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Abstract
We investigate a nonlinear generalized Fornberg–Whitham equation. The key
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1 Introduction
Consider the nonlinear partial differential equation

Vt – Vtxx + kVx + mVVx =
9
2

VxVxx +
3
2

VVxxx, (t, x) ∈R+ ×R, (1)

where m > 0 and k are constants. Assume that V0(x) = V (0, x) is an initial value to Eq. (1).
We establish the inequality

c1‖V0‖L2(R) ≤ ‖V‖L2(R) ≤ c2‖V0‖L2(R), (2)

where c1 > 0 and c2 > 0 are constants independent of t.
If k = –1 and m = 3

2 , then Eq. (1) becomes the Fornberg–Whitham equation [1, 2]

Vt – Vtxx – Vx +
3
2

VVx =
9
2

VxVxx +
3
2

VVxxx, (t, x) ∈ R+ ×R. (3)

Recently, Holmes and Thompson [3] proved the well-posedness of Eq. (3) in the Besov
space in the periodic and nonperiodic cases and established a Cauchy–Kowalevski-type
theorem for Eq. (3) to show the existence and uniqueness of analytic solutions. The blow-
up criterion for the solutions is given in [3]. Using several estimates derived from the
Fornberg–Whitham equation itself and the conclusions in [4], Haziot [5] found sufficient
conditions on the initial data to guarantee the wave breaking of solutions of Eq. (3). Gao
et al. [6] proved the L1 local stability of strong solutions of Eq. (3).
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We know that the dynamic properties of the Fornberg–Whitham model are related
to those of the Cammassa–Holm equation[7], Degasperis–Processi equation [8], and
Novikov equation[9], which have peakon solutions (see[10–13]). Other dynamical prop-
erties of the Camassa–Holm, Degasperis–Processi, and Novikov equations can be found
in [14–21] and the references therein.

We write the Cauchy problem for Eq. (1):

⎧
⎪⎨

⎪⎩

Vt – Vtxx = –kVx – mVVx + 9
2 VxVxx + 3

2 VVxxx

= –kVx – ( m
2 V 2)x + 3

4∂3
xxxV 2,

V (0, x) = V0(x),
(4)

which is equivalent to

{
Vt + 3

2 VVx + ∂xQ(t, x) = 0,
V (0, x) = V0(x),

(5)

where m > 0 is a constant, Λ = (1 – ∂2
x ) 1

2 , and Q(t, x) = [kV + ( m
2 – 3

4 )V 2(t, x)].
Motivated by the desire to further investigate the Fornberg–Whitham equation (3), the

objective of this work is to establish the existence and uniqueness of entropy solutions for
Eq. (1). Using the viscous approximation techniques and assuming that the initial value
V0(x) belongs to the space L1(R) ∩ L∞(R), we prove the well-posedness of the entropy
solutions. The novelty is that we derive a new L2(R) conservation law for Eq. (1). The
ideas for obtaining our main result come from those in [22].

The structure of this paper is as follows. In Sect. 2, we establish several estimates for the
viscous approximations of problem (5), and in Sect. 3, we present our main results and
their proofs.

2 Estimates of viscous approximations
Set

φ(x) =

{
e

1
x2–1 , |x| < 1,

0, |x| ≥ 1,

φε(x) = ε– 1
4 φ(ε– 1

4 x) with 0 < ε < 1, and V0,ε = φε � V0 =
∫

R
φε(x – y)V0(y) dy. We have V0,ε ∈

C∞ for any V0 ∈ Hs with s ≥ 0.
For conciseness in this paper, we let c denote an arbitrary positive constant, which is

independent of parameter ε and time t.
For a smooth function V0,ε and s ≥ 0, we have

‖V0,ε‖Lp(R) ≤ c‖V0‖Lp(R) for 1 ≤ p < ∞,

V0,ε → V0 (ε → 0) in Lp(R) for 1 ≤ p < ∞,

‖V0,ε‖Hq ≤ c‖V0‖Hs if q ≤ s.
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For problem (4), we will discuss the limiting behavior of a sequence of smooth functions
{Vε}ε>0, where each function Vε satisfies the viscous problem

⎧
⎪⎨

⎪⎩

∂tVε – ∂3
txxVε + k∂xVε + mVε∂xVε

= 9
2 Vε∂

3
xxxVε + 3

2∂xVε∂
2
xxVε + ε∂2

xxVε – ε∂4
xxxxVε , (t, x) ∈R+ ×R,

Vε(0, x) = V0,ε(x), x ∈R,
(6)

or, in the equivalent form,

⎧
⎪⎨

⎪⎩

∂tVε + 3
4∂x(V 2

ε ) + ∂xQε(t, x) = ε∂2
xxVε ,

Qε(t, x) = Λ–2[kVε + ( m
2 – 3

4 )V 2
ε ],

Vε(0, x) = V0,ε(x),
(7)

where

Qε(t, x) =
1
2

∫

R

e–|x–y|
[

kVε(t, y) +
(

m
2

–
3
4

)

V 2
ε (t, y)

]

dy. (8)

Lemma 2.1 If V0 ∈ L2(R), then for any fixed ε > 0, there exists a unique global smooth
solution Vε = Vε(t, x) to the Cauchy problem (6) belonging to C([0,∞); Hs(R)) with s ≥ 0.

Proof Using Theorem 2.3 in [23], we directly get the result of this lemma. �

Now we give the following lemma, which plays a key role in our investigation of Eq. (1).

Lemma 2.2 Suppose that Vε is a solution of problem (7), V0 ∈ L2(R), and t > 0. Then

c1‖V0‖L2(R) ≤ ∥
∥Vε(t, ·)∥∥L2(R) ≤ c2‖V0‖L2(R), (9)

ε

∫ t

0

∥
∥∂xVε(τ , ·)∥∥2

L2(R) dτ ≤ c3‖V0‖2
L2(R), (10)

where c1, c2, and c3 are positive constants independent of ε and t.

Proof Let gε = ( 2m
3 – ∂2

xx)–1Vε . We have

2m
3

gε – ∂2
xxgε = Vε . (11)

Multiplying the first equation of problem (7) by gε – ∂2
xxgε and integrating over R yields

∫

R

∂tVε

(
gε – ∂2

xxgε

)
dx – ε

∫

R

∂2
xxVε

(
gε – ∂2

xxgε

)
dx

= –
3
2

∫

R

Vε∂xVε

(
gε – ∂2

xxgε

)
dx –

∫

R

∂xQε(t, x)
(
gε – ∂2

xxgε

)
dx. (12)
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We have
∫

R

∂tVε

(
gε – ∂2

xxgε

)
dx – ε

∫

R

∂2
xxVε

(
gε – ∂2

xxgε

)
dx

=
∫

R

(
2m
3

∂tgε – ∂3
txxgε

)
(
gε – ∂2

xxgε

)
dx – ε

∫

R

(
2m
3

∂2
xxgε – ∂4

xxxxgε

)
(
gε – ∂2

xxgε

)
dx

=
∫

R

(
2m
3

gε∂tgε – gε∂
3
txxgε –

2m
3

∂tgε∂
2
xxgε + ∂2

xxgε∂
3
txxgε

)

dx

– ε

∫

R

(
2m
3

gε∂
2
xxgε –

2m
3

(
∂2

xxgε

)2 – gε∂
4
xxxxgε + ∂2

xxgε∂
4
xxxxgε

)

dx

=
∫

R

(
2m
3

gε∂tgε –
(

2m
3

+ 1
)

gε∂
3
txxgε + ∂2

xxgε∂
3
txxgε

)

dx

– ε

∫

R

(
2m
3

gε∂
2
xxgε –

(
2m
3

+ 1
)

gε∂
4
xxxxgε + ∂2

xxgε∂
4
xxxxgε

)

dx

=
∫

R

(
2m
3

gε∂tgε +
(

2m
3

+ 1
)

∂xgε∂
2
txgε + ∂2

xxgε∂
3
txxgε

)

dx

– ε

∫

R

(

–
2m
3

∂xgε∂xgε –
(

2m
3

+ 1
)

∂2
xxgε∂

2
xxgε – ∂3

xxxgε∂
3
xxxgε

)

dx

=
1
2

d
dt

∫

R

(
2m
3

g2
ε +

(
2m
3

+ 1
)

(∂xgε)2 +
(
∂2

xxgε

)2
)

dx

+ ε

∫

R

(
2m
3

(∂xgε)2 +
(

2m
3

+ 1
)

(
∂2

xxgε

)2 +
(
∂3

xxxgε

)2
)

dx. (13)

For the right-hand side of (13), integrating by parts and using (11) result in

–
3
2

∫

R

Vε∂xVε

(
gε – ∂2

xxgε

)
dx –

∫

R

∂xQε(t, x)
(
gε – ∂2

xxgε

)
dx

= –
3
2

∫

R

Vε∂xVε

(
gε – ∂2

xxgε

)
dx +

∫

R

(
Qε – ∂2

xxQε

)
(t, x)∂xgε dx

= –
3
2

∫

R

Vε∂xVε

(
gε – ∂2

xxgε

)
dx +

∫

R

[

kVε +
(

m
2

–
3
4

)

V 2
ε

]

∂xgε dx

=
3
4

∫

R

∂x
(
V 2

ε

)
∂2

xxgε dx +
m
2

∫

R

V 2
ε ∂xgε dx + k

∫

R

(
2m
3

gε – ∂xxgε

)

∂xgε dx

=
3
4

∫

R

∂x
(
V 2

ε

)
[

2m
3

gε – Vε

]

dx +
m
2

∫

R

V 2
ε ∂xgε dx + 0

= –
3
4

∫

R

V 2
ε ∂xVε dx = 0. (14)

From (12), (13), and (14) we conclude that

2m
3

‖gε‖2
L2 +

(
2m
3

+ 1
)

‖∂xgε‖2
L2 +

∥
∥∂2

xxgε

∥
∥2

L2

+ 2ε

∫ t

0

(
2m
3

‖∂xgε‖2
L2 +

(
2m
3

+ 1
)

∥
∥∂2

xxgε

∥
∥2

L2 +
∥
∥∂3

xxxgε

∥
∥2

L2

)

dτ

=
2m
3

∥
∥gε(0, ·)∥∥2

L2 +
(

2m
3

+ 1
)

∥
∥∂xgε(0, ·)∥∥2

L2 +
∥
∥∂2

xxgε(0, ·)∥∥2
L2 . (15)
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Using the smoothness of the function V0,ε , we have

∥
∥gε(0, ·)∥∥L2 ,

∥
∥∂xgε(0, ·)∥∥L2 ,

∥
∥∂2

xxgε(0, ·)∥∥L2 ≤ c‖V0,ε‖L2 ≤ c‖V0‖L2 .

It follows from (11) that

∥
∥Vε(t, ·)∥∥2

L2(R) =
∫

R

(

–∂2
xxgε +

2m
3

gε

)2

dx

=
∫

R

(
∂2

xxgε

)2 dx –
4m
3

∫

R

gε∂
2
xxgε dx +

4m2

9

∫

R

g2
ε dx

=
∫

R

(
∂2

xxgε

)2 dx +
4m
3

∫

R

(∂xgε)2 dx +
4m2

9

∫

R

g2
ε dx. (16)

Using (15) and (16), we derive that there exist constants c1 and c2 such that

c1‖V0‖L2(R) ≤ ‖Vε‖L2(R) ≤ c2‖V0‖L2(R) (17)

and

ε

∫ t

0
‖∂xVε‖2

L2 dτ ≤ 2ε

∫ t

0

(
∥
∥∂3

xxxgε

∥
∥2

L2 + 2
(

2m
3

)2

ε‖∂xgε‖2
L2

)

dτ

≤ εc
∫ t

0

(
2m
3

‖∂xgε‖2
L2 +

(
2m
3

+ 1
)

∥
∥∂2

xxgε

∥
∥2

L2 +
∥
∥∂3

xxxgε

∥
∥2

L2

)

dτ

≤ εc
(∥
∥gε(0, ·)∥∥2

L2 +
∥
∥∂xgε(0, ·)∥∥2

L2 +
∥
∥∂2

xxgε(0, ·)∥∥2
L2

)

≤ c‖V0,ε‖2
L2

≤ c‖V0‖2
L2 . (18)

The proof of Lemma 2.2 follows from (17) and (18). �

Letting ε = 0 in the proof of Lemma 2.2, for Eq. (1), we obtain inequality (2).
Using Lemma 2.2, we give the following conclusion for the term Qε(t, x).

Lemma 2.3 If V0 ∈ L2(R), then

∥
∥Qε(t, ·)∥∥L1(R),

∥
∥∂xQε(t, ·)∥∥L1(R) ≤ c

(‖V0‖L2 + ‖V0‖2
L2

)
, (19)

‖Qε‖L∞(R+×R), ‖∂xQε‖L∞(R+×R) ≤ c
(‖V0‖L2 + ‖V0‖2

L2
)
. (20)

Proof We have

Qε(t, x) =
1
2

∫

R

e–|x–y|
[

kVε(t, y) +
(

m
2

–
3
4

)

V 2
ε (t, y)

]

dy (21)

and

∂xQε(t, x) =
1
2

∫

R

e–|x–y|sign(x – y)
[

kVε(t, y) +
(

m
2

–
3
4

)

V 2
ε (t, y)

]

dy. (22)
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Using the Schwarz inequality leads to

∣
∣
∣
∣

∫

R

e– 1
2 |x–y|Vε(t, y) dy

∣
∣
∣
∣ ≤

(∫

R

e–|x–y| dy
) 1

2
(∫

R

V 2
ε (t, y) dy

) 1
2

≤ c‖V0‖L2 . (23)

Utilizing the Tonelli theorem and (23), we get

∫

R

∣
∣
∣
∣

∫

R

e–|x–y|Vε(t, y) dy
∣
∣
∣
∣dx =

∫

R

∣
∣
∣
∣

∫

R

e– 1
2 |x–y|Vε(t, y) dy

∣
∣
∣
∣e

– 1
2 |x–y| dx

≤ ‖V0‖L2

∫

R

e– 1
2 |x–y| dx ≤ c‖V0‖L2 (24)

and
∫

R

∣
∣
∣
∣

∫

R

e–|x–y|V 2
ε (t, y) dy

∣
∣
∣
∣dx =

∫

R

∣
∣
∣
∣

∫

R

e–|x–y|V 2
ε (t, y) dy

∣
∣
∣
∣dx

≤ c‖V0‖2
L2 . (25)

From (21)–(25) and Lemma 2.2 we derive that (19) and (20) hold. The proof is finished. �

If V0 ∈ L1(R) ∩ L∞(R), then we derive V0 ∈ L2(R).

Lemma 2.4 If V0 ∈ L1(R) ∩ L∞(R), then

∥
∥Vε(t, ·)∥∥L∞ ≤ ‖V0‖L∞ + ct

(‖V0‖L2 + ‖V0‖2
L2

)
. (26)

Proof Using the first equation of problem (7), we have

∂tVε +
3
2

Vε∂xVε – ε∂xxVε = –∂xQε . (27)

Applying Lemma 2.3 yields

‖∂xQε‖L∞(R+×R) ≤ c
(‖V0‖L2 + ‖V0‖2

L2
)
. (28)

Setting K(t) = ‖V0‖L∞(R) + ct(‖V0‖L2 + ‖V0‖2
L2 ), we get

dK
dt

= c
(‖V0‖L2 + ‖V0‖2

L2
)
. (29)

Since ‖Vε(0, x)‖L∞(R) ≤ K(0), using the comparison principle, we derive that (26) holds. �

Applying Lemma 2.4 and the methods presented in [22], we obtain the following result.

Lemma 2.5 (Oleinik-type estimate) Let V0 ∈ L1(R) ∩ L∞(R) and T > 0. Then

∂xVε(t, x) ≤ 1
t

+ CT , x ∈ R, 0 < t ≤ T , (30)

where the constant CT depends on T .
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We omit the proof of this lemma since it is similar to that of Lemma 2.11 in [22].
We state the concepts of weak solution and entropy weak solution (see [22, 24]).

Definition 2.6 (Weak solution) A function V : R+ × R → R is called a weak solution of
the Cauchy problem (5) if

(i) V ∈ L∞(R+; L2(R)), and
(ii) ∂tV + 3

4∂x(V 2) + ∂xQ(t, x) = 0 in D′([0,∞) ×R), that is, for all f ∈ C∞
c ([0,∞) ×R),

we have the identity

∫

R+

∫

R

(

V∂t f +
3V 2

4
∂xf – ∂xQ(t, x)f

)

dx dt +
∫

R

V0(x)f (0, x) dx = 0. (31)

Definition 2.7 (Entropy weak solution) We call a function V : R+ × R → R an entropy
weak solution of Cauchy problem (5) if

(i) V is a weak solution in the sense of Definition 2.6,
(ii) V ∈ L∞([0, T] ×R) for any T > 0, and

(iii) for any convex C2 entropy function η : R →R with corresponding entropy flux
q : R →R defined by q′(V ) = 3

4η′(V )V , we have

∂tη(V ) + ∂xq(V ) + η′(V )∂xQ ≤ 0 in D′([0,∞) ×R
)
, (32)

that is, for all f ∈ C∞
c ([0,∞) ×R), f (t, x) ≥ 0, we have

∫

R+

∫

R

(
η(V )∂t f + q(V )∂xf – η′(V )∂xQf

)
dx dt +

∫

R

η
(
V0(x)

)
f (0, x) dx ≥ 0. (33)

Remark 2.8 As stated by Coclite and Karsen [22], by a standard argument we get that the
Kruzkov entropies/entropy fluxes

η(V ) = |V – k1|, q(V ) :=
3
4

sign(V – k1)
(
V 2 – k2

1
)
, (34)

where k1 is an arbitrary constant, satisfy (33).

3 Main results
We state the following L1(R) stability result of entropy weak solutions for Eq. (1).

Theorem 3.1 (L1-stability) Assume that V1(t, x) and V2(t, x) are two entropy weak solu-
tions of problem (5) with initial data V01 ∈ L1(R) ∩ L∞(R) and V02 ∈ L1(R) ∩ L∞(R), re-
spectively. Let T > 0 be the maximal existence time of solutions V1(t, x) and V2(t, x). Then

∥
∥V1(t, ·) – V2(t, ·)∥∥L1(R) ≤ CeCt

∫ ∞

–∞

∣
∣V01(x) – V02(x)

∣
∣dx, t ∈ [0, T], (35)

where C depends on V01 ∈ L1(R) ∩ L∞(R) and V02 ∈ L1(R) ∩ L∞(R) and T .

The proof of Theorem 3.1 is the standard argument presented in Gao et al. [6]. We omit
its proof.

We employ the compensated compactness method in [25, 26] to discuss the strong con-
vergence of a subsequence of the viscosity approximations.
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Lemma 3.2 Let {Vε}ε>0 be a family of functions defined on (0,∞) ×R such that

‖Vε‖L∞ ≤ CT ,

where the constant CT > 0 depends on T , and the family

{
∂tη(Vε) + ∂xq(Vε)

}

ε>0

is compact in H–1
loc((0,∞) ×R) for any convex η ∈ C2(R), where q(V ) = aVη′(V ) with con-

stant a > 0. Then there exist a sequence {εn}n∈N , εn → 0, and a function V ∈ L∞((0, T)×R),
T > 0, such that

Vεn → V a.e. and in Lp
loc

(
(0,∞) ×R

)
, 1 ≤ p < ∞.

Lemma 3.2 can be found in [25] or [26].

Lemma 3.3 ([27]) Suppose that Ω is a bounded open subset of RH , H ≥ 2. Assume that the
sequence {Mn}∞n=1 of distributions is bounded in W –1,∞(Ω) and

Mn = M(1)
n + M(2)

n ,

where {M(1)
n }∞n=1 lies in a compact subset of H–1

loc(Ω), and {M(2)
n }∞n=1 lies in a bounded subset

of L1
loc(Ω). Then {Mn}∞n=1 lies in a compact subset of H–1

loc(Ω).

Lemma 3.4 Let V0 ∈ L1(R) ∩ L∞(R). Then there exists a subsequence Vεn , n ∈ 1, 2, 3, . . . ,
of {Vε}ε>0 and a limit function

V ∈ L∞(
R+; L2(R)

) ∩ L∞(
(0, T); L∞ ∩ L1(R)

)
(36)

such that

Vεk → V in Lp((0, T] ×R
)
,∀p ∈ [1,∞). (37)

Proof Suppose that η : R→R is an arbitrary convex C2 entropy function that is compactly
supported, and q : R → R is the corresponding entropy flux defined by q′(V ) = 3

4η′(V )V .
We set

∂tη(Vε) + ∂xq(Vε) = M(1)
ε + M(2)

ε , (38)

where
{

M(1)
ε = ε∂2

xxη(Vε),
M(2)

ε = –εη′′(Vε)(∂xVε)2 – η′(Vε)∂xQε(t, x).
(39)

We claim that
{

M(1)
ε → 0 in H–1([0, T] ×R), T > 0,

M(2)
ε is uniformly bounded in L1([0, T] ×R).

(40)
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Using Lemmas 2.2–2.5 yields

∥
∥ε∂2

xxη(Vε)
∥
∥

H–1(R+×R) ≤ √
εc

∥
∥η′∥∥

L∞‖V0‖L2(R) → 0, (41)
∥
∥εη′′(Vε)(∂xVε)2∥∥

L1(R+×R) ≤ c
∥
∥η′′∥∥

L∞(R)‖V0‖L2(R), (42)
∥
∥η′(Vε)

∥
∥

L1((0,T)×R) ≤ c
∥
∥η′∥∥

L∞(R)‖V0‖L2(R). (43)

Therefore we know that (40) holds. Using Lemmas 3.2 and 3.3, we confirm that there exists
a subsequence {Vεn} and a limit function V satisfying (36) such that, as n → ∞,

Vεn → V in Lp
loc(R+ ×R) for any p ∈ [1,∞), (44)

and Vεn → V a.e. in R+ ×R. (45)

Using Lemma 2.5, from (44) and (45) we obtain (37). The proof is finished. �

Lemma 3.5 If V0 ∈ L1(R) ∩ L∞(R), then there exists a function Q(t, x) = [kV +
( m

2 – 3
4 )V 2(t, x)] such that

Qεn → Q in Lp([0, T); W 1,p(R)
)
, T > 0,∀p ∈ [1,∞), (46)

where the sequence εn, and the function V are constructed in Lemma 3.4.

We omit the proof of Lemma 3.5 since it is similar to that of Lemma 4.4 in [22].

Theorem 3.6 Let V0 ∈ L1(R)∩L∞(R). Then there exists at least one entropy weak solution
to problem (5).

Proof If f ∈ C∞
c (R+ ×R), then from (31) we get

∫

R+

∫

R

(

Vε∂t f +
3
4

V 2
ε ∂xf – ∂xQεf + εVε∂

2
xxf

)

dx dt +
∫

R

V0,εf (0, x) dx = 0. (47)

Using Lemmas 3.4, we make sure that the function V presented in Lemma 3.4 is a weak
solution of problem (5) in the sense of Definition 2.6. We have to verify that V satisfies
the entropy inequalities in Definition 2.7. Let η ∈ C2(R) be a convex entropy with flux q
defined by q′(V ) = 3

4 Vη′(V ). Using the convexity of η and problem (7) results in

∂tη(Vε) + ∂xq(Vε) + η′(Vε)∂xQε = ε∂2
xxη(Vε) – εη′′(Vε)(∂xVε)2 ≤ ε∂2

xxη(Vε). (48)

Thus by Lemmas 3.4 and 3.5 it follows that the entropy inequality holds. The proof is
finished. �

From Theorems 3.1 and 3.6 we have the following:

Theorem 3.7 Let V0 ∈ L1(R) ∩ L∞(R). Then the Cauchy problem (5) has a unique entropy
weak solution in the sense of Definition 2.7.
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