that is, ψ(λH) = |λ|ψ(H) and ψ(H1 + H2) ≤ ψ(H1) + ψ(H2);
(3) H1 ⊂ H2 implies ψ(H1) ≤ ψ(H2)ψ(H1UH2) = max{ψ(H1),ψ(H2)};
(4) ψ(conv H) = ψ(H);
(5) ψ(H–) = ψ(H).

Definition 2.1 Let ω ⊂ Y and F : ω → Y a continuous bounded map, we say that F is
ψ-Lipschitz if there exists k ≥ 0 such that ψ(F(H)) ≤ kψ(H), for all H ⊂ ω. If k < 1, then
we say that F is a strict ψ– contraction.

Proposition 2.2 If F1, F2, F3, F4 : ω → Y are κ-Lipschitz maps with the constants m1, m2,
m3, m4, respectively, then F1, F2, F3, F4 : ω → Y are κ-Lipschitz with the constant m1 + m2 +
m3 + m4.

Proposition 2.3 If G : ω → Y is a compact mapping, then we call G ψ-Lipschitz with zero
constant.

Proposition 2.4 If G : ω → Y is Lipschitz with the constant k, then G is ψ-Lipschitz with
the same constant k.

Theorem 2.1 Let F : Y → Y be ψ-condensing and

T =
{
Ψ ∈ Y : there exists λ ∈ [0, T] such that Ψ = λFΨ

}
.

If T is a bounded set in Y , so there exists r > 0 such that T ⊂ Br(0), then

D
(
I – λF , Br(0), 0

)
= 1 for all λ ∈ [0, T].

Then F has at least one fixed point and the set of fixed points of F lies in Br(0).

Lemma 2.1 The FODE wih γ > 0,

Dγ Ψ (t) = 0,

has a unique solution of the form Ψ (t) =
∑m

n=0 citm–1, and ci are real constants and n =
[γ ] + 1.
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Lemma 2.2 The next consequence holds for FODE with γ > 0:

Iγ Dγ x(t) = Ψ (t) +
m–1∑

i=0

citi,

for arbitrary constant ci ∈R, i = 0, 1, 2, 3, . . . , m – 1, m = [γ ] + 1.
The notation Y = {Ψ : [0, T] → R : Ψ ∈ C(I ′)} is used for the space. Further, (Y ,‖ · ‖) is

the Banach space under the norm ‖Ψ ‖ = supt∈[0,T] |Ψ (t)|.

3 The existence results for the considered problem
Here we define some hypotheses for the existence and uniqueness theory for the problem
under consideration and we name the space PC(J , R) = Υ ; is needed throughout this work.

(A1) Let there for Ψ1,Ψ2 ∈ Υ exist constants Kg1 , Kg2 ∈ [0, 1) such that

∣
∣g1(Ψ1) – g1(Ψ2)

∣
∣ ≤ Kg1 |Ψ1 – Ψ2|,

∣
∣g2(Ψ1) – g2(Ψ2)

∣
∣ ≤ Kg2 |Ψ1 – Ψ2|.

(A2) Let us for Ψ ∈ Υ have some constants Cg1 , Mg1 , Cg2 , Mg2 ∈ [0, 1) such that

∣
∣g1(Ψ )

∣
∣ ≤ Cg1 |Ψ | + Mg1 ,

∣
∣g2(Ψ )

∣
∣ ≤ Cg2 |Ψ | + Mg2 .

(A3) Let us for Ψ ∈ Υ have some constants Cf , Mf ∈ [0, 1) such that

∣
∣h(t,Ψ )

∣
∣ ≤ Cf + |Ψ |Mf .

(A4) Let us for Ψ ∈R have some constants C1, M1, C2, M2 ∈ [0, 1) such that

∣
∣Ij(Ψ )

∣
∣ ≤ C1|Ψ | + M1,

∣
∣Jj(Ψ )

∣
∣ ≤ C2|Ψ | + M2.

(A5) Let Ii, Ji : R→R and let us have some constants Ki
I , Ki

J ∈ [0, 1
m ) such that

∣
∣Ii(Ψ1) – Ii(Ψ2)

∣
∣ ≤ Ki

I |Ψ1 – Ψ2|,
∣
∣Ji(Ψ1) – Ji(Ψ2)

∣
∣ ≤ Ki

J |Ψ1 – Ψ2|

and

∣
∣h(t,Ψ1) – h(t,Ψ2)

∣
∣ ≤ KΨ |Ψ1 – Ψ2|,

for all Ψ1,Ψ2 ∈R and i = 1, 2, 3, . . . .

Definition 3.1 A function Ψ ∈ Υ with its γ -derivative that exists on [0, T] – {t1, t2, t3, . . . ,
tm} is said to be the solution of the considered fractional impulsive problem under RBCs
if it verifies the considered equation (1.1).

Lemma 3.1 Let Ψ ∈ Υ be the solution of the fractional impulsive problem with η ∈
C([0, 1],R) given by

⎧
⎪⎪⎨

⎪⎪⎩

Dγ Ψ (t) = η(t), t �= ti, 1 < γ ≤ 2,

δΨ (tj) = Ij(Ψ (tj)), δΨ ′(tj) = Jj(Ψ (tj)), j = 1, 2, 3, . . . , l,

aΨ (0) + bΨ (T) = g1(Ψ ), cΨ ′(0) + dΨ ′(T) = g2(Ψ ),

(3.1)
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if and only is Ψ is the solution of the fractional impulsive integral equation as

Ψ (t) =
1

Γ (γ )

∫ t

tk

(t – s)γ –1η(s) ds

+
1

a + b

(
a

Γ (γ )

k∑

j=1

∫ tj

tj–1
(tj – s)γ –1η(s) ds –

b
Γ (γ )

k∑

j=1

∫ T

tk –1
(T – s)γ –1η(s) ds

)

+

( k∑

j=1

(t – tj) +
bdT

(a + b)(c + d)
–

b
a + b

k∑

j=1

(T – tj) –
td

c + d

)

× 1
Γ (γ – 1)

k∑

j=1

∫ tj

tj–1
(tj – s)γ –2η(s) ds

+
(

bdT
(a + b)(c + d)

–
td

c + d

)
1

Γ (γ – 1)

∫ T

tk

(T – s)γ –2η(s) ds +
a

a + b

k∑

j=1

Ij
(
Ψ (tj)

)

+

( k∑

j=1

(t – tj) +
bdT

(a + b)(c + d)
–

b
a + b

k∑

j=1

(T – tj) –
td

c + d

) k∑

j=1

Jj
(
Ψ (tj)

)

×
(

bT
(a + b)(c + d)

+
t

c + d

)

g2(Ψ ) +
g1(Ψ )
a + b

. (3.2)

Proof Let Ψ is a solution of (3.1), then, for η ∈ C([0, 1],R), t ∈ [0, T], and using Lemma 2.2
for the given problem, we have two constants f0, f1, that is,

Ψ (t) = Iγ η(t) – f0 – f1t, t ∈ [0, t1],

Ψ (t) =
1

Γ (γ )

∫ t1

0
(t1 – s)γ –1η(s) ds – f0 – f1t, t ∈ [0, t1].

(3.3)

Differentiating we get

Ψ ′(t) =
1

Γ (γ – 1)

∫ t1

0
(t1 – s)γ –2η(s) ds – f1, t ∈ [0, t1]. (3.4)

Likewise, for t ∈ (t1, t2], there are constants d0, d1 with

Ψ (t) = Iγ η(t) – d0 – d1(t – t1), t ∈ (t1, t2],

Ψ (t) =
1

Γ (γ )

∫ t

t1

(t1 – s)γ –1η(s) ds – d0 – d1(t – t1), t ∈ [0, t1].
(3.5)

Differentiating, we get

Ψ ′(t) =
1

Γ (γ – 1)

∫ t

t1

(t1 – s)γ –1η(s) ds – d1, t ∈ (t1, t2], (3.6)

and

Ψ
(
t–
1
)

=
1

Γ (γ )

∫ t1

0
(t1 – s)γ –1 – f0 – f1t1, t ∈ [0, t1],

Ψ
(
t+
1
)

= –f0,
(3.7)
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Ψ ′(t–
1
)

=
1

Γ (γ – 1)

∫ t

t1

(t1 – s)γ –1η(s) ds – d1, t ∈ (t1, t2],

Ψ ′(t+
1
)

= –d1.
(3.8)

Next applying the impulsive conditions after simplification we get the following:

–d0 =
1

Γ (γ )

∫ t1

0
(t1 – s)γ –1η(s) ds – f0 – f1t1 + I1

(
Ψ (t1)

)
,

–d1 =
1

Γ (γ – 1)

∫ t1

0
(t1 – s)γ –2η(s) ds – f0 + J1

(
Ψ (t1)

)
.

(3.9)

Putting these values in the given equation we get

Ψ (t) =
1

Γ (γ )

∫ t1

0
(t1 – s)γ –1η(s) ds +

1
Γ (γ )

∫ t1

0
(t1 – s)γ –1η(s) ds

+
t – t1

Γ (γ – 1)

∫ t1

0
(t1 – s)γ –1η(s) ds

+ (t – t1)J1
(
Ψ (t1)

)
+ I1

(
Ψ (t1)

)
– f0 – f1t. (3.10)

Reiterating the same procedure generally for t ∈ (tj–1, tj], we have

Ψ (t) =
1

Γ (γ )

∫ t1

0
(t1 – s)γ –1η(s) ds +

1
Γ (γ )

k∑

j=1

∫ tj

tj–1

(t1 – s)γ –1η(s) ds

+
k∑

j=1

(t – tj)
1

Γ (γ – 1)

∫ tj

tj–1

(tj – s)γ –2η(s) ds +
k∑

j=1

(t – tj)Jj
(
Ψ (tj)

)

+
k∑

j=1

Ij
(
Ψ (tj)

)
– f0 – f1t. (3.11)

In view of the RBCs and after simplification, we have the subsequent values for the con-
stant f0, f1,

f0 =
b

a + b

(
1

Γ (γ )

∫ T

tk

(T – s)γ –1η(s) ds +
1

Γ (γ )

k∑

j=1

∫ tj

tj–1

(tj – s)γ –1η(s) ds

+
k∑

j=1

(T – tj)
∫ tj

tj–1

(tj – s)γ –2 1
Γ (γ )

η(s) ds +
k∑

j=1

(T – tj)Jj
(
Ψ (tj)

)

+
k∑

j=1

(T – tj)Ij
(
Ψ (tj)

)
)

–
bdT

(a + b)(c + d)

(
1

Γ (γ – 1)

∫ T

tk

(T – s)γ –2η(s) ds

+
1

Γ (γ – 1)

k∑

j=1

∫ tj

tj–1
(tj – s)γ –2η(s) ds

)

–
bdT

(a + b)(c + d)

k∑

j=1

Jj
(
Ψ (tj)

)

+
(

bdT
(a + b)(c + d)

)

g2
(
Ψ (tj)

)
–

(
1

a + b

)

g1
(
Ψ (tj)

)
,
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f1 =
d

d + c

(
1

Γ (γ – 1)

∫ T

tk

(T – s)γ –2η(s) ds +
1

Γ (γ – 1)

k∑

j=1

∫ tj

tj–1
(tj – s)γ –2η(s) ds

+
k∑

j=1

Jj
(
Ψ (tj)

)
)

–
(

1
d + c

)

g2
(
Ψ (tj)

)
.

Putting these values in (3.11), we get the required solution given in (3.2) as

Ψ (t) =
1

Γ (γ )

∫ t

tk

(t – s)γ –1η(s) ds

+
1

Γ (γ )

k∑

j=1

∫ tj

tj–1
(t – s)γ –1η(s) ds +

1
Γ (γ – 1)

k∑

j=1

(t – tj)
∫ tj

tj–1
(t – s)γ –2η(s) ds

+
k∑

j=1

(t – tj)Jj
(
Ψ (tj)

)
+

k∑

j=1

Ij
(
Ψ (tj)

)
–

b
a + b

(
1

Γ (γ )

∫ T

tk

(T – s)γ –1η(s) ds

+
1

Γ (γ )

k∑

j=1

∫ tj

tj–1

(tj – s)γ –1η(s) ds +
k∑

j=1

(T – tj)
1

Γ (γ – 1)

∫ tj

tj–1

(tj – s)γ –2η(s) ds

+
k∑

j=1

(T – tj)Jj
(
Ψ (tj)

)
+

k∑

j=1

Ij
(
Ψ (tj)

)
)

+
bdT

(a + b)(c + d)

(
1

Γ (γ – 1)

∫ T

tk

(T – s)γ –2η(s) ds

+
1

Γ (γ – 1)

k∑

j=1

∫ tj

tj–1
(tj – s)γ –2η(s) ds +

k∑

j=1

Jj
(
Ψ (tj)

)
+

g2(Ψ )
d

)

–
td

d + c

(
1

Γ (γ – 1)

∫ T

tk

(T – s)γ –2η(s) ds

+
1

Γ (γ – 1)

k∑

j=1

∫ tj

tj–1
(tj – s)γ –2η(s) ds +

k∑

j=1

Jj
(
Ψ (tj)

)
)

+
(

t
d + c

)

g2(Ψ ) +
(

1
a + b

)

g1(Ψ ).

Rearranging terms so we can achieve the solution given in (3.2). On the other hand, we
presume that Ψ is a solution of the given equation, it being straightforward we give the
solution given by (3.2), by direct computation which satisfies (3.12). �

Corollary 3.1 In view of Lemma 3.1, the solution of the considered problem (1.1) is given
by

Ψ (t) =
1

Γ (γ )

∫ t

tk

(t – s)γ –1h
(
s,Ψ (s)

)
ds +

a
(a + b)Γ (γ )

k∑

j=1

∫ tj

tj–1
(tj – s)γ –1h

(
s,Ψ (s)

)
ds

–
b

(a + b)Γ (γ )

∫ T

tk

(T – s)γ –1h
(
s,Ψ (s)

)
ds +

( k∑

j=1

(t – tj) +
bdT

(a + b)(c + d)
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–
b

a + b

k∑

j=1

(T – tj) –
td

c + d

)
1

Γ (γ – 1)

k∑

j=1

∫ tj

tj–1
(tj – s)γ –2h

(
s,Ψ (s)

)
ds

+
(

bdT
(a + b)(c + d)

–
td

c + d

)
1

Γ (γ – 1)

∫ T

tk

(T – s)γ –2h
(
s,Ψ (s)

)
ds

+
a

a + b

k∑

j=1

Ij
(
Ψ (tj)

)
+

( k∑

j=1

(t – tj) +
bdT

(a + b)(c + d)
–

b
a + b

k∑

j=1

(T – tj)

–
td

c + d

) k∑

j=1

Jj
(
Ψ (tj)

)
+

(
bT

(a + b)(c + d)
+

t
c + d

)

g2(Ψ ) +
g1(Ψ )
a + b

. (3.12)

With the help of Corollary 3.1, the problem (3.12) is reduced to the fixed point problem
as Ψ = T(Ψ ). Keeping in mind this operator problem we develop results regarding the
solution of the considered problem.

Next we define five operators to establish the main results as regards the existence and
uniqueness as follows:

F0 : Υ → Υ ,

F0Ψ (t) =
a

a + b

k∑

j=1

Ij
(
Ψ (tj)

)

+

( k∑

j=1

(t – tj) +
bdT

(a + b)(c + d)
–

b
a + b

k∑

j=1

(T – tj) –
td

c + d

) k∑

j=1

Jj
(
Ψ (tj)

)

+
(

bT
(a + b)(c + d)

+
t

c + d

)

g2(Ψ ) +
g1(Ψ )
a + b

.

For the integral part we define the operators by

F1 : Υ → Υ ,

F1Ψ (t) =
1

Γ (γ )

∫ t

tk

(t – s)γ –1h
(
s,Ψ (s)

)
ds –

b
(a + b)Γ (γ )

∫ T

tk

(T – s)γ –1h
(
s,Ψ (s)

)
ds,

F2 : Υ → Υ ,

F2Ψ (t) =

( k∑

j=1

(t – tj) +
bdT

(a + b)(c + d)
–

b
a + b

k∑

j=1

(T – tj) –
td

c + d

)

× 1
Γ (γ – 1)

k∑

j=1

∫ tj

tj–1
(tj – s)γ –2h

(
s,Ψ (s)

)
ds,

F3 : Υ → Υ ,

F3Ψ (t) =
(

bdT
(a + b)(c + d)

–
td

c + d

)
1

Γ (γ – 1)

∫ T

tk

(T – s)γ –2h
(
s,Ψ (s)

)
ds,

F4 : Υ → Υ ,

F4Ψ (t) =
a

(a + b)Γ (γ )

k∑

j=1

∫ tj

tj–1
(tj – s)γ –1h

(
s,Ψ (s)

)
ds.
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Let T : Υ → Υ , then T is defined by

TΨ (t) = F0Ψ (t) + F1Ψ (t) + F2Ψ (t) + F3Ψ (t) + F4Ψ (t).

Therefore, investigating the solution to the given (3.12) the problem is just like investigat-
ing the fixed point for the operator T .

Theorem 3.1 The operator F0 : Υ → Υ is Lipschitz with constant KI =
∑m

i=1 Ki
I ∈ [0, 1).

Consequently F0 is ψ-Lipschitz with the same constant Ki
I ∈ [0, 1). Further F0 verifies the

following relation:

‖F0Ψ ‖ ≤ A + B‖Ψ ‖, (3.13)

where

A =
∣
∣
∣
∣

a
a + b

∣
∣
∣
∣M1 +

∣
∣
∣
∣lT +

bdt
(a + b)(c + d)

∣
∣
∣
∣M2

+
∣
∣
∣
∣

bT
(a + b)(c + d)

+
T

c + d

∣
∣
∣
∣Mg2 +

∣
∣
∣
∣

a
a + b

∣
∣
∣
∣Mg1 (3.14)

and

B =
∣
∣
∣
∣

a
a + b

∣
∣
∣
∣C1 +

∣
∣
∣
∣lT +

bdt
(a + b)(c + d)

∣
∣
∣
∣C2

+
∣
∣
∣
∣

bT
(a + b)(c + d)

+
T

c + d

∣
∣
∣
∣Cg2 +

∣
∣
∣
∣

a
a + b

∣
∣
∣
∣Cg1 . (3.15)

Proof Using (A1) and (A4), we have

sup
t∈[0,T]

|F0Ψ1 – F0Ψ2|

= sup
t∈[0,T]

∣
∣
∣
∣
∣

a
a + b

k∑

j=1

(
Ij
(
Ψ1(tj)

)
– Ij

(
Ψ2(tj)

))
+

( k∑

j=1

(t – tj) +
bdT

(a + b)(c + d)

–
b

a + b

k∑

j=1

(T – tj) –
td

(c + d)

)
[
Jj
(
Ψ1(tj)

)
– Jj

(
Ψ2(tj)

)]
+

(
bT

(a + b)(c + d)

+
t

c + d

)
(
g2(Ψ1) – g2(Ψ2)

)
+

1
a + b

(
g1(Ψ1) – g1(Ψ2)

)
∣
∣
∣
∣
∣
.

Further simplification yields

‖F0Ψ1 – F0Ψ2‖ ≤
∣
∣
∣
∣

a
a + b

∣
∣
∣
∣K

i
1‖Ψ1 – Ψ2‖ +

∣
∣
∣
∣lT +

bdT
(a + b)(c + d)

∣
∣
∣
∣K

i
j ‖Ψ1 – Ψ2‖

+
∣
∣
∣
∣

bT
(a + b)(c + d)

+
T

c + d

∣
∣
∣
∣kg2‖Ψ1 – Ψ2‖ +

∣
∣
∣
∣

1
a + b

∣
∣
∣
∣Kg1‖Ψ1 – Ψ2‖.
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Hence one has

‖F0Ψ1 – F0Ψ2‖ ≤
(∣

∣
∣
∣

a
a + b

∣
∣
∣
∣K

i
1 +

∣
∣
∣
∣lT +

bdT
(a + b)(c + d)

∣
∣
∣
∣K

i
j +

∣
∣
∣
∣

bT
(a + b)(c + d)

+
T

c + d

∣
∣
∣
∣kg2

+
∣
∣
∣
∣

1
a + b

∣
∣
∣
∣Kg1

)

× ‖Ψ1 – Ψ2‖. (3.16)

Using

K1 =
(∣

∣
∣
∣

a
a + b

∣
∣
∣
∣K

i
1 +

∣
∣
∣
∣lT +

bdT
(a + b)(c + d)

∣
∣
∣
∣K

i
j +

∣
∣
∣
∣

bT
(a + b)(c + d)

+
T

c + d

∣
∣
∣
∣kg2

+
∣
∣
∣
∣

1
a + b

∣
∣
∣
∣Kg1

)

.

Then (3.16) becomes

‖F0Ψ1 – F0Ψ2‖ ≤ K1‖Ψ1 – Ψ2‖.

Thus F0 is Lipschitz with constant K ∈ [0, 1).
For the growth relation using (A2) and (A5), we get the following:

‖F0Ψ ‖ = sup
t∈[0,T]

∣
∣
∣
∣
∣

a
a + b

k∑

j=1

Ij(Ψ1(tj)) +

( k∑

j=1

(t – tj) +
bdT

(a + b)(c + d)

–
(

b
a + b

) k∑

j=1

(T – tj) –
td

(c + d)

)

Jj(Ψ (tj))

+
(

bT
(a + b)(c + d)

+
t

c + d

)

g2(Ψ ) +
(

1
a + b

)

g1(Ψ )

∣
∣
∣
∣
∣
,

‖F0Ψ ‖ ≤
∣
∣
∣
∣

a
a + b

∣
∣
∣
∣

(
C1‖Ψ ‖ + M1

)
+

∣
∣
∣
∣lT +

bdT
(a + b)(c + d)

∣
∣
∣
∣

(
C2‖Ψ ‖ + M2

)

+
∣
∣
∣
∣

bT
(a + b)(c + d)

+
T

c + d

∣
∣
∣
∣

(
Cg2‖Ψ ‖ + Mg2

)

+
∣
∣
∣
∣

1
a + b

∣
∣
∣
∣

(
Cg1‖Ψ ‖ + Mg1

)
.

(3.17)

Then (3.17) becomes

∥
∥
∣
∣F0Ψ (t)

∣
∣
∥
∥ ≤ A + B‖Ψ ‖,

where A and B are given in (3.14) and (3.15). �

Lemma 3.2 The operator

F1Ψ (t) : Υ → Υ
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is continuous and satisfies the following growth condition:

‖F1Ψ ‖ ≤
(

1 +
∣
∣
∣
∣

b
(a + b)

∣
∣
∣
∣

)
Tγ

Γ (γ + 1)
(
Cf + Mf ‖Ψ ‖). (3.18)

Proof Let Ψn be a sequence in Bk = {Ψ ∈ Y : ‖Ψ ‖ ≤ r} such that Ψn → Ψ as n → ∞.
This implies that

(t – s)γ –1

Γ (γ )
(
h(s,Ψn) – h(s,Ψ )

) → 0, n → ∞,

and

(T – s)γ –1

Γ (γ )
(
h(s,Ψn) – h(s,Ψ )

) → 0, n → ∞.

Using the Lebesgue dominated convergence theorem, ‖F1(Ψn) – F1(Ψ )‖ → 0 as n → ∞,
this implies that F1 is continuous.

For the growth relation, using (A3), we then find

∣
∣F1

(
Ψ (t)

)∣
∣ ≤ 1

Γ (γ )

∫ t

tk

(t – s)γ –1∣∣h
(
s,Ψ (s)

)∣
∣ds

+
∣
∣
∣
∣

b
a + b

∣
∣
∣
∣

1
Γ (γ )

∫ T

tk

(T – s)γ –1∣∣h
(
s,Ψ (s)

)∣
∣ds,

sup
t∈[0,T]

∣
∣F1

(
Ψ (t)

)∣
∣ ≤ sup

t∈[0,T]

(
(t – tk)γ

Γ (γ + 1)
+

∣
∣
∣
∣

b
a + b

∣
∣
∣
∣
(T – tk)γ

Γ (γ + 1)

)
(
Cf + Mf ‖Ψ ‖),

‖F1Ψ ‖ ≤
(

1 +
∥
∥
∥
∥

b
a + b

∥
∥
∥
∥

)
Tγ

Γ (γ + 1)
(
Cf + Mf ‖Ψ ‖). �

Theorem 3.2 The operator defined as F1 : Y → Y is compact and ψ-Lipschitz with con-
stant zero.

Proof Clearly F1 satisfies the growth condition so F1 is bounded on Bk = {Ψ ∈ Y : ‖Ψ ‖ ≤
r}.

Let Ψ ∈ Bk , we have

‖F1Ψ ‖ ≤
(

1 +
∣
∣
∣
∣

b
a + b

∣
∣
∣
∣

)
Tγ

Γ (γ + 1)
(
Cf + Mf ‖Ψ ‖) ≤ Q1.

Hence F1 is bounded.
Further for 0 ≤ t1 ≤ t2 ≤ T , we show F1 is equi-continuous.

∣
∣F1

(
Ψ (t1)

)
– F1

(
Ψ (t2)

)∣
∣

≤ 1
Γ (γ )

∫ t1

tk

(t1 – s)γ –1∣∣h
(
s,Ψ (s)

)∣
∣ds –

1
Γ (γ )

∫ t2

tk

(t2 – s)γ –1∣∣h
(
s,Ψ (s)

)∣
∣ds

+
b

a + b
1

Γ (γ )

∫ T

tk

(T – s)γ –1∣∣h
(
s,Ψ (s)

)∣
∣ds

–
b

a + b
1

Γ (γ )

∫ T

tk

(T – s)γ –1∣∣h
(
s,Ψ (s)

)∣
∣ds.
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One has

∣
∣F1

(
Ψ (t1)

)
– F1

(
Ψ (t2)

)∣
∣ ≤ (Cf + Mf ‖Ψ ‖)

Γ (γ + 1)
(
(t1 – tk)γ – (t2 – tk)γ

)
.

As t1 → t2, then |F1(Ψ (t1))–F1(Ψ (t2))| → 0. Hence F1 is equi-continuous so F1 is compact.
Then, by Proposition 2.3, F1 is ψ-Lipschitz with constant zero. �

Lemma 3.3 The operator

F2 : Υ → Υ

is continuous and satisfies the following growth condition:

‖F2Ψ ‖ ≤
(

l +
∣
∣
∣
∣

bd
(a + b)(c + d)

∣
∣
∣
∣

)
Tγ +1

Γ (γ )
(
Cf + Mf ‖Ψ ‖). (3.19)

Proof Let Ψn be a sequence in Bk = {Ψ ∈ Y : ‖Ψ ‖ ≤ r} such that Ψn → Ψ as n → ∞.
This implies that

(ti – s)γ –2

Γ (γ – 1)
(
h(s,Ψn) – h(s,Ψ )

) → 0, n → ∞,

Using the Lebesgue dominated convergence theorem, we see that

∥
∥F2(Ψn) – F2(Ψ )

∥
∥ → 0 as n → ∞.

This implies that F2 is continuous.
Further for the growth relation using (A3), then one has

∣
∣F2

(
Ψ (t)

)∣
∣ ≤

∣
∣
∣
∣
∣

k∑

j=1

(t – tj) +
bdT

(a + b)(c + d)
–

b
a + b

k∑

j=1

(T – tj) –
td

c + d

∣
∣
∣
∣
∣

×
k∑

j=1

∫ tj

tj–1

(tj – s)γ –2

Γ (γ )
∣
∣h

(
s,Ψ (s)

)∣
∣ds,

which yields

sup
t∈[0,T]

∣
∣F2

(
Ψ (t)

)∣
∣ ≤ sup

t∈[0,T]

∣
∣
∣
∣
∣

k∑

j=1

(t – tj) +
bdT

(a + b)(c + d)

∣
∣
∣
∣
∣
×

∫ tj

tj–1

(tj – s)γ –2

Γ (γ )
∣
∣h

(
s,Ψ (s)

)∣
∣ds.

Thus one has

∥
∥F2(Ψ )

∥
∥ ≤

∣
∣
∣
∣l +

bd
(a + b)(c + d)

∣
∣
∣
∣ × Tγ +1

Γ (γ )
(
Cf + Mf ‖Ψ ‖).

This is the required relation. �

Lemma 3.4 The operator defined as F2 : Y → Y is compact and F2 is ψ-Lipschitz with
constant zero.
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Proof It can be easily derived similarly to Lemma 3.3. �

Lemma 3.5 The operator

F3 : Υ → Υ

is continuous and satisfies the following growth condition:

‖F3Ψ ‖ ≤
∣
∣
∣
∣

bd
(a + b)(c + d)

∣
∣
∣
∣ × Tγ +1

Γ (γ )
(
Cf + Mf ‖Ψ ‖). (3.20)

Proof Let Ψn be a sequence in Bk = {Ψ ∈ Y : ‖Ψ ‖ ≤ r} such that Ψn → Ψ as n → ∞.
This implies that

(T – s)γ –2

Γ (γ – 1)
(
h(s,Ψn) – h(s,Ψ )

) → 0, n → ∞.

Using the Lebesgue dominated convergence theorem

∥
∥F3(Ψn) – F3(Ψ )

∥
∥ → 0 as n → ∞.

This implies that F3 is continuous.
For the growth relation using (A3), then

∣
∣F3

(
Ψ (t)

)∣
∣ ≤

∣
∣
∣
∣

bdT
(a + b)(c + d)

–
td

c + d

∣
∣
∣
∣ × 1

Γ (γ – 1)

∫ T

tk

(T – s)γ –2∣∣h
(
s,Ψ (s)

)∣
∣ds,

sup
t∈[0,T]

∣
∣F3

(
Ψ (t)

)∣
∣ ≤ sup

t∈[0,T]

∣
∣
∣
∣

bdT
(a + b)(c + d)

∣
∣
∣
∣ ×

∫ T

tk

(T – s)γ –2∣∣h
(
s,Ψ (s)

)∣
∣ds.

Hence one has

∥
∥F3(Ψ )

∥
∥ ≤

∣
∣
∣
∣

bd
(a + b)(c + d)

∣
∣
∣
∣ × Tγ +1

Γ (γ )
(
Cf + Mf ‖Ψ ‖).

This is the required relation. �

Lemma 3.6 The operator defined by F3 : Y → Y is compact and F3 is ψ-Lipschitz with
constant zero.

Proof The proof is so easy that we omit it. �

Lemma 3.7 The operator

F4 : Υ → Υ

is continuous and satisfies the following growth condition:

‖F4Ψ ‖ ≤
∣
∣
∣
∣

a
a + b

∣
∣
∣
∣ × lTγ

Γ (γ + 1)
(
Cf + Mf ‖Ψ ‖). (3.21)
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Proof Let Ψn be a sequence in Bk = {Ψ ∈ Y : ‖Ψ ‖ ≤ r} such that Ψn → Ψ as n → ∞.
This implies that

(tj – s)γ –1

Γ (γ )
(
h(s,Ψn) – h(s,Ψ )

) → 0, n → ∞,

Using the Lebesgue dominated convergence theorem, ‖F4(Ψn) – F4(Ψ )‖ → 0 as n → ∞.
This implies that F4 is continuous.

For the growth relation using (A3), then

∣
∣F4

(
Ψ (t)

)∣
∣ ≤

∣
∣
∣
∣

a
a + b

∣
∣
∣
∣

1
Γ (γ )

k∑

j=1

∫ tj

tj–1
(tj – s)γ –1∣∣h

(
s,Ψ (s)

)∣
∣ds,

sup
t∈[0,T]

∣
∣F4

(
Ψ (t)

)∣
∣ ≤ sup

t∈[0,T]

∣
∣
∣
∣

a
a + b

∣
∣
∣
∣ × (tj – tj–1)γ

Γ (γ + 1)
× (

Cf + Mf ‖Ψ ‖),

‖F4Ψ ‖ ≤
∣
∣
∣
∣

a
a + b

∣
∣
∣
∣ × lTγ

Γ (γ + 1)
(
Cf + Mf ‖Ψ ‖).

This is the required relation. �

Lemma 3.8 The operator defined by F4 : Y → Y is compact and F4 is ψ-Lipschitz with
constant zero.

Proof The proof is so easy that we omit it. �

Next we show in combined form thta the four operators F1, F2, F3 and F4, satisfy the
growth condition and are continuous, then we show the operators F1, F2, F3 and F4 are
ψ-Lipschitz with constants zero and co-mpact.

Theorem 3.3 The operators F1, F2, F3 and F4 : Υ → Υ , are continuous and satisfy the
following relation:

‖F1Ψ ‖ + ‖F2Ψ ‖ + ‖F3Ψ ‖ + ‖F4Ψ ‖

≤
(

1 +
∣
∣
∣
∣

b
(a + b)

∣
∣
∣
∣

Tγ

Γ (γ + 1)
+

∣
∣
∣
∣l +

bd
(a + b)(c + d)

∣
∣
∣
∣

Tγ +1

Γ (γ )

+
∣
∣
∣
∣

bd
(a + b)(c + d)

∣
∣
∣
∣ × Tγ +1

Γ (γ )
+

∣
∣
∣
∣

a
(a + b)

∣
∣
∣
∣ × lTγ

Γ (γ + 1)

)

× (
Cf + Mf ‖Ψ ‖). (3.22)

Since F1, F2, F3 and F4, are continuous, F1 + F2 + F3 + F4, is continuous.

Lemma 3.9 The operators F1, F2, F3 and F4 : Υ → Υ , are compact and ψ-Lipschitz with
constant zero.

Proof Since F1, F2, F3 and F4, are compact, F1 + F2 + F3 + F4, is compact, then, by Propo-
sition 2.3, it is also ψ-Lipschitz with zero constant. �
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Theorem 3.4 Presume that (A1), (A2), (A3) and (A4), hold, then the problem 3.2 has at
least one solution Ψ ∈ Υ and the set of the solutions of the problem 3.2 is bounded in Υ .

Proof Let F0, F1, F2, F3 and F4, T : Υ → Υ be the operators defined in the section above.
They are bounded and continuous. Furthermore, F0 is ψ-Lipschitz with constant K ∈ [0, 1)
and F1, F2, F3 and F4 are ψ-Lipschitz with zero constants. Let

H =
{
Ψ ∈ Υ : there exist λ ∈ [0, 1] such that Ψ = λTΨ

}
.

We show that H is bounded in Υ . Let Ψ ∈ H , λ ∈ [0, 1] such that ‖Ψ ‖ = λ‖TΨ ‖. It follows
from (3.13) and (3.22) that

‖Ψ ‖ ≤ |λ|(‖F0Ψ ‖ + ‖F1Ψ ‖ + ‖F2Ψ ‖ + ‖F3Ψ ‖ + ‖F4Ψ ‖),

‖Ψ ‖ ≤ |λ|
[

A + B‖Ψ ‖ +
(

1 +
∣
∣
∣
∣

b
a + b

∣
∣
∣
∣

)
Tγ

Γ (γ + 1)
+

(

l +
∣
∣
∣
∣

bd
(a + b)(c + d)

∣
∣
∣
∣

)
Tγ +1

Γ (γ )

+
∣
∣
∣
∣

bd
(a + b)(c + d)

∣
∣
∣
∣

Tγ +1

Γ (γ )
+

∣
∣
∣
∣

a
a + b

∣
∣
∣
∣ × lTγ

Γ (γ + 1)

]
(
Mf ‖Ψ ‖ + Cf

)
.

This inequality shows that H is bounded; if not, then we assume that ζ = ‖Ψ ‖ → ∞. Di-
viding both sides of the above inequality by ‖Ψ ‖, we have

1 ≤ |λ|
[A + B‖Ψ ‖ + (1 + | b

a+b |) Tγ

Γ (γ +1) + (l + | bd
(a+b)(c+d) |) Tγ +1

Γ (γ )

ζ

+
| bd

(a+b)(c+d) |Tγ +1

Γ (γ ) + | a
a+b | × lTγ

Γ (γ +1)

ζ

]

× (
Mf ‖Ψ ‖ + Cf

)
.

Taking the limit as ζ → ∞, we get the relation 1 ≤ 0, which is not possible. Then we have
the possibility that T is bounded in Υ and has at least one fixed point. �

Theorem 3.5 Under the hypothesis (A5) and if K < 1 holds, where

K =
[(

Tγ

Γ (γ + 1)
+

∣
∣
∣
∣

a
a + b

∣
∣
∣
∣ × lTγ

Γ (γ + 1)
+

∣
∣
∣
∣

b
a + b

∣
∣
∣
∣ × Tγ

Γ (γ + 1)
+

∣
∣
∣
∣l

+
bd

(a + b)(c + d)

∣
∣
∣
∣ × lTγ +1

Γ (γ )
+

∣
∣
∣
∣

bd
(a + b)(c + d)

∣
∣
∣
∣ × Tγ

Γ (γ )

)

KΨ +
∣
∣
∣
∣

a
a + b

∣
∣
∣
∣K

i
I

+
∣
∣
∣
∣l +

bd
(a + b)(c + d)

∣
∣
∣
∣K

i
J +

∣
∣
∣
∣

bT
(a + b)(c + d)

+
1

c + d

∣
∣
∣
∣Kg2 +

∣
∣
∣
∣

1
a + b

∣
∣
∣
∣Kg1

]

,

the considered problem (1.1) has a unique solution.

Proof Consider Ψ1,Ψ2 ∈ Υ to be two solutions of the given problem (1.1), then

‖TΨ1 – TΨ2‖ ≤
[

KΨ Tγ

Γ (γ + 1)
+

∣
∣
∣
∣

a
a + b

∣
∣
∣
∣ × KΨ lTγ

Γ (γ + 1)
+

∣
∣
∣
∣

b
a + b

∣
∣
∣
∣ × KΨ Tγ

Γ (γ + 1)

+
∣
∣
∣
∣l +

bd
(a + b)(c + d)

∣
∣
∣
∣ × KΨ lTγ +1

Γ (γ )
+

∣
∣
∣
∣

bd
(a + b)(c + d)

∣
∣
∣
∣ × KΨ Tγ

Γ (γ )
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+
∣
∣
∣
∣

a
a + b

∣
∣
∣
∣K

i
I +

∣
∣
∣
∣l +

bd
(a + b)(c + d)

∣
∣
∣
∣K

i
J

+
∣
∣
∣
∣

bT
(a + b)(c + d)

+
1

c + d

∣
∣
∣
∣Kg2 +

∣
∣
∣
∣

1
a + b

∣
∣
∣
∣Kg1

]

‖Ψ1 – Ψ2‖,

‖TΨ1 – TΨ2‖ ≤
[(

Tγ

Γ (γ + 1)
+

∣
∣
∣
∣

a
a + b

∣
∣
∣
∣ × lTγ

Γ (γ + 1)
+

∣
∣
∣
∣

b
a + b

∣
∣
∣
∣ × Tγ

Γ (γ + 1)

+
∣
∣
∣
∣l +

bd
(a + b)(c + d)

∣
∣
∣
∣ × lTγ +1

Γ (γ )
+

∣
∣
∣
∣

bd
(a + b)(c + d)

∣
∣
∣
∣ × Tγ

Γ (γ )

)

KΨ

+
∣
∣
∣
∣

a
a + b

∣
∣
∣
∣K

i
I +

∣
∣
∣
∣l +

bd
(a + b)(c + d)

∣
∣
∣
∣K

i
J +

∣
∣
∣
∣

bT
(a + b)(c + d)

+
1

c + d

∣
∣
∣
∣Kg2

+
∣
∣
∣
∣

1
a + b

∣
∣
∣
∣Kg1

]

‖Ψ1 – Ψ2‖.

Thus T is a contraction mapping and by the Banach contraction theorem T has a unique
fixed point. Thus the considered problem has a unique solution. �

4 Test problem
Example 4.1 Let γ = 3

2 , T = 1, a = b = 1, c = d = 0.4, and the subsequent problem be

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

D 3
2 Ψ (t) = sin(t)

16+|Ψ (t)| , t ∈ [0, 1], t �= 1
5 ,

δΨ ( 1
5 ) = Ij(Ψ ( 1

5 )) = 4+|Ψ |2
30+|Ψ |2 ,

δΨ ′( 1
5 ) = Jj(Ψ ′( 1

5 )) = 20+|Ψ |2
30+|Ψ |2 ,

Ψ (0) + Ψ (1) = cos(Ψ )
10 , 0.4Ψ ′(0) + 0.4Ψ ′(1) = sin(Ψ )

20 .

As regards Theorem 3.4, it is not difficult to see that all the hypotheses are satisfied. Thus,
the said problem has a solution in Υ . For the uniqueness we presume KΨ = 1

16 , Kg1 = 1
10 ,

Kg2 = 1
20 , K1

I = 1
30 , K1

J = 1
30 , l = 1, and by simple computation we have

K =
(

1
3
4 × √

(π )
+

0.5 × 1
3
4 × √

(π )
+

0.5
3
4 × √

(π )
+

1.25
1
2 × √

(π )
+

0.25
1
2 × √

(π )

)

× 1
16

+
(

0.5 × 1
30

)

+
(

0.25 × 1
30

)

+
(

1.875 × 1
20

)

+
(

0.5 × 1
10

)

=
357

1000
. (4.1)

From (4.1), we see K < 1. Hence all the conditions of Theorem 3.5 hold. Consequently the
given problem (1.1) under RBCs has a unique solution in Υ .

5 Conclusion
With the support of a degree method of topology, we found sufficient conditions for the
impulsive problem (1.1) and by a well-known Banach contraction theorem the uniqueness
conditions have been obtained. A test example is presented and it is observed that our
results are effective under some conditions.
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