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Abstract
In this paper, we study the following fractional Schrödinger equation with
electromagnetic fields and critical or supercritical nonlinearity:

(–�)sAu + V(x)u = f (x, |u|2)u + λ|u|p–2u, x ∈ R
N ,

where (–�)sA is the fractional magnetic operator with 0 < s < 1, N > 2s, λ > 0, 2∗
s =

2N
N–2s ,

p ≥ 2∗
s , f is a subcritical nonlinearity, and V ∈ C(RN,R) and A ∈ C(RN ,RN) are the

electric and magnetic potentials, respectively. Under some suitable conditions, by
variational methods we prove that the equation has a nontrivial solution for small
λ > 0. Our main contribution is related to the fact that we are able to deal with the
case p > 2∗

s .
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1 Introduction and preliminaries
Consider the following fractional Schrödinger equation with electromagnetic fields and
critical or supercritical nonlinearity:

(–�)s
Au + V (x)u = f

(
x, |u|2)u + λ|u|p–2u, x ∈R

N , (1.1)

where (–�)s
A is the fractional magnetic operator with 0 < s < 1, N > 2s, λ > 0, 2∗

s = 2N
N–2s ,

p ≥ 2∗
s , f is a subcritical nonlinearity, and V ∈ C(RN ,R) and A ∈ C(RN ,RN ) are the electric

and magnetic potentials, respectively.
The fractional magnetic Laplacian is defined by

(–�)s
Au(x) = CN ,s lim

r→0

∫

Bc
r(x)

u(x) – ei(x–y)·A( x+y
2 )u(y)

|x – y|N+2s dy, CN ,s =
4sΓ ( N+2s

2 )

π
N
2 |Γ (–s)|

.
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This nonlocal operator has been defined in [4] as a fractional extension (for any s ∈ (0, 1))
of the magnetic pseudorelativistic operator or Weyl pseudodifferential operator defined
with midpoint prescription [1]. As stated in [17], up to correcting the operator by the
factor (1 – s), it follows that (–�)s

Au converges to –(∇u – iA)2u as s → 1. Thus, up to
normalization, the nonlocal case can be seen as an approximation of the local one. The
motivation for its introduction is described in more detail in [4, 17] and relies essentially
on the Lévy–Khintchine formula for the generator of a general Lévy process.

The main driving force for the study of problem (1.1) arises in the following time-
dependent Schrödinger equation when s = 1:

i�
∂ψ

∂t
=

1
2m

(
–i�∇ + A(x)

)2
ψ + P(x)ψ – ρ

(
x, |ψ |)ψ , (1.2)

where � is the Planck constant, m is the particle mass, A : RN →R
N is the magnetic poten-

tial, P : RN → R
N is the electric potential, ρ is the nonlinear coupling, and ψ is the wave

function representing the state of the particle. This equation arises in quantum mechanics
and describes the dynamics of the particle in a nonrelativistic setting [2, 15]. Clearly, the
form ψ(x, t) := e–i	 th–1 u(x) is a standing wave solution of (1.2) if and only if u(x) satisfies
the following stationary equation:

(–iε∇ + A)2u + V (x)u = f
(
x, |u|)u,

where ε = �, V (x) = 2m(P(x) – 	 ), and f = 2mρ ; see [3, 5, 7, 8]. By applying variational
methods and Lyusternik–Schnirelmann theory Ambrosio and d’Avenia [1] proved the ex-
istence and multiplicity of solutions for the equation

ε2s(–�)s
A/εu + V (x)u = f

(|u|2)u

when ε > 0 is small. Recently, Liang et al. [14] obtained the existence and multiplicity of
solutions for the fractional Schrödinger–Kirchhoff equation

ε2sM
(
[u]2

s,Aε

)
(–�)s

Aε
u + V (x)u = |u|2∗

s –2u + h
(
x, |u|2)u

with the help of fractional version of the concentration compactness principle and vari-
ational methods. If the magnetic field A ≡ 0, then the operator (–�)s

A can be reduced to
the fractional Laplacian operator (–�)s, which is defined as

(–�)su(x) = CN ,sP.V.
∫

RN

u(x) – u(y)
|x – y|N+2s dy = CN ,s lim

ε→0+

∫

RN \Bε (x)

u(x) – u(y)
|x – y|N+2s dy.

The symbol P.V. stands for the Cauchy principal value, and CN ,s is a dimensional constant
that depends on N , s, precisely given by

CN ,s =
(∫

RN

1 – cos ζ1

|ζ |N+2s dζ

)–1

.

It is well known that the fractional Laplacian (–�)s can be viewed as a pseudodifferential
operator of symbol |ξ |2s, as stated in Lemma 1.1 in [6]. Simultaneously, problem (1.1) be-
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comes the classical Schrödinger equation

(–�)su + V (x)u = f
(
x, |u|2)u + λ|u|p–2u, x ∈R

N . (1.3)

Recently, there has been a lot of interest in the study of equation (1.3) and other related
nonlocal problems. See, for instance, [6, 10–13, 16, 21–23] and the references therein.
For more results about dealing with magnetic operators, see [9, 20]. Nonlocal problems
also appear in other mathematical research fields. We refer the interested readers to [18,
19] for mathematical researches on Kirchhoff-type nonlocal equations, where Tang and
Cheng [19] proposed a new approach to recover compactness for the (PS)-sequence, and
Tang and Chen [18] proposed a new approach to recover compactness for the minimizing
sequence.

Most of the works mentioned are set in R
N , N > 2s, with subcritical or critical growth,

and to the best of our knowledge, no results are available on the existence for problem (1.1)
with supercritical exponent. In this paper, we aim at studying the existence of nontrivial
solutions for critical or supercritical problem (1.1).

To reduce the statements of the main result, we introduce the following assumptions:
(V) V ∈ C(RN ,R), 0 < V0 := infx∈RN V (x), and lim|x|→+∞ V (x) = +∞.
(f1) f ∈ C(RN ×R,R), and there exists 2 < q < 2∗

s such that

∣∣f (x, t)
∣∣ ≤ C

(
1 + |t| q–2

2
)

for all (x, t) ∈R
N ×R, where C is a positive constant.

(f2) f (x, t) = o(1) as |t| → 0 uniformly in x ∈R
N ;

(f3) f (x, t)t ≥ q
2 F(x, t) := q

2
∫ t

0 f (x, τ ) dτ for all (x, t) ∈R
N ×R;

(f4) c0 := infx∈RN ,|t|=1 F(x, t) > 0.
For a function u : RN →C, we set

[u]2
A =

∫

R2N

|u(x) – ei(x–y)·A( x+y
2 )u(y)|2

|x – y|N+2s dx dy

and

Ds
A
(
R

N ,C
)

=
{

u ∈ L2∗
s
(
R

N ,C
)

: [u]2
A < +∞}

.

Then we may introduce the Hilbert space

Hs
A
(
R

N ,C
)

=
{

u ∈ Ds
A
(
R

N ,C
)

:
∫

RN
|u|2 dx < +∞

}

endowed with the scalar product

〈u, v〉A :=
CN ,s

2
R

∫

R2N

[u(x) – ei(x–y)·A( x+y
2 )u(y)] · [v(x) – ei(x–y)·A( x+y

2 )v(y)]
|x – y|N+2s dx dy

+ R
∫

RN
uv̄ dx
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and norm

‖u‖2
A = 〈u, u〉A,

where R(z) is the real part of a complex number z. By Lemma 3.5 in [4] the em-
bedding Hs

A(RN ,C) ↪→ Lt(RN ,C) is continuous for any t ∈ [2, 2∗
s ], and the embedding

Hs
A(RN ,C) ↪→ Lt

loc(RN ,C) is compact for any t ∈ [1, 2∗
s ). Moreover, set

E =
{

u ∈ Hs
A
(
R

N ,C
)

:
∫

RN
V (x)|u|2 dx < +∞

}

with the norm

‖u‖2 =
CN ,s

2
[u]2

A +
∫

RN
V (x)|u|2 dx.

By assumption (V ) the embedding E ↪→ Hs
A(RN ,C) is continuous.

For convenience, we define the homogeneous fractional Sobolev space

Ds,2(
R

N)
:=

{
u ∈ L2∗

s
(
R

N)
: |ξ |sû(ξ ) ∈ L2(

R
N)}

,

which is the completion of C∞
0 (RN ) under the norm

‖u‖2
Ds,2(RN ) :=

∫

RN

∣∣(–�)
s
2 u

∣∣2 dx =
∫

RN
|ξ |2s∣∣û(ξ )

∣∣2 dξ .

Define the norm on Hs(RN ) as follows:

‖u‖Hs(RN ) :=
[∫

RN
|ξ |2s∣∣û(ξ )

∣∣2 dξ +
∫

RN
u2 dx

] 1
2

=
[‖u‖2

Ds,2(RN ) + ‖u‖2
L2(RN )

] 1
2 .

Moreover, the best fractional critical Sobolev constant is given by

S := inf
u∈Ds,2(RN )\{0}

‖u‖2
Ds,2(RN )

‖u‖2
2∗

s

.

Our main result is the following:

Theorem 1.1 Suppose that (V ) and (f1)–(f4) are satisfied. Then there exists λ0 > 0 such
that for each λ ∈ (0,λ0], problem (1.1) has a nontrivial solution uλ.

As a complement of Theorem 1.1, by the Pohozaev identity we can deduce that the equa-
tion

(–�)s
Au + μu = λ|u|p–2u, x ∈R

N ,

with p ≥ 2∗
s and μ > 0 has no nontrivial solution for all λ > 0. Indeed, let u ∈ E be a weak

solution of the problem. Then we have the following Pohozaev identity:

1
2∗

s
· CN ,s

2

∫

R2N

|u(x) – ei(x–y)·A( x+y
2 )u(y)|2

|x – y|N+2s dx dy +
1
2
μ

∫

RN
|u|2 dx =

λ

p

∫

RN
|u|p dx. (1.4)
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Moreover, taking u as the test function, we have

CN ,s

2

∫

R2N

|u(x) – ei(x–y)·A( x+y
2 )u(y)|2

|x – y|N+2s dx dy + μ

∫

RN
u2 dx = λ

∫

RN
|u|p dx. (1.5)

Taking into account (1.4) and (1.5), we can derive that

p – 2∗
s

2∗
s

· CN ,s

2

∫

R2N

|u(x) – ei(x–y)·A( x+y
2 )u(y)|2

|x – y|N+2s dx dy +
p – 2

2
μ

∫

RN
u2 dx = 0,

which implies the conclusion.

2 Proof of Theorem 1.1
It is well known that a weak solution of problem (1.1) is a critical point of the following
functional:

Iλ(u) =
1
2
‖u‖2 –

1
2

∫

RN
F
(
x, |u|2)dx –

λ

p

∫

RN
|u|p dx

=
1
2

· CN ,s

2
[u]2

A +
1
2

∫

RN
V (x)|u|2 dx –

1
2

∫

RN
F
(
x, |u|2)dx –

λ

p

∫

RN
|u|p dx

=
1
2

· CN ,s

2

∫

R2N

|u(x) – ei(x–y)·A( x+y
2 )u(y)|2

|x – y|N+2s dx dy +
1
2

∫

RN
V (x)|u|2 dx

–
1
2

∫

RN
F
(
x, |u|2)dx –

λ

p

∫

RN
|u|p dx.

Clearly, we cannot apply variational methods directly because the functional Iλ is not well
defined on E unless p = 2∗

s . To overcome this difficulty, we define the function

φ(t) =

⎧
⎨

⎩
|t|p–2t if |t| ≤ M,

Mp–q|t|q–2t if |t| > M,

where M > 0. Then φ ∈ C(R,R), φ(t)t ≥ qΦ(t) := q
∫ t

0 φ(τ ) dτ ≥ 0, and |φ(t)| ≤ Mp–q|t|q–1

for all t ∈ R. Set hλ(x, t) = λφ(t) + f (x, |t|2)t for (x, t) ∈ R
N × R. Then hλ(x, t) admits the

following properties:
(h1) hλ ∈ C(RN ×R,R), and |hλ(x, t)| ≤ λMp–q|t|q–1 +C(|t|+ |t|q–1) for all (x, t) ∈ R

N ×R.
(h2) hλ(x, t)t ≥ qHλ(x, t) := q

∫ t
0 hλ(x, τ ) dτ ≥ 0 for all (x, t) ∈ R

N ×R.
(h3) infx∈RN ,|t|=1 Hλ(x, t) ≥ c0

2 > 0.
Let

Jλ(u) =
1
2
‖u‖2 –

∫

RN
Hλ(x, u) dx

=
1
2

· CN ,s

2
[u]2

A +
1
2

∫

RN
V (x)|u|2 dx – λ

∫

RN
Φ(u) dx –

1
2

∫

RN
F
(
x, |u|2)dx.

By (h1)–(h3), (V ), and the mountain pass theorem, using a standard argument, we easily
see that the equation

(–�)s
Au + V (x)u = hλ(x, u)
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has a nontrivial solution uλ ∈ E with J ′
λ(uλ) = 0 and Jλ(uλ) = cλ := infγ∈Γλ

supt∈[0,1] Jλ(γ (t)),
where

Γλ :=
{
γ ∈ C

(
[0, 1], E

)
: γ (0) = 0, Jλ

(
γ (1)

)
< 0

}
.

We further set

J(u) =
1
2
‖u‖2 –

1
2

∫

RN
F
(
x, |u|2)dx

=
1
2

· CN ,s

2
[u]2

A +
1
2

∫

RN
V (x)|u|2 dx –

1
2

∫

RN
F
(
x, |u|2)dx,

Γ :=
{
γ ∈ C

(
[0, 1], E

)
: γ (0) = 0, J

(
γ (1)

)
< 0

}

and

c := inf
γ∈Γ

sup
t∈[0,1]

J
(
γ (t)

)
.

Then Γ ⊂ Γλ and cλ ≤ c.

Lemma 2.1 The solution uλ satisfies ‖uλ‖2 ≤ 2q
q–2 cλ, and there exists a constant A > 0 in-

dependent on λ such that ‖uλ‖2 ≤ A.

Proof By (h2) we know that

qcλ = qJλ(uλ) = qJλ(uλ) –
〈
J ′
λ(uλ), uλ

〉

=
(

q
2

– 1
)

· CN ,s

2
[uλ]2

A +
(

q
2

– 1
)∫

RN
V (x)|uλ|2 dx

+
∫

RN

[
hλ(x, uλ)uλ – qHλ(x, uλ)

]
dx

≥
(

q
2

– 1
)

‖uλ‖2,

which means that ‖uλ‖2 ≤ 2q
q–2 cλ ≤ 2q

q–2 c := A > 0. This completes the proof. �

Lemma 2.2 There exist two constants B, D > 0 independent on λ such that ‖|uλ|‖∞ ≤ B(1+
λ)D.

Proof For any L > 0 and β > 1, set γ (a) = aa2(β–1)
L , a ∈R, where aL := min{|a|, L}. Since γ is

an increasing function, we have

(a – b)
[
γ (a) – γ (b)

] ≥ 0, ∀a, b ∈R.

Let Φ(t) = |t|2
2 and Γ (t) =

∫ t
0 (γ ′(τ )) 1

2 dτ for t ≥ 0. Then if a > b, then we have

Φ ′(a – b)
[
γ (a) – γ (b)

]
= (a – b)

[
γ (a) – γ (b)

]
= (a – b)

∫ a

b
γ ′(t) dt
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= (a – b)
∫ a

b

(
Γ ′(t)

)2 dt ≥
(∫ a

b
Γ ′(t) dt

)2

=
∣
∣Γ (a) – Γ (b)

∣
∣2.

If a ≤ b, then we can use a similar argument to obtain the conclusion. It follows that

(a – b)
[
γ (a) – γ (b)

] ≥ ∣
∣Γ (a) – Γ (b)

∣
∣2

for all a, b ∈R, which implies that

∣
∣Γ

(∣∣uλ(x)
∣
∣) – Γ

(∣∣uλ(y)
∣
∣)

∣
∣2

≤ [∣∣uλ(x)
∣
∣ –

∣
∣uλ(y)

∣
∣] · [(|uλ|u2(β–1)

λ,L
)
(x) –

(|uλ|u2(β–1)
λ,L

)
(y)

]
. (2.1)

Choosing uλu2(β–1)
λ,L as a test function, where uλ,L := min{|uλ|, L}, we obtain

R
[∫

RN

[
f
(
x, |uλ|2

)
uλ + λφ(uλ)

]
uλu2(β–1)

λ,L dx
]

=
CN ,s

2
R

×
∫

R2N

[uλ(x) – ei(x–y)·A( x+y
2 )uλ(y)] · [(uλu2(β–1)

λ,L )(x) – ei(x–y)·A( x+y
2 )(uλu2(β–1)

λ,L )(y)]
|x – y|N+2s dx dy

+
∫

RN
V (x)|uλ|2u2(β–1)

λ,L dx.

Note that

[
uλ(x) – ei(x–y)·A( x+y

2 )uλ(y)
] · [(uλu2(β–1)

λ,L
)
(x) – ei(x–y)·A( x+y

2 )(uλu2(β–1)
λ,L

)
(y)

]

=
[
uλ(x) – ei(x–y)·A( x+y

2 )uλ(y)
] · [uλ(x)u2(β–1)

λ,L (x) – e–i(x–y)·A( x+y
2 )uλ(y)u2(β–1)

λ,L (y)
]

=
∣
∣uλ(x)

∣
∣2u2(β–1)

λ,L (x) – uλ(x)uλ(y)e–i(x–y)·A( x+y
2 )u2(β–1)

λ,L (y)

– uλ(y)uλ(x)ei(x–y)·A( x+y
2 )u2(β–1)

λ,L (x) +
∣
∣uλ(y)

∣
∣2u2(β–1)

λ,L (y)

≥ ∣
∣uλ(x)

∣
∣2u2(β–1)

λ,L (x) –
∣
∣uλ(x)

∣
∣
∣
∣uλ(y)

∣
∣u2(β–1)

λ,L (y) –
∣
∣uλ(y)

∣
∣
∣
∣uλ(x)

∣
∣u2(β–1)

λ,L (x)

+
∣
∣uλ(y)

∣
∣2u2(β–1)

λ,L (y)

=
[∣∣uλ(x)

∣∣ –
∣∣uλ(y)

∣∣] · [∣∣uλ(x)
∣∣u2(β–1)

λ,L (x) –
∣∣uλ(y)

∣∣u2(β–1)
λ,L (y)

]
.

Consequently, by (2.1) we have

R
[∫

RN

[
f
(
x, |uλ|2

)
uλ + λφ(uλ)

]
uλu2(β–1)

λ,L dx
]

≥ CN ,s

2

∫

R2N

[|uλ(x)| – |uλ(y)|] · [|uλ(x)|u2(β–1)
λ,L (x) – |uλ(y)|u2(β–1)

λ,L (y)]
|x – y|N+2s dx dy

+
∫

RN
V (x)|uλ|2u2(β–1)

λ,L dx
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≥ CN ,s

2

∫

R2N

|Γ (|uλ(x)|) – Γ (|uλ(y)|)|2
|x – y|N+2s dx dy +

∫

RN
V (x)|uλ|2u2(β–1)

λ,L dx. (2.2)

For any ε > 0, by (f1)–(f2) and properties of φ, there exists Cε > 0 such that

∣
∣f

(
x, |t|2)∣∣ ≤ ε + Cε|t|q–2

and

∣∣φ(t)
∣∣ ≤ ε|t| + Cε|t|q–1

for all (x, t) ∈R
N ×R. Thereby, for fixed λ > 0 and small ε > 0, we have

∣
∣f

(
x, |t|2)t + λφ(t)

∣
∣ ≤ V0|t| + (1 + λ)C|t|q–1 (2.3)

for all (x, t) ∈R
N ×R. Simultaneously, Γ (|uλ|) ≥ 1

β
|uλ|uβ–1

λ,L , and

CN ,s

2
[
Γ

(|uλ|
)]2

Hs(RN ) =
∥
∥Γ

(|uλ|
)∥∥2

Ds,2(RN ) ≥ S
∥
∥Γ

(|uλ|
)∥∥2

2∗
s
≥ 1

β2 S
∥
∥|uλ|uβ–1

λ,L
∥
∥2

2∗
s
. (2.4)

Therefore, taking into account (2.2)–(2.4) and condition (V ), we can see that

1
β2 S

∥∥|uλ|uβ–1
λ,L

∥∥2
2∗

s

≤ CN ,s

2
[
Γ

(|uλ|
)]2

Hs(RN )

≤R
∫

RN

[
f
(
x, |uλ|2

)
uλ + λφ(uλ)

]
uλu2(β–1)

λ,L dx –
∫

RN
V (x)|uλ|2u2(β–1)

λ,L dx

≤
∫

RN
V0|uλ|2u2(β–1)

λ,L dx + (1 + λ)C
∫

RN
|uλ|qu2(β–1)

λ,L dx –
∫

RN
V (x)|uλ|2u2(β–1)

λ,L dx

≤ C(1 + λ)
∫

RN
|uλ|qu2(β–1)

λ,L dx,

which implies that

∥
∥|uλ|uβ–1

λ,L
∥
∥2

2∗
s
≤ C(1 + λ)β2

∫

RN
|uλ|qu2(β–1)

λ,L dx.

Setting wλ,L = |uλ|uβ–1
λ,L , by the Hölder inequality we can derive that

‖wλ,L‖2
2∗

s
≤ C(1 + λ)β2

∫

RN
|uλ|q–2|uλ|2u2(β–1)

λ,L dx

≤ C(1 + λ)β2
(∫

RN
|uλ|2∗

s dx
) q–2

2∗s ·
(∫

RN
|wλ,L|α∗

s dx
) 2

α∗s ,

where α∗
s = 22∗

s
2∗

s –(q–2) ∈ (2, 2∗
s ).

By Lemma 2.1 we have

‖wλ,L‖2
2∗

s
≤ C(1 + λ)β2‖wλ,L‖2

α∗
s
. (2.5)
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Now we observe that if |uλ|β ∈ Lα∗
s (RN ), then from the definition of {uλ,L}, the inequality

uλ,L ≤ |uλ|, and (2.5) we obtain

‖wλ,L‖2
2∗

s
≤ C(1 + λ)β2

(∫

RN
|uλ|βα∗

s dx
) 2

α∗s < +∞. (2.6)

Passing to the limit in (2.6) as L → +∞, by the Fatou lemma we deduce that

∥∥|uλ|
∥∥

β2∗
s
≤ C

1
β (

√
1 + λ)

1
β β

1
β
∥∥|uλ|

∥∥
βα∗

s
(2.7)

whenever |uλ|βα∗
s ∈ L1(RN ).

Now set β := 2∗
s

α∗
s

> 1. Since |uλ| ∈ L2∗
s (RN ), the inequality holds for this choice of β . Then,

since β2α∗
s = β2∗

s , it follows that (2.7) holds with β replaced by β2. Consequently,

∥
∥|uλ|

∥
∥

β22∗
s
≤ C

1
β2 (

√
1 + λ)

1
β2 β

2
β2

∥
∥|uλ|

∥
∥

β2α∗
s

= C
1

β2 (
√

1 + λ)
1

β2 β
2

β2
∥∥|uλ|

∥∥
β2∗

s

≤ C
1

β2 (
√

1 + λ)
1

β2 β
2

β2 C
1
β (

√
1 + λ)

1
β β

1
β
∥∥|uλ|

∥∥
βα∗

s

= C
1
β

+ 1
β2 (

√
1 + λ)

1
β

+ 1
β2 β

1
β

+ 2
β2

∥
∥|uλ|

∥
∥

βα∗
s
.

Iterating this process and recalling that βα∗
s = 2∗

s , we conclude that for every m ∈N,

∥∥|uλ|
∥∥

βm2∗
s
≤ C

∑m
i=1

1
βi (

√
1 + λ)

∑m
i=1

1
βi β

∑m
i=1

i
βi

∥∥|uλ|
∥∥

2∗
s
. (2.8)

Set dm =
∑m

i=1
1
βi and em =

∑m
i=1

i
βi . Then dm → σ1 > 0 and em → σ2 > 0 as m → ∞. Then,

taking the limit in (2.8) as m → +∞, by Lemma 2.1 we have

∥∥|uλ|
∥∥

L∞ ≤ Cσ1 (
√

1 + λ)σ1βσ2 C := B(1 + λ)D,

where B := Cσ1βσ2 C > 0 and D := σ1
2 . This completes the proof. �

Proof of Theorem 1.1 By Lemma 2.2, for large M > 0, we can choose small λ0 > 0 such that
‖|uλ|‖L∞ ≤ B(1 + λ)D ≤ M for all λ ∈ (0,λ0]. Consequently, uλ is a nontrivial solution of
(1.1) with λ ∈ (0,λ0]. This completes the proof. �
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