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Abstract
This paper deals with the global dynamics for a SLIS epidemic model with infection
age. In our model, we also consider the time delay in the progression from the latent
individuals to becoming infectious individuals. We verify the well posedness of the
model by changing it into an abstract nondensely defined Cauchy problem and find
conditions for the existence of disease free equilibrium and endemic equilibrium. The
theoretic analysis shows that the disease-free equilibrium is globally asymptotically
stable as the basic reproduction number R0 is less than unity and that the endemic
equilibrium is locally asymptotically stable and the system is uniformly persistent as R0
is greater than unity. The numerical simulations illustrate that the endemic
equilibrium may be asymptotically stable as R0 > 1.
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1 Introduction
Iin 1927, Kermack and McKendrick [1] proposed the SIR infectious disease model frame-
work in which the total population was divided into three classes referred to as susceptible,
infective, and recovered, and assumed that the recovered individuals have the permanent
immunity. However, SIR infectious disease model framework cannot describe epidemics
with latency, such as HIV/AIDS, tuberculosis (TB), hepatitis B, malaria, and so on. It leads
to the appearance of the SLIR models discussing the spread of the epidemic diseases with
latency, where “L” represents the latent individuals [2–8].

In fact, many sexually transmitted diseases such as gonorrhea and chlamydial infections
are known to result in a little or no acquired immunity after recovery [9]. For the diseases
that cause a very brief immune for the recovered individuals, the immune period may
be ignored, and the model under study may be a suitable approximation [10]. That is,
compared with SLIR and SLIRS epidemic models, the SLIS models are more suitable to
describe the infectious diseases with latency and short immune period.

For the SLIS epidemic models, the outflow of the latent individuals is often described
by an ordinary differential equation

dL
dt

= –(d + α)L, (1.1)
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where L = L(t) denotes the number of the latent individuals at time t, d is the natural
death rate, and α is the progression rate from latent individuals to infectious individu-
als. The assumption in model (1.1) implies that the progression rate α is subject to the
exponential distribution. However, for some diseases (such as TB, HIV/AIDS, etc.), the
realistic situation is that the latent individuals must stay in the latent class for some time
before becoming the infectious class, and after that time, the progression rate from latent
individuals to infectious individuals depends on the infection age of the latent individuals.
Namely, the progression rate α in (1.1) should be replaced with the following piecewise
function:

α(a) =

⎧
⎨

⎩

α∗(a), a > τ ,

0, a ≤ τ ,
(1.2)

where α(a) ∈ L∞
+ ((0, +∞),R), τ ≥ 0 represents the shortest time required from initial in-

fection to becoming infectious class (i.e. the shortest latency period), and a is the period
of time that the latent individuals stay in the latent class since the initial infection, which
is referred to be the infection age. Thus, by incorporating the infection age and applying
(1.2), (1.1) becomes

∂L(t, a)
∂t

+
∂L(t, a)

∂a
= –

(
d + α(a)

)
L(t, a), t ≥ 0, a ≥ 0, (1.3)

where L(t, a) is the density of latent individuals with respect to infection age a at time t.
Let S = S(t) denote the number of the susceptible individuals at time t, I = I(t) denote the

number of the infectious individuals at time t, Λ > 0 be the constant recruitment rate of
susceptible individuals, β > 0 be the rate at which susceptible individuals become infected
by an infectious individual, and γ > 0 be the recovery rates of infectious individuals. Based
on the progression rate α(a) and equation (1.3), for the latent individuals with infection
age, we build an age-structured SLIS epidemic model with the delay progression rate as
follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS(t)
dt = Λ – dS(t) – βS(t)I(t) + γ I(t),

∂L(t,a)
∂t + ∂L(t,a)

∂a = –dL(t, a) – α(a)L(t, a), t ≥ 0, a ≥ 0,
dI(t)

dt =
∫ +∞

0 α(a)L(t, a) da – dI(t) – μI(t) – γ I(t), t ≥ 0,

L(t, 0) = βS(t)I(t), t ≥ 0,

(1.4)

with the initial conditions

S(0) = S0 ≥ 0, L(0, a) = L0(a) ∈ L1
+(0, +∞), I(0) = I0 ≥ 0.

Our interest in this paper is investigating the effects of time delay and age structure
on the dynamics of SLIS epidemic model. This paper is organized as follows. In Sect. 2,
we present some preliminary results and the well-posedness of system (1.4). In Sect. 3, we
prove the existence of equilibria, especially the existence and uniqueness of endemic equi-
librium for the linearized system of (1.4) around the equilibria. In Sect. 4, we prove the
global stability of disease free equilibrium E0 and the local stability of the endemic equilib-
rium E∗. In Sect. 5, we discuss the uniform persistence of the infection. These methods and
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technique used in these sections are similar to those in [11]. Finally, we give a discussion
and conclusions in Sect. 6.

2 Preliminaries and well-posedness
In this part, we first give some preliminaries on linear operators and C0-semigroup theory
and some notations. And then, we rewrite system (1.4) as an abstract equation on a suitable
Banach lattice. Finally, we establish the well-posedness result for system (1.4) and prove
the nonnegativity and boundedness of solutions.

Let P : D(P) ⊂ X → X be a linear operator on a Banach space X. Denote by ρ(P) the
resolvent set of P. The spectrum of P is defined as σ (P) = C\ρ(P). The point spectrum of
P is the set

σp(P) :=
{
λ ∈ C : N(λI – P) 	= {0}}.

Definition 2.1 Let P : D(P) ⊆ X → X be a linear operator. If there exist real constants
M ≥ 1 and ω ∈R such that (ω, +∞) ⊆ ρ(P) and

∥
∥(λ – P)–n∥∥ ≤ M

(λ – ω)n for all n ∈N+ and λ > ω,

then the linear operator (P, D(P)) is called a Hille–Yosida operator.

For Hille–Yosida operators, we have the following perturbation results.

Lemma 2.1 (see [12, 13]) Let (A, D(A)) be a Hille–Yosida operator on a Banach space X,
and let B ∈ L (X), where L (X) denotes the set of all bounded linear operators on X . Then
the sum C = A + B is a Hille–Yosida operator as well.

For a Hille–Yosida operator (P, D(P)) on a Banach space X, we set

X0 :=
(
D(P),‖ · ‖),

D(P0) :=
{

x ∈ D(P) : Px ∈ X0
}

,

P0x := Px for x ∈ D(P0).

The operator (P0, D(P0)) is called the part of P in X0, and the following result holds.

Lemma 2.2 (see [12, 13]) If (P, D(P)) is a Hille–Yosida operator, then its part (P0, D(P0))
generates a C0-semigroup (T0(t))t≥0 on X0.

Now we set about to rewrite system (1.4) into an abstract evolution equation. Let

X = R× L1((0, +∞),R
) ×R×R

and define the linear operator A : D(A) ⊆ X −→ X by

A

⎛

⎜
⎜
⎜
⎝

x
y
z
0

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

–dx
– dy

da – (d + α(a))y
–(d + μ + γ )z

–y(0)

⎞

⎟
⎟
⎟
⎠
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with D(A) = R× W 1,1((0, +∞),R) ×R× {0}. It is clear that D(A) = R× L1((0, +∞),R) ×
R× {0}, and thus D(A) is not dense in X. Define the nonlinear map F : D(A) −→ X by

F

⎛

⎜
⎜
⎜
⎝

x
y
z
0

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

Λ – βxz + γ z
0

∫ +∞
0 α(a)y(a) da

βxz

⎞

⎟
⎟
⎟
⎠

.

It is clear that F is Lipschitz continuous. Let u(t) = (S(t), L(t, ·), I(t), 0)T . We can rewrite
system (1.4) as the following abstract Cauchy problem:

⎧
⎨

⎩

d
dt (u(t)) = Au(t) + F (u(t)), t ≥ 0,

u(0) = u0,
(2.1)

with u0 = (S0, L0(a), I0, 0)T . Further, we have

u(t) = u0 + A
∫ t

0
u(s) ds +

∫ t

0
F

(
u(s)

)
ds. (2.2)

Let

X0 = D(A) = R× L1((0, +∞),R
) ×R× {0},

X0+ = R+ × L1
+
(
(0, +∞),R

) ×R+ × {0},
Ω :=

{
λ ∈C : Re(λ) > –d

}
.

We have the following result.

Theorem 2.1 The operator (A, D(A)) is a Hille–Yosida operator.

Proof For (φ,ϕ,ω,ψ) ∈ X, (φ̃, ϕ̃, ω̃, 0) ∈ D(A), and λ ∈ Ω , we have

(λ – A)–1

⎛

⎜
⎜
⎜
⎝

φ

ϕ

ω

ψ

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

φ̃

ϕ̃

ω̃

0

⎞

⎟
⎟
⎟
⎠

⇔

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(λ + d)φ̃ = φ,

ϕ̃′ = –(λ + d + α(a))ϕ̃ + ϕ,

(λ + d + μ + γ )ω̃ = ω,

ϕ̃(0) = ψ .

It means that

⎧
⎪⎪⎨

⎪⎪⎩

φ̃ = φ

λ+d ,

ϕ̃ = e–
∫ a

0 (λ+d+α(θ )) dθψ +
∫ a

0 e
∫ s

a (λ+d+α(θ )) dθϕ(s) ds,

ω̃ = ω
λ+d+μ+γ

.

(2.3)

Integrating the second equation of (2.3) with respect to the age variable a, and adding all
the equations, we obtain that

|φ̃| + ‖ϕ̃‖L1 + |ω̃| ≤ 1
λ + d

(|φ| + ‖ϕ‖L1 + |ω| + |ψ |).
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That is,

∥
∥(λ – A)–1∥∥ ≤ 1

λ + d
for all λ ∈ Ω ,

which implies that (A, D(A)) is a Hille–Yosida operator. �

By using of Lemma 2.2, we further obtain the following result:

Theorem 2.2 The part of (A, D(A)) generates a C0-semigroup (L (X))t≥0 on X0.

Since (A, D(A)) is a Hille–Yosida operator, we have the following well-posedness theo-
rem for system (2.1).

Theorem 2.3 For any u0 ∈ X0+, system (1.4) represented by the integral equation (2.2) has
a unique continuous solution with values in X0+. Moreover, the map Φ : [0, +∞) × X0+ �→
X0+ defined by Φ(t, u0) = u(t, u0) is a continuous semiflow, that is, the map is continuous
and satisfies Φ(0, ·) = I and Φ(t,Φ(s, ·)) = Φ(t + s, ·).

According to the significance of epidemiology, we only consider nonnegative solu-
tions of system (1.4). The nonnegativity and ultimate boundedness of the solution
(S(t), L(t, a), I(t)) of system (1.4) with nonnegative initial conditions are given in the fol-
lowing.

Theorem 2.4 All solutions of system (1.4) with nonnegative initial conditions remain non-
negative for all t ≥ 0 and are ultimately bounded.

Proof We first prove that L(t, a) ≥ 0 with nonnegative initial values. Integrating the second
equation in system (1.4) along the characteristic line, we obtain

L(t, a) =

⎧
⎨

⎩

L(t – a, 0)e–
∫ a

0 (d+α(θ )) dθ , a ≤ t,

L0(a – t)e–
∫ t

a–t (d+α(θ )) dθ , a > t.
(2.4)

It is clear that L(t, a) is nonnegative for all nonnegative initial values.
Second, we show that I(t) ≥ 0 for t ≥ 0. Without loss of generality, we assume there

exists t1 > 0 such that I(t1) = 0 and I(t) > 0 for all t ∈ (0, t1). In fact, the third equation of
system (1.4) implies that I ′(t1) =

∫ +∞
0 α(a)L(t1, a) da > 0. It is a contradiction, which means

that the assumption is not true, that is, I(t) ≥ 0 for all t ≥ 0.
Third, we prove that S(t) ≥ 0 for t ≥ 0. In fact, if there exists t2 > 0 such that S(t2) = 0 and

S(t) > 0, t ∈ (0, t2), then the first equation of system (1.4) implies that S′(t2) = Λ+γ I(t2) > 0,
which in turn implies that S(t) ≥ 0 for all t ≥ 0.

Finally, we prove that the solutions of system (1.4) are ultimately bounded. Let L(t) =
∫ +∞

0 L(t, a) da, which represents the total number of latent individuals at time t. It is rea-
sonable to assume that lima→+∞ L(t, a) = 0 since there exists a finite maximum age in a
biological sense. Further, we have

(
S(t) + L(t) + I(t)

)′

= Λ – dS(t) – βS(t)I(t) + γ I(t) –
∫ +∞

0

(
∂L(t, a)

∂a
+

(
d + α(a)

)
L(t, a)

)

da
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+
∫ +∞

0
α(a)L(t, a) da – (d + μ + γ )I(t)

= Λ – dS(t) –
∫ +∞

0

(
d + α(a)

)
L(t, a) da +

∫ +∞

0
α(a)L(t, a) da – (d + μ)I(t)

= Λ – dS(t) – dL(t) – (d + μ)I(t)

≤ Λ – d
(
S(t) + L(t) + I(t)

)
.

Therefore

lim sup
t→+∞

(
S(t) + L(t) + I(t)

) ≤ Λ

d
.

Consequently, S(t), L(t, a), and I(t) are ultimately bounded. It follows that the omega limit
set of system (1.4) is contained in the following bounded feasible region:

Γ =
{
(
S, L(·), I

)
: S, I, L(·) ≥ 0, S +

∫ +∞

0
L(t, a) da + I ≤ Λ

d

}

.

It is obvious that the region Γ is positively invariant with respect to system (1.4). �

3 Equilibria and properties of linearization at equilibria
In this part, we consider the existence of equilibria and linearization of the nonlinear sys-
tem (1.4) around the equilibrium solutions.

It is clear that system (1.4) always has the disease free equilibrium E0 = (S0, 0, 0), where
S0 = Λ

d . In order to find the positive equilibrium E∗ = (S∗, L∗(a), I∗) of (1.4), we solve the
following equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Λ – dS∗ – βS∗I∗ + γ I∗ = 0,
dL∗(a)

da = –(d + α(a))L∗(a),
∫ +∞

0 α(a)L∗(a) da – (d + μ + γ )I∗ = 0,

L∗(0) = βS∗I∗.

(3.1)

Solving the second equation of (3.1), we get

L∗(a) = L∗(0)e–
∫ a

0 (d+α(θ )) dθ . (3.2)

Then from the third equation of (3.1) and (3.2), we have

I∗ =
L∗(0)

d + μ + γ

∫ +∞

0
α(a)e–

∫ a
0 (d+α(θ )) dθ da =

βS∗I∗
d + μ + γ

∫ +∞

0
α(a)e–

∫ a
0 (d+α(θ )) dθ da.

Hence

S∗ =
d + μ + γ

β
∫ +∞

0 α(a)e–
∫ a

0 (d+α(θ )) dθ da
.
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Because of βS∗ – γ = d+μ+γ (1–
∫ +∞

0 α(a)e–
∫ a
0 (d+α(θ )) dθ da)

∫ +∞
0 α(a)e–

∫ a
0 (d+α(θ )) dθ da

> 0, the first equation of (3.1) implies

that

I∗ =
Λ

βS∗ – γ

(

1 –
S∗
S0

)

. (3.3)

Now we denote the basic reproduction number as

R0 =
S0

S∗
=

βS0

d + μ + γ

∫ +∞

0
α(a)e–

∫ a
0 (d+α(θ )) dθ da.

Therefore, we have I∗ = Λ
βS∗–γ

(1 – 1
R0

) > 0 when R0 > 1. That is, if R0 > 1, then system (1.4)
has a unique positive equilibrium. Summarizing the analysis, we have the following result.

Theorem 3.1 System (1.4) always has the disease free equilibrium E0 = (S0, 0, 0) = ( Λ
d , 0, 0).

In addition, if R0 > 1, then system (1.4) also has a unique endemic equilibrium E∗ =
(S∗, L∗(a), I∗), where

S∗ =
d + μ + γ

β
∫ +∞

0 α(a)e–
∫ a

0 (d+α(θ )) dθ da
, I∗ =

Λ

βS∗ – γ

(

1 –
1

R0

)

,

L∗(a) = βS∗I∗e–
∫ a

0 (d+α(θ )) dθ .

Here, each term in R0 has a clear epidemiological meanings. e–
∫ a

0 (d+α(θ )) dθ is the proba-
bility that the latent individual survives to age a,

∫ +∞
0 α(a)e–

∫ a
0 (d+α(θ )) dθ da is the total num-

ber of infectious individuals produced over the life span of the latent individual, 1
d+μ+γ

is
the average infection period, β is the infection rate of the infectious individual, and Λ

d
represents the total number of susceptible individuals. Therefore R0 represents the total
number of newly infectious individuals.

In the following, we linearize system (1.4) around the steady state. Let

S(t) = x(t) + S, L(t, a) = y(t, a) + L(a), I(t) = z(t) + I,

where E = (S, L(a), I) is any steady state of system (1.4), ũ(t) = (x(t), y(t, a), z(t), 0), and ū =
(S, L(a), I, 0). Then system (2.1) is equivalent to the following Cauchy problem:

⎧
⎨

⎩

d
dt ũ(t) = Aũ(t) + F (ũ(t) + ū) – F (ū(t)), t ≥ 0,

ũ(0) = u(0) – ū.

By direct computations we can obtain readily the linearized system of (2.1) around ū of
the following form:

⎧
⎨

⎩

d
dt ũ(t) = Aũ(t) + DF (ū)(ũ(t)), t ≥ 0,

ũ(0) = u(0) – ū,
(3.4)
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where

DF (ū)

⎛

⎜
⎜
⎜
⎝

x(t)
y(t, a)
z(t)

0

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

–β(Ix(t) + Sz(t)) + γ z(t)
0

∫ +∞
0 α(a)y(t, a) da
β(Ix(t) + Sz(t))

⎞

⎟
⎟
⎟
⎠

.

Obviously, DF (ū) is a compact bounded linear operator on X.
Combining Lemma 2.1 and Theorem 2.1, the following result can be immediately ob-

tained:

Theorem 3.2 The operator A + DF (ū) is a Hille–Yosida operator.

Therefore, by Lemma 2.2, we can get the following result:

Theorem 3.3 The part of (A+ DF (ū), D(A+ DF (ū))) generates a C0-semigroup (T (t))t≥0

on the space X0.

By the Hille–Yosida estimate in the proof of Theorem 2.1, we have ‖S (t))‖ ≤ e–ξ t . Fur-
thermore, DF (ū)S (t) : X0 → X is compact for any t > 0. Because of

T (t) = eDF (ū)tS (t) = S (t) +
+∞∑

k=1

(DF (ū)t)k

k!
S (t),

we know (T (t))t≥0 is quasi-compact. Theorem B.1 in [14] implies that, for some η > 0,
eηt‖T (t)‖ → 0 as t → +∞ whenever all the eigenvalues of (A+ DF (ū)) have negative real
parts. The previous analysis implies the following conclusion holds.

Theorem 3.4 The solution semiflow Φ(t, u0) of system (1.4) defined as in Theorem 2.3
satisfies the following properties:

(i) If all the eigenvalues of (A + DF (ū)) have strictly negative real parts, then the steady
state ū is locally asymptotically stable.

(ii) If at least one eigenvalue of (A + DF (ū)) has a strictly positive part, then the steady
state ū is unstable.

4 Stability of equilibria
In this section, based on the preceding discussion, we will focus on discussing the sta-
bility of the disease free equilibrium E0 = (S0, 0, 0) and the endemic equilibrium E∗ =
(S∗, L∗(a), I∗).

Theorem 4.1 If R0 < 1, then the disease free equilibrium E0 of system (1.4) is globally
asymptotically stable.

Proof We construct the Lyapunov function to prove that E0 is globally asymptotically sta-
ble when R0 < 1. Define the Lyapunov function

V (t) = S(t) – S0 – S0 ln
S(t)
S0 + m1I(t) + m2

∫ +∞

0
δ(a)L(t, a) da
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with m1 > 0, m2 > 0, and δ(a) =
∫ +∞

a α(ξ )e–
∫ ξ

a (d+α(η)) dη dξ , where δ(a) is a differentiable
function on [0,∞). Then the derivative of V (t) along the solution of system (1.4) is given
by

dV (t)
dt

=
(

1 –
S0

S(t)

)
dS
dt

+ m1
dI
dt

+ m2

∫ +∞

0
δ(a)

∂

∂t
L(t, a) da

=
(

1 –
S0

S(t)

)
[
dS0 – βS(t)I(t) – dS(t) + γ I(t)

]
+ m1

∫ +∞

0
α(a)L(t, a) da

– m1(d + μ + γ )I(t) – m2

∫ +∞

0
δ(a)

[
∂

∂t
L(t, a) +

(
d + α(a)

)
L(t, a)

]

da

=
–d(S(t) – S0)2

S(t)
– βS(t)I(t) + βS0I(t) + γ

S(t) – S0

S(t)
I(t)

+ m1

∫ +∞

0
α(a)L(t, a) da

– m1(d + μ + γ )I(t)n

– m2

∫ +∞

0
δ(a)

∂

∂t
L(t, a) da – m2

∫ +∞

0
δ(a)

(
d + α(a)

)
L(t, a) da. (4.1)

Because of

∫ +∞

0
δ(a)

∂

∂t
L(t, a) da = δ(a)L(t, a)|a=+∞ –

∫ +∞

0
δ′(a)L(t, a) da

= δ(a)L(t, a)|a=+∞ – δ(0)L(t, 0)

–
∫ +∞

0

[(
d + α(a)

)
δ(a) – α(a)

]
L(t, a) da,

(4.1) can be rewritten as

dV (t)
dt

=
–d(S(t) – S0)2

S(t)
– βS(t)I(t) + βS0I(t) + γ

S(t) – S0

S(t)
I(t)

+ m1

∫ +∞

0
α(a)L(t, a) da – m1(d + μ + γ )I(t) – m2δ(a)L(t, a)|a=+∞

+ m2δ(0)βS(t)I(t) – m2

∫ +∞

0
α(a)L(t, a) da. (4.2)

It is clear that δ(0) =
∫ +∞

0 α(ξ )e–
∫ ξ

0 (d+α(η)) dη dξ > 0. Let m1 = m2 = 1
δ(0) . Then m1 = m2 > 0,

and (4.2) can be rewritten as

dV (t)
dt

=
–d(S(t) – S0)2

S(t)
+ γ

S(t) – S0

S(t)
I(t) + I(t)

[
βS0 – m1(d + μ + γ )

]

– m2δ(a)L(t, a)|a=+∞

=
–d(S(t) – S0)2

S(t)
+ γ

S(t) – S0

S(t)
I(t) + I(t)m1(d + μ + γ )(R0 – 1)

– m2δ(a)L(t, a)|a=+∞. (4.3)
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Since 0 < S(t) ≤ Λ
d = S0 for (S, L(·), I) ∈ Γ , when R0 < 1 and m1 = 1

δ(0) , the function
V and its derivative along solutions of model (1.4) are positive and negative on the set
Γ , respectively. Therefore the Lyapunov stability theorem implies that the disease-free
equilibrium E0 of system (1.4) is globally asymptotically stable on the set Γ when R0 < 1
[15]. �

Theorem 4.2 If R0 > 1, then the endemic equilibrium E∗ of system (1.4) is locally asymp-
totically stable.

Proof To explore the local stability of E∗, we linearize system (1.4) at endemic equilibrium
E∗. Namely, we introduce the perturbation variables x(t) = S(t) – S∗, y(t, a) = L(t, a) – L∗(a),
and z(t) = I(t) – I∗, which leads to

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x′(t) = –dx(t) – β(I∗x(t) + S∗z(t)) + γ z(t),
∂y(t,a)

∂t + ∂y(t,a)
∂a = –(d + α(a))y(t, a),

z′(t) =
∫ +∞

0 α(a)y(t, a) da – (d + μ + γ )z(t),

y(t, 0) = β(I∗x(t) + S∗z(t)).

(4.4)

We substitute x(t) = x0eλt , y(t, a) = y0(a)eλt , and z(t) = z0eλt into equation (4.4) and get
the following equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(λ + d)x0 = –β(I∗x0 + S∗z0) + γ z0,
dy0(a)

da = –(λ + d + α(a))y0(a),

(λ + d + μ + γ )z0 =
∫ +∞

0 α(a)y0(a) da,

y0(0) = β(I∗x0 + S∗z0).

(4.5)

Solving the second and the third equations in (4.5), we get

y0(a) = y0(0)e–
∫ a

0 (λ+d+α(θ )) dθ and

z0 =
y0(0)

λ + d + μ + γ

∫ +∞

0
α(a)e–

∫ a
0 (λ+d+α(θ )) dθ da.

(4.6)

By the first equation in (4.5), combining the last equation in (4.5), we obtain

(λ + d)x0 = –y0(0) + γ z0, (λ + d + βI∗)x0 = (r – βS∗)z0. (4.7)

Then we derive the characteristic equation of (4.5) as follows:

λ + d + βI∗
λ + d

=
(γ – βS∗)z0

γ z0 – y0(0)
=

(γ – βS∗)
γ – y0(0)

z0

. (4.8)

It is not hard to see that for λ with Reλ ≥ 0, the left side of the characteristic equation
satisfies

∣
∣
∣
∣
λ + d + βI∗

λ + d

∣
∣
∣
∣ > 1.
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Figure 1 The global asymptotical stability of the endemic equilibrium E∗ when R0 > 1, where E(t) represents
the latent individuals, and I(t) represents the infectious individuals

On the other hand, for the right side of (4.8), we have for λ with Reλ ≥ 0:

y0(0)
z0

=
λ + d + μ + γ

∫ +∞
0 α(a)e–

∫ a
0 (λ+d+α(θ )) dθ da

>
d + μ + γ

∫ +∞
0 α(a)e–

∫ a
0 (d+α(θ )) dθ da

= βS∗ > γ ,

which implies that | (γ –βS∗)
γ – y0(0)

z0

| = | (βS∗–γ )
y0(0)

z0
–γ

| ≤ 1. It is a contradiction since the roots of the char-

acteristic equation (4.8) must have negative real parts. Therefore the endemic equilibrium
E∗ is locally asymptotically stable when R0 > 1. �

It is so difficult to prove the global stability of E∗ by the rigorous mathematical theory.
Therefore, we will use the numeric simulations to disply the endemic equilibrium E∗ may
be globally asymptotically stable when R0 > 1. In order to achieve this goal, we take the
maximum infection age 75, Λ = 10, d = 0.007, μ = 0.0025, γ = 0.75, τ = 0.5, and α∗ = 0.01.
With these parameter values, by straightforward calculations, we have R0 = 2.2051 > 1
when β = 0.002. Figure 1 displays that the solutions of system (1.4) with three different
initial values tend to the endemic equilibrium E∗ as t tends to infinity. It implies that E∗
may be globally stable when R0 > 1.

5 Uniform persistence of infection
Although we are not able to prove that E∗ is globally asymptotically stable when R0 > 1 by
using the strict mathematical derivation, we can prove that the persistence of system (1.4)
when R0 > 1. In this section, we will investigate the persistence of system (1.4) by using
the method in [16]. We give the following notations:

M =
{

ϕ(a) ∈ L1
+(0, +∞) | ∃t ≥ 0 such that

∫ +∞

0
α(a + t)ϕ(a) da > 0

}

,

Γ0 = R+ ×M×R+,Υ = Γ ∩ Γ0.

We first prove that system (1.4) is uniformly weakly persistent. To this end, we give the
following result.
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Lemma 5.1 If R0 > 1, then there exists a positive constant ε0 > 0 such that any solution
(S(t), L(t, a), I(t)) of system (1.4) with initial values (S0, L0(a), I0) ∈ Υ satisfies

lim sup
t→+∞

I(t) > ε0. (5.1)

Proof For any solution (S(t), L(t, a), I(t)) of system (1.4) with initial value (S0, L0(a), I0) ∈ Υ ,
we claim that (5.1) holds. Otherwise, for any ε > 0, there exists a sufficiently large constant
t1 > 0 such that I(t) ≤ ε for all t ≥ t1.

The first equation of system (1.4) implies that

dS(t)
dt

≥ Λ – dS(t) – βS(t)I(t) ≥ Λ – dS(t) – βS(t)ε = Λ – (d + βε)S(t).

That is, lim supt→+∞ S(t) ≥ lim inft→+∞ S(t) ≥ Λ
d+βε

.
Let φ(t) = L(t, 0), which satisfies

φ(t) ≥ βΛ

d + βε
I(t) for t ≥ t1. (5.2)

Combining (2.4) and the third equation of (1.4), we have

I ′(t) ≥
∫ t

0
α(a)φ(t – a)e–

∫ a
0 (d+α(θ )) dθ da – (d + μ + γ )I(t). (5.3)

Taking the Laplace transforms of both sides of (5.2) and (5.3), for s ∈ R, we have,

φ̂(s) ≥ βΛ

d + βε
Î(s), (5.4)

sÎ(s) – I(0) ≥ K̂(s)φ̂(s) – (d + μ + γ )Î(s), (5.5)

where φ̂(s) and Î(s) represent the Laplace transforms of φ and I , respectively, and

K̂(s) =
∫ +∞

0
α(a)e–

∫ a
0 (d+α(θ )) dθ e–sa da.

Combining (5.4) and (5.5), we get

φ̂(s) ≥ βΛK̂(s)
(d + βε)(s + d + μ + γ )

φ̂(s) +
βΛ

(d + βε)(s + d + μ + γ )
I(0). (5.6)

Denote H(ε, s) = βΛK̂ (s)
(d+βε)(s+d+μ+γ ) , we have

lim
ε,s→0

H(ε, s) =
βΛ

d(d + μ + γ )

∫ +∞

0
α(a)e–

∫ a
0 (d+α(θ )) dθ da = R0 > 1,

which is a contradiction since the coefficient of φ̂(s) on the right-hand side of (5.6) should
be less than 1. Therefore, the assumption is not true. That is, there exists a constant ε0 > 0,
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such that any solution (S(t), L(t, a), I(t)) of (1.4) with (S0, L0(a), I0) ∈ Υ satisfies

lim sup
t→+∞

I(t) > ε0. (5.7)
�

Further, by Lemma 5.1, we know any solution (S(t), L(t, a), I(t)) of system (1.4) is
bounded below. In fact, the definition of Υ implies that I(t) is bounded above. Let I(t) ≤ M.
Then

dS(t)
dt

≥ Λ – dS(t) – βS(t)I(t) ≥ Λ – dS(t) – βMS(t),

which implies that

lim sup
t→+∞

S(t) ≥ lim inf
t→+∞ S(t) ≥ Λ

d + βM
. (5.8)

Then, by using (5.7) and (5.8), we have

lim sup
t→+∞

φ(t) ≥ βΛε0

d + βM
,

from which we infer that

lim sup
t→+∞

∫ +∞

0
L(t, a) da ≥ βΛε0

d + βM

∫ +∞

0
e–

∫ a
0 (d+α(θ )) dθ da > 0. (5.9)

Combining Lemma 5.1, (5.8), and (5.9) yields immediately the weak persistence of the
solutions to system (1.4). Namely, we have the following result:

Theorem 5.1 If R0 > 1, then the semiflow {Φ(t)}t≥0 generated by system (1.4) is weakly
persistent in Υ in the sense that there exists a constant ζ > 0, such that

lim sup
t→+∞

S(t) ≥ ζ , lim sup
t→+∞

∥
∥L(t, a)

∥
∥

L1
≥ ζ , lim sup

t→+∞
I(t) ≥ ζ .

Next, we will use the methods and techniques recently employed in [14, 17, 18] to show
that system (1.4) has a global attractor A0. Namely, the following result holds.

Lemma 5.2 If R0 > 1, then there exists a global attractor A0 ⊆ Υ for the solution semiflow
(Φ(t))t≥0 of system (1.4).

Proof It is clear that the semiflow (Φ(t))t≥0 defined in Theorem 2.3 maps R+ × Υ into Υ ,
and (Φ(t))t≥0 is point dissipative and maps bounded sets into bounded sets.

We decompose the solution semiflow Φ as Φ = Ψ (t, u0) + Θ(t, u0) with

Ψ (t, u0) =
(
0, L1(t, ·), 0

)
and Θ(t, u0) =

(
S(t), L2(t, ·), I(t)

)
,
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where S(t) and I(t) satisfy system (1.4), and L1(t, a) and L2(t, a) are respectively the solu-
tions of the systems

⎧
⎪⎪⎨

⎪⎪⎩

∂L1(t,a)
∂t + ∂L1(t,a)

∂a = –(d + α(a))L1(t, a),

L1(t, 0) = 0,

L1(0, a) = L0(a),

(5.10)

and

⎧
⎪⎪⎨

⎪⎪⎩

∂L2(t,a)
∂t + ∂L2(t,a)

∂a = –(d + α(a))L2(t, a),

L2(t, 0) = βS(t)I(t),

L2(0, a) = 0.

(5.11)

It is easy to check that L1(t, a) and L2(t, a) are both nonnegative. Let w̄(t) =
∫ +∞

0 L1(t, a) da.
Then (5.10) implies that w̄(t) ≤ ‖L0(a)‖L1 e–dt , and hence limt→+∞ Ψ (t, u0) = 0 for every
u0 ∈ Υ .

To prove that Θ(t, u0) is completely continuous, we show that the set {Θ(t, u0) : u0 ∈
Ξ} is precompact for fixed t and any bounded set Ξ in Υ . To this end, we only need to
verify that the set {Θ(t, u0) : u0 ∈ Υ } is precompact by utilizing the Fréchet–Kolmogorov
theorem. Obviously, because of {Θ(t, u0) : u0 ∈ Υ } ⊆ Υ , we obtain that {Θ(t, u0) : u0 ∈ Υ }
is bounded. In addition, by (5.11) we have

L2(t, a) =

⎧
⎨

⎩

φ̌(t – a)e–
∫ a

0 (d+α(θ )) dθ , a ≤ t,

0, a > t,
(5.12)

where φ̌(t) = L2(t, 0) = βS(t)I(t). Then we have L2(t, a) = 0 for a > t.
Next, we show that the L1-norm of ∂L2(t,a)

∂a is bounded. Indeed, since, for u0 ∈ Υ , φ̌(t), S(t)
and I(t) are all bounded, from the first and third equations of system (1.4) we deduce that
|φ̌′(t)| = β|S′(t)I(t) + S(t)I ′(t)| is bounded as well. Then we have φ̌(t) ≤ δ1 and |φ̌′(t)| ≤ δ2,
where δ1 and δ2 are two constants depending on the parameters and the bounds of the
solutions. From (5.12) we derive that

∂L2(t, a)
∂a

=

⎧
⎨

⎩

–φ̌′(t – a)e–
∫ a

0 (d+α(θ )) dθ – φ̌(t – a)α(a)e–
∫ a

0 (d+α(θ )) dθ , a ≤ t,

0, a > t,

and then we obtain that
∥
∥
∥
∥
∂L2(t, a)

∂a

∥
∥
∥
∥

L1
≤

∫ +∞

0

∣
∣φ̌′(t – a)

∣
∣e–

∫ a
0 (d+α(θ )) dθ da

+
∫ +∞

0
φ̌(t – a)α(a)e–

∫ a
0 (d+α(θ )) dθ da ≤ ε,

that is, ∂L2(t,a)
∂a is bounded in L1. Thus, observing that

∫ +∞

0

∣
∣L2(t, a + θ ) – L2(t, a)

∣
∣da ≤

∥
∥
∥
∥
∂L2(t, a)

∂a

∥
∥
∥
∥

L1
· |θ | ≤ ε|θ | → 0 as θ → 0,
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we infer that, for a fixed t, {Θ(t, u0) : u0 ∈ Υ } is precompact. So, by the Fréchet–
Kolmogorov theorem Θ(t, u0) is completely continuous. Thus all the conditions of Theo-
rem 3.4.6 in [17] are satisfied, and the result follows. The proof is completed. �

Based on the pevious analysis, we get the following result.

Lemma 5.3 If R0 > 1, then there exists a positive constant η > 0 such that any solution
(S(t), L(t, a), I(t)) of (1.4) with initial value (S0, L0(a), I0) ∈ Υ satisfies

lim inf
t→+∞ I(t) > η.

Proof We consider the solution semiflow Φ on Υ . Define the function ρ : Υ �→R+ by

ρ
(
Φ(t, u0)

)
= I(t).

Lemma 5.1 implies that the semiflow is uniformly weakly ρ-persistent, and Lemma 5.2
means that the solution semiflow has a global attractor A0. Since the solution semiflow is
nonnegative for all t ≥ 0, by the the third equation of system (1.4) we know that I(t)e(d+μ+γ )t

is increasing. Therefore, for any s with t > s, we have

I(t) ≥ I(s)e–(d+μ+γ )(t–s),

that is, I(t) > 0 for all t > s when I(s) > 0. It then follows from Theorem 2.6 in [16] that the
solution semiflow is uniformly strongly ρ-persistent, thats is, there exists a constant η > 0
such that

lim inf
t→+∞ I(t) > η. (5.13)

�

By (5.8) we can get that

lim inf
t→+∞ L(t, 0) = lim inf

t→+∞ βS(t)I(t) ≥ βΛη

d + βM
.

Thus E(t, 0) is uniformly strongly persistent.
It is easy to show that the persistence (i.e., with respect to L(t, 0)) implies the persistence

of L(t, ·) with respect to ‖ · ‖L1 . In fact, by a variation of the Lebesgue–Fatou lemma ([19],
Section B.2) we obtain

lim inf
t→+∞

∥
∥L(t, ·)∥∥L1 ≥

∫ +∞

0
lim inf
t→+∞ L(t, a) da

=
∫ +∞

0
lim inf
t→+∞ L(t – a, 0)e–

∫ a
0 (d+α(θ )) dθ da

≥ βΛη

d + βM

∫ +∞

0
e–

∫ a
0 (d+α(θ )) dθ da. (5.14)

Hence the persistence of L(t, a) with respect to ‖ · ‖L1 follows. Then, combining Lemmas
5.2 and 5.3, we have the following theorem.
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Theorem 5.2 If R0 > 1, then the semiflow {Φ(t)}t≥0 generated by (1.4) is uniformly persis-
tent in Υ in the sense that there exists a constant ζ > 0 such that

lim inf
t→+∞ S(t) ≥ ζ , lim inf

t→+∞
∥
∥L(t, a)

∥
∥

L1
≥ ζ , lim inf

t→+∞ I(t) ≥ ζ .

6 Conclusion
In this paper, we have proposed and analyzed a SLIS epidemic model with age-structure
and delay. Firstly, we showed that the well-posedness of system (1.4) and solutions of the
system are positive and ultimately bounded. Then we derived the basic reproduction num-
ber R0 and proved that it is the threshold to determine extinction or survival of viruses.
Precisely, a disease-free equilibrium is globally asymptotically stable if R0 < 1 and unsta-
ble if R0 > 1. Moreover, disease persists in the latter case in the sense that the infectious
individuals survive above a certain number for any initial infection number. We further
explored the local stability of endemic equilibrium by analyzing the distribution of roots to
the related characteristic equation. Numerical simulations display that the endemic equi-
librium may be globally stable.

The mathematical model we build in this paper can be used to describe the transmission
of TB, hand-foot-mouth disease, certain types of computer viruses, and so on. If data on
the transmission of a certain type of infectious disease are plentiful, then we are able to use
our model to even predict the number of infected individuals with different infection ages.
This information has a certain guiding significance for the public health department or
information security department to formulate relevant prevention and control measures
for the transmission of disease or computer viruses.

The challenge we face in the future is constructing a reasonable Lyapunov function
to prove the global stability of the endemic equilibrium of epidemic model with age-
structure. In addition, in this paper, we choose the progression rate α(a) as a general
function α∗(a) when a ≥ τ . In fact, choosing a proper function form for α∗(a) is also a
meaningful question in the future.
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