
Dai et al. Boundary Value Problems        (2020) 2020:105 
https://doi.org/10.1186/s13661-020-01402-8

R E S E A R C H Open Access

Numerical simulation for a class of
predator–prey system with homogeneous
Neumann boundary condition based on a
sinc function interpolation method
Dandan Dai1,2, Ximing Lv3 and Yulan Wang1*

*Correspondence: wylnei@163.com
1Department of Mathematics, Inner
Mongolia University of Technology,
Hohhot, P.R. China
Full list of author information is
available at the end of the article

Abstract
For the nonlinear predator–prey system (PPS), although a variety of numerical
methods have been proposed, such as the difference method, the finite element
method, and so on, but the efficient numerical method has always been the direction
that scholars strive to pursue. Based on this question, a sinc function interpolation
method is proposed for a class of PPS. Numerical simulations of a class of PPS with
complex dynamical behaviors are performed. Time series plots and phase diagrams
of a class of PPS without self-diffusion are shown. The pattern is obtained by setting
up different initial conditions and the parameters in the system according to Turing
bifurcation condition. The numerical simulation results have a good agreement with
theoretical results. Simulation results show the effectiveness of the method.
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1 Introduction
The PPS is a basic ecological system that exists widely in nature and is an essential com-
ponent of ecosystems such as oceans, lakes, wetlands, forests, and grasslands. The preda-
tory process plays an important role in promoting life evolution, maintaining ecological
balance, and maintaining biodiversity. Therefore, research on PPS is crucial to the ex-
ploration of the fundamental nature of ecosystems. In [1, 2], a PPS with Beddington–
DeAngelis-type functional response is proposed and analyzed. In [3], a PPS with gen-
eral Holling type functional response is given. In [4], a modified Leslie–Gower-type PPS
with Holling’s type II functional response is studied. In [5], Paul and Ghosh gave prey–
predator–generalist predator system of the following form:

⎧
⎪⎪⎨

⎪⎪⎩

dx
dt = rx(1 – x

k ) – α0xy – β0xz,
dy
dt = α1xy – γ0yz – m1y,
dz
dt = β1xz + γ1yz – m2z,

(1)
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with the initial conditions

x(0) = c1, y(0) = c2, z(0) = c3,

where x, y, and z are respectively the prey biomass, predator biomass, and top predator
biomass at any time t, r and k are respectively the intrinsic growth rate and the environ-
mental carrying capacity of prey species. α0, β0, γ0, α1, β1, γ1, m1, m2 are all parameters.

When studying the spatial distribution structure and maintaining biodiversity [6, 7] of
predators and prey populations, the reaction diffusion system [8–13] can more accurately
describe the interaction between predators and preys. In the PPS, spatial diffusion is re-
flected in the predator’s efforts to catch up with the prey, and the prey’s efforts to escape
the predator’s pursuit. In [5], if diffusion behavior of predator–prey biomass is considered,
the following system can be obtained [14]:

⎧
⎪⎪⎨

⎪⎪⎩

∂η

∂t = d1�η + rη(1 – η

k ) – α0ηu – β0ηv,
∂u
∂t = d2�u + α1ηu – γ0uv – m1u,
∂v
∂t = d3�v + β1ηv + γ1uv – m2v,

(2)

where η = η(x, y, t), u = u(x, y, t), and v = v(x, y, t) are respectively the prey biomass, preda-
tor biomass, and top predator biomass at any time t, r and k are respectively the intrinsic
growth rate and environmental carrying capacity of the prey species. α0, β0 are respec-
tively the predation rate of the predator and top predator on prey species. α1 and β1 are
respectively measure of the conversion rate of prey species to its predator species and γ1

is the conversion rate of predator species to the top predator species. γ0 is the predation
rate of top predator on predator species. m1 and m2 are respectively the natural death
rate of the predator and top predator; and d1, d2, and d3 are positive diffusion coefficients,
� = ∂2

∂x2 + ∂2

∂y2 . (x, y) ∈ Ω = [a, b] × [c, d], the smooth boundary is ∂Ω , homogeneous Neu-
mann boundary condition, namely ∂u

∂n |∂Ω = ∂v
∂n |∂Ω = 0.

For the nonlinear PPS, a variety of numerical methods have been proposed, such as
finite difference method [15], B-spline method [16], finite element method [17, 18], spec-
tral method [19–21], the perturbation method and variational iteration method (VIM)
[22, 23], barycentric interpolation collocation method (BICM) [24–27], reproducing ker-
nel method (RKM) [28–32], etc. Nevertheless, the efficient numerical method has always
been the direction that scholars strived to pursue. Based on this question, a sinc function
interpolation method is proposed for a class of PPS.

2 Bifurcation analysis of system
PPS (2) has at most five equilibrium points as follows:

(i) the trivial equilibrium p0(0, 0, 0);
(ii) the predator-free equilibrium P1(k, 0, 0);

(iii) the top predator-free equilibrium P2( m1
α1

, r kα1–m1
kα0α1

, 0);
(iv) the predator-free equilibrium P3( m2

β1
, 0, r kβ1–m2

kβ0β1
);

(v) the coexistence equilibrium
p4( km1β0+rγ0γ1–m2α0γ0

ϑ
, rm2γ0+k(m2α1β0–m1β0β1–rβ1γ0)

ϑ
, k(rα1γ1+m1α0β1–m2α0α1)–rm1γ1

ϑ
),where

ϑ = rγ0γ1 + k(α1β0γ1 – α0β1γ0).
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The following equation at arbitrary equilibrium point (η, u, v) is given [5]:
⎧
⎪⎪⎨

⎪⎪⎩

rη(1 – η

k ) – α0ηu – β0ηv = 0,

α1ηu – γ0uv – m1u = 0,

β1ηv + γ1uv – m2v = 0.

(3)

From the biological point of view we are only interested in the stability behavior of
the positive equilibrium point. Obviously, the trivial equilibrium P0 and the predator-free
equilibrium P1 always exist. The top predator-free equilibrium P2 exists if kα1 > m1, and
the coexistence equilibrium P4 exists if rγ0γ1 + kα1β0γ1 > kα0β1γ0. It is also to be noted
that the existence of the equilibrium P4 ensures the existence of the remaining equilibria.

The Jacobian matrix of nondiffusive system (2) at arbitrary equilibrium point (η, u, v) is
given as follows:

A0 =

⎡

⎢
⎣

r – 2rη
k – α0u – β0v –α0η –β0η

α1u α1η – γ0v – m1 –γ0u
β1v γ1v β1η + γ1u – m2

⎤

⎥
⎦ . (4)

The Jacobian matrix Aλ of system (2) is

Aλ =

⎡

⎢
⎣

r – 2rη
k – α0u – β0v –α0η –β0η

α1u α1η – γ0v – m1 –γ0u
β1v γ1v β1η + γ1u – m2

⎤

⎥
⎦ – λ2

⎡

⎢
⎣

d1 0 0
0 d2 0
0 0 d3

⎤

⎥
⎦ .

(5)

Turing bifurcation occurs when the equilibrium state is stable in absence of nondiffu-
sion, but it becomes unstable in presence of cross-diffusion. Thus, if there exists λ, the the
equilibrium state becomes an unstable point of the cross-diffusion system (2), and if the
real part of eigenvalues Ak is positive, then diffusion system (2) is unstable.

3 Description of the sinc function interpolation method
To solve system (2), we consider a regular region Ω = [0, 2π ] × [0, 2π ], the interval [0, 2π ]
is divided into N different nodes. h = 2π

N , xj = jh, yj = jh, j = 1, 2 . . . , N . Sinc functions are
used in different areas of physics and mathematics. A periodic sinc function

SN (x) =
sin(πx/h)

(2π/h) tan(x/2)
, (6)

where h = 2π
N , SN is the interpolation function of periodic δ function. It can be proved that

SN (x)|x→0 = 1. SN (xi – xj) is an N order unit matrix, respectively.
Using periodic sinc function (6), for given h > 0, we define the following interpolation

space:

Span
{

SN (x – jh), j = 1, 2, . . . , N
}

.

Let IN be the interpolation operator such that for functions η(x, y, t), u(x, y, t), and v(x, y, t)
defined on [0, 2π ] with homogeneous Neumann boundary condition, the interpolation
functions INη(x, y, t), IN u(x, y, t), and IN v(x, y, t) of sequence ηi,j = η(xi, yj, t), ui,j = u(xi, yj, t),
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vi,j = v(xi, yj, t) can be written as follows [33]:

η(x, y, t) ∼ INη(x, y, t) =
N∑

i=1

N∑

j=1

SN (x – xi)SN (y – yi)η(xi, yj, t),

u(x, y, t) ∼ IN u(x, y, t) =
N∑

i=1

N∑

j=1

SN (x – xi)SN (y – yi)u(xi, yj, t),

v(x, y, t) ∼ IN v(x, y, t) =
N∑

i=1

N∑

j=1

SN (x – xi)SN (y – yi)v(xi, yj, t).

(7)

At collocation nodes (xp, yq), the following relations hold:

η(xp, yq, t) = INη(xp, yq, t) =
N∑

i=1

N∑

j=1

SN (xp – xi)SN (yq – yi)η(xi, yj, t),

u(xp, yq, t) = IN u(xp, yq, t) =
N∑

i=1

N∑

j=1

SN (xp – xi)SN (yq – yi)u(xi, yj, t),

v(xp, yq, t) = IN v(xp, yq, t) =
N∑

i=1

N∑

j=1

SN (xp – xi)SN (yq – yi)v(xi, yj, t),

η(l,k)(xp, yq, t) ∼ INη(l,k)(xp, yq, t) =
∂ l+kη(xp, yq, t)

∂xl∂yk

=
N∑

i=1

N∑

j=1

S(l)
N (xp – xi)S(k)

N (yq – yi)η(xi, yj, t),

u(l,k)(xp, yq, t) ∼ IN u(l,k)(xp, yq, t) =
∂ l+ku(xp, yq, t)

∂xl∂yk

=
N∑

i=1

N∑

j=1

S(l)
N (xp – xi)S(k)

N (yq – yi)u(xi, yj, t),

v(l,k)(xp, yq, t) ∼ IN v(l,k)(xp, yq, t) =
∂ l+kv(xp, yq, t)

∂xl∂yk

=
N∑

i=1

N∑

j=1

S(l)
N (xp – xi)S(k)

N (yq – yi)v(xi, yj, t).

(8)

Noting

η = [η11,η21, . . . ,ηN1,η12,η22, . . . ,ηN2,η1N , . . . ,ηNN ]T ,

u = [u11, u21, . . . , uN1, u12, u22, . . . , uN2, u1N , . . . , uNN ]T ,

v = [v11, v21, . . . , vN1, v12, v22, . . . , vN2, v1N , . . . , vNN ]T .

(9)

Therefore, formula (8) can be written as the following matrix form:

η = D(0,0)η, u = D(0,0)u, v = D(0,0)v,

η(l,k) = D(l,k)
N η, u(l,k) = D(l,k)

N u, v(l,k) = D(l,k)
N v,

(10)
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where D(l,k)
N = D(l)

N ⊗ D(k)
N is the Kronecker product of matrix D(l)

N and D(k)
N , and D(0,0) =

IN ⊗ IN , D(0)
N = IN , IN is an N order unit matrix, respectively.

Employing Eqs. (7), (9), and (10), the discrete form of Eq. (2) can be written as follows:

∂

∂t

⎡

⎢
⎣

η

u
v

⎤

⎥
⎦ =

⎡

⎢
⎣

d1D + m0E 0 0
0 d2D – m1E 0
0 0 d3D + m2E

⎤

⎥
⎦

⎡

⎢
⎣

η

u
v

⎤

⎥
⎦ =

⎡

⎢
⎣

f1(η, u, v)
f2(η, u, v)
f3(η, u, v)

⎤

⎥
⎦ . (11)

Here,

[η, u, v] = [η11, . . . ,ηN1,η12, . . . ,ηNN , u11, . . . , uN1, u12, . . . , uN2, u1N , . . . , uNN ,

v11, . . . , vN1, v12, . . . , vN2, v1N , . . . , vNN ],

D = D(2,0)
N + D(0,2)

N , E = D(0,0),
[
f1(η, u, v), f2(η, u, v), f3(η, u, v)

]

=
[
f1(η11, u11, v11), . . . , f1(ηNN , uNN , vNN ),

f2(η11, u11, v11), . . . , f2(ηNN , uNN , vNN ), f3(η11, u11, v11), . . . , f3(ηNN , uNN , vNN )
]
,

f1(η, u, v) = –m0
η

k
– α0ηu – β0ηv, f2(η, u, v) = α1ηu – γ0uv,

f3(η, u, v) = β1ηv + γ1uv.

Using ode45 in MATLAB to solve Eq. (11) with different initial conditions, we can get
the numerical solution of system (2).

4 Numerical experiments
In this section, we give some numerical illustrations for better explanation of the above
analytical results using different initial conditions and parameters.

Experiment 1 We consider model (1). Taking the parameters c1 = c2 = c3 = 1, d1 = d2 =
d3 = 0, r = 0.1, α0 = 0.6, α1 = 0.3, β0 = 0.3, β1 = γ0 = 0.1, γ1 = 0.08, m1 = 0.15, m2 = 0.2, the
prey and the predator survive in the long-run Fig. 1 (a) and (b). It is also noticed that the
top predator always remains at zero level even for large value of k (= 200) (see Fig. 1 (b))
Taking the parameters c1 = c2 = c3 = 1, d1 = d2 = d3 = 0, r = 0.1, α0 = 0.6, α1 = 0.3, β0 = 0.3,
β1 = γ0 = 0.1, γ1 = 0.1, m1 = 0.08, m2 = 0.1, k = 50, the top predator does not remain at
zero level (see Fig. 1 (c)).

Taking the parameters β0 = β1 = 0, c1 = 1, c2 = 1, c3 = 1, and using the present method,
time series plots for Experiment 1 with different parameters are given in Fig. 2. Phase

Figure 1 Time series plots for Experiment 1 with different parameters, for parameters see Table 2
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Figure 2 Time series plots for Experiment 1 with different parameters, for parameters see Table 2

Figure 3 Phase diagram of Experiment 1 with the value of the parameter, for parameters see Table 2

Figure 4 Phase diagram of Experiment 1 with the value of the parameter, for parameters see Table 2

diagram of Experiment 1 with the value of the parameter is shown in Figs. 3–4. Figure 2
shows that the coexistence equilibrium P4 exists.

Experiment 2 We consider model (2) with different initial conditions and the parameters
r = 0.1, α0 = 0.6, α1 = 0.3, β0 = 0.3, β1 = 0.1, γ0 = 0.1, k = 1, d1 = 1, d2 = 1, d3 = 1, m1 = 0.3,
m2 = 0.5, γ1 = 1. Numerical solution and pattern of Experiment 2 are showed in Figs. 5–7.

Experiment 3 We consider model (2) with the parameters r = 0.8, α0 = 0.4, α1 = 0.4, β0 =
0.5, β1 = 0.4, γ0 = 0.2, γ1 = 0.5, m1 = 0.1, m2 = 0.2, k = 2.4, d1 = d3 = 0.1, d2 = 0.3. Numerical
solution and pattern of Experiment 3 are showed in Figs. 8–11. Tables 1–3 show different
parameters and initial conditions in Figs. 1–11.
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Figure 5 Numerical solution and pattern of Experiment 2, for initial conditions see Table 3

Figure 6 Numerical solution and pattern of Experiment 2, for initial conditions see Table 3

Figure 7 Numerical solution and pattern of Experiment 2, for initial conditions see Table 3
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Figure 8 Numerical solution and pattern of Experiment 3, for initial conditions see Table 3

Figure 9 Numerical solution and pattern of Experiment 3, for initial conditions see Table 3

Figure 10 Numerical solution and pattern of Experiment 3, for initial conditions see Table 3

5 Conclusions
In this paper, a sinc function interpolation method has been, for the first time, built for a
class of three species PPS with complex dynamical behavior. Some new complex dynam-
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Figure 11 Numerical solution and pattern of Experiment 3, for initial conditions see Table 3

Table 1 Title of Figs. 1–11

Figure Title

Figs. 1–2 Time series plots for Experiment 1 with different parameters, for parameters see Table 2
Figs. 3–4 Phase diagram of Experiment 1 with different parameters, for parameters see Table 2
Figs. 5–7 Numerical solution and pattern of Experiment 2 with different initial conditions, for initial

conditions see Table 3
Figs. 8–11 Numerical solution and pattern of Experiment 3 with different initial conditions, for initial

conditions see Table 3

Table 2 Parameters of Figs. 1–11

Figure Parameters

Fig. 1 (a) r = 0.1, α0 = 0.6, α1 = 0.3, β0 = 0.3, β1 = 0.1, γ0 = 0.1, γ1 = 0.08,m1 = 0.15,m2 = 0.2, k = 20
Fig. 1 (b) r = 0.1, α0 = 0.6, α1 = 0.3, β0 = 0.3, β1 = 0.1, γ0 = 0.1, γ1 = 0.08,m1 = 0.15,m2 = 0.2, k = 200
Fig. 1 (c) r = 0.1, α0 = 0.6, α1 = 0.3, β0 = 0.3, β1 = 0.1, γ0 = 0.1, γ1 = 0.1,m1 = 0.08,m2 = 0.1, k = 50
Fig. 2 (a), 3 r = 0.6, α0 = 0.6, α1 = 0.3, β0 = 0, β1 = 0, γ0 = 0.1, γ1 = 0.1,m1 = 0.08,m2 = 0.1, k = 200
Fig. 2 (b) r = 0.6, α0 = 0.6, α1 = 0.3, β0 = 0, β1 = 0, γ0 = 0.1, γ1 = 0.1,m1 = 0.08,m2 = 0.1, k = 50
Fig. 2 (c), 4 r = 0.5, α0 = 0.3, α1 = 0.25, β0 = 0, β1 = 0, γ0 = 0.2, γ1 = 0.1,m1 = 0.1,m2 = 0.15, k = 200
Figs. 5–7 r = 0.1, α0 = 0.6, α1 = 0.3, β0 = 0.3, β1 = 0.1, γ0 = 0.1, γ1 = 1,m1 = 0.3,m2 = 0.5, k = 1
Figs. 8–11 r = 0.8, α0 = 0.4, α1 = 0.4, β0 = 0.5, β1 = 0.4, γ0 = 0.2, γ1 = 0.5,m1 = 0.1,m2 = 0.2, k = 2.4

Table 3 Numerical solution and pattern of Experiments 2–3 with different initial condition of
Figs. 5–11

Figure η(x, y, 0) u(x, y, 0) v(x, y, 0)

Fig. 5 sech(sin(yx2)) sech(50x2 + 200y – 9) + ones(N) 4
5 sin(cos(y

2 – x2))

Fig. 6 sin(sech( x
2
2 – y2)) + 1

2 sin(cos( x
2
2 + y2)) + 1

2 – sin(x2 + y2

10 )
Fig. 7 sech( x2 + y3) cos(x2 + y2) sin(50x2 + 200y – 9)

Fig. 8 – 1
10 sin(

x2+y2

10 ) cos(e– sin(x
2+y2)) sech(sech(x2 + y))

Fig. 9 1
10 sin(

y2–x2

10 ) π sin(50x2 – y2) + 3
5 rand(N) cos(x + y2

10 )

Fig. 10 – sin(10x2 + y2

10 ) – sin(π ((x – 2
5 )

3 + (y + 2
5 )

2)) sin(–x2 + y2

10 )
Fig. 11 sin(50x2 + 200y – 9) cos(π ((x – 2

5 )
2 + (y + 2

5 )
2)) + sech(20((x + 2

5 )
2 + (y – 2

5 )
2)) sin(π (–x2 + y2))

ical behaviors are shown by using the present method. Simulation results were given to
show the effectiveness of the present method and this system.
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