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Abstract
A mathematical model of HIV infection with the combination of drug therapy
including cytotoxic T-lymphocyte (CTL) and the antibody immune response is
examined. The threshold value represented as the basic reproduction ratio R0 is
derived. This reveals that R0 < 1 is locally asymptotically stable in the viral free steady
state, and the infected steady state condition remains locally asymptotically stable
with R0 > 1 in the absence of a delay in the immune response. Moreover, the
existence of Hopf bifurcation with CTL response delay is demonstrated. The
estimation of delay length is used to maintain stability. Numerical simulations are
implemented to explain the mathematical results.
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1 Introduction
Human immunodeficiency virus (HIV) is a simple form of virus that affects the human
body, and it primarily targets CD4+ T-cells. Viruses, in general, are the infectious crea-
tures that have no reproductive ability by themselves. They depend on a host for replica-
tion to begin. HIV viruses carry a copy of their RNA that needs to first be duplicated into
DNA [1]. Furthermore, once the DNA virus has been copied into these host cells, new
virus particles must also be assembled at the host cell surface [2]. The maturing for these
new particles might occur gradually without impacting that host cell, or it quickly erupts
and destroys the host cell [3, 4]. Antiretroviral therapy (ART) would intend to inhibit that
activity for different HIV viral proteins and consequently hinder the viral replication cycle
[5, 6].The drug based on the inhibitor of reverse transcriptase (RTI) is an obstacle to the
reverse transcription of viral DNA and prevents a productive infection of the host cell.
Protease inhibitor (PI) drugs aim to suppress protease activity and prevent the develop-
ment of mature viruses. The combination of reverse transcriptase inhibitor and protease
inhibitor is more effective to treat HIV patients.

Mathematical modeling can contribute to the study of antiviral infection treatment and
increase knowledge about the virus transmission rate [7, 8]. Numerous models of viral
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infections are discussed in the literature for HIV dynamics [9]. The immune system CTL
plays a vital role in protecting against HIV and this ability prevents the reproduction of
HIV [10]. Hence many mathematical models examine viral infection in conjunction with
CTL responses [11–13]. To resist viral infection, both CTL immune response and strong
antibody neutralizing are necessary for an effective vaccine [14, 15].

In [16] Wodarz suggested a model depicting the relationship between CTL and antibody
immune responses. The global analysis for this model was provided by Yousfi et al. [17].
Yan and Wang included the intracellular delay in the cell infected model and analyzed the
global dynamics effect of the delay [18].

The mathematical study is needed for an integrated view of the dynamics of viruses for
delayed models [19–21]. Several models have been suggested with a time lag in triggering
the immune reaction when the body is infected with the virus, which is called immuno-
logical delay [22–24].

In [25] Dubey et al. described the dynamics of infection by HIV involving available drug
therapies, reverse transcriptase inhibitor (RTI), and protease inhibitor (PI) that includes
uninfected CD4+ T-cells x(t), infected cells y(t), free virus v(t), and CTL immune response
C(t), and antibody A(t). The non-linear differential equations of the first order are as fol-
lows:

•
x = λ + rx

(
1 –

x
xm

)
– λ0x – β(1 – ηr)xv,

•
y = β(1 – ηr)xv – δ0y – ω1Cy,
•
v = Nδ0(1 – ηp)y – δ1v – ω2Av,
•
C = α1y + μ1Cy – μ10C,
•
A = μ2vA – μ20A,

(1)

where δ0 = δ1
0 + ω1α0

μ10
,α1 = α1

1 + μ1α0
μ10

.
Here, λ is the production level for uninfected CD4+ T-cells, λ0 is an uninfected CD4+

T-cells mortality rate, r is the maximum rate of proliferation, β is the infection rate of un-
infected cells by the virus, xm = xmax is their carrying capacity, ηr is the rate of inhibitor
reverse transcriptase therapy to destroy infected cells, and ηp is the rate at which the pro-
tease inhibitor therapy blocks the infection, δ1

0 is the infected cell mortality rate, N is the
number of particles of virus produced by the cell infected, δ1 is the rate of virus removed
from the body by natural factors, α0 is the rate of produced CTL immune response, μ10

is the deplete rate of CTL. α1
1 is the stimulated rate of CTL, μ1 is the rate at which CTL

interact with the infected cells, ω1 is the level of CTL interaction removed from infected
cells. μ2 is the rate at which antibody gets stimulated, μ20 is the deplete rate of antibody
due to increase in virus particles. ω2 is the reduced rate of virus with antibody interaction.

In this study, we implement a time delay to illustrate the CTL response model. The gen-
eration of CTL due to antigenic stimulation requires a period of time τ and the response
to CTL in time t that depends on an antigen population in the previous time t – τ for a
time lag τ > 0. The model suggested by incorporating immune response delay in CTL is
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as follows:

•
x = λ + rx

(
1 –

x
xm

)
– λ0x – β(1 – ηr)xv,

•
y = β(1 – ηr)xv – δ0y – ω1Cy,
•
v = Nδ0(1 – ηp)y – δ1v – ω2Av,
•
C = α1y + μ1C(t – τ )y(t – τ ) – μ10C,
•
A = μ2vA – μ20A.

(2)

The primary objective is to analyze the impact of immune reaction delay in the dynamics
of (2) together with reverse transcriptase inhibitor and protease inhibitor and show the
impact on the stability of the delay in the immune response.

We start with some notes that are used in the sequel to our study.
Let C = C([–τ , 0], R5

+) be the Banach space of continuous functions mapping the interval
[–τ , 0] in to R5

+, where R5
+ = (x, y, v, C, A).

The initial conditions are given as follows:

x(θ ) = φ1(θ ) ≥ 0, y(θ ) = φ2(θ ) ≥ 0, v(θ ) = φ3(θ ) ≥ 0,

C(θ ) = φ4(θ ) ≥ 0, A(θ ) = φ5(θ ) ≥ 0, θ ∈ [–τ , 0],

where φi(θ ) ∈ ζ 1 are smooth functions for all i = 1, 2, 3, 4, 5.
The solution (x(t), y(t), v(t), C(t), A(t)) is easy to recognize from the basic theory of dif-

ferential functions of (2) with the initial conditions as mentioned above which exist for
all t ≥ 0 and are unique [26–28]. It can be shown that this solution exists for all t > 0 and
stays nonnegative. In fact, if x(0) > 0, then x(t) > 0 for all t > 0. The same argument is true
for y, v, C, and A components. Hence, the interior R5

+ is invariant for system (2).
The basic reproduction ratio R0 of model (2) is defined by

R0 =
βN(1 – ηc)

δ1
x0,

where ηc = 1 – (1 – ηr)(1 – ηp).

2 Stability of viral free steady state (I0)
Theorem 2.1 If R0 < 1 then the viral free steady state I0 is locally asymptotically stable.

Proof The viral free steady state of system (2) is I0(x0, 0, 0, 0, 0), where

x0 =
xm

2r

[
(r – λ0) +

√
(r – λ0)2 +

4rλ
xm

]
.
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The characteristic equation of I0 is given by
∣∣∣∣∣∣∣∣∣∣∣∣

–h – ξ 0 –β1x0 0 0
0 –δ0 – ξ β1x0 0 0
0 N1δ0 –δ1 – ξ 0 0
0 0 0 –μ10 – ξ 0
0 0 0 0 –μ20 – ξ

∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

where

h =
(

2rx0

xm
– (r – λ0)

)
=

√
(r – λ0)2 +

4rλ
cm

> 0, N1 = N(1 – ηP)

and

(ξ + h)(ξ + μ20)(ξ + μ10)
[
ε2 + (δ0 + δ1)ξ + (δ0δ1 – β1N1δ0x0)

]
= 0. (3)

From (3) we get ξ1 = –h < 0, ξ2 = –μ20 < 0, ξ3 = –μ10 < 0; if R0 < 1 then δ0δ1 –
β1N1δ0x0 > 0.

Thus, the eigenvalues of (3) have negative real parts. Hence the viral free steady state of
(2) is locally asymptotically stable. �

3 Stability analysis of infected steady state (I∗) and existence of Hopf
bifurcation

Theorem 3.1 If R0 > 1 then (i) the infected steady state I∗ of system (2) is locally asymp-
totically stable for τ = 0;

(ii) Time delay τ crosses the critical value τ0, then system (2) undergoes Hopf bifurcation
at the infected steady state I∗.

Proof The infected steady state I∗(x∗, y∗, v∗, C∗, A∗) of (2) is given by

v∗ =
μ20

μ2
, y∗ =

μ10C∗

α1 + μ1C∗ , A∗ =
N1δ0μ2y∗ – δ1μ20

μ20ω2
,

C∗ =
h2 +

√
h2

2 + 4h1h3

2h1
,

x∗ =
xm

2r

[
f +

√
f 2 +

4rλ
xm

]
,

where

f = r – λ0 –
β1μ20

μ2
, h1 = μ10μ2ω1,

h2 = β1μ20μ1x∗ – δ0μ10μ2, h3 = β1μ20α1x∗.

The uninfected CD4+ T cells (x∗) can achieve a steady state value by resolving the equa-
tion

r
xm

x∗2 +
(

–r + λ0 + β1
μ20

μ2

)
x∗ – λ = 0.
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The immune response (C∗) can obtain a steady state value by solving the following equa-
tion:

ω1C∗2
μ10μ2 + C∗(δ0μ10μ2 – μ1β(1 – ηr)x∗μ20

)
– β(1 – ηr)x∗μ20α1 = 0.

The characteristic equation of I∗ is given by

∣∣∣∣∣∣∣∣∣∣

r – 2rx∗
xm

– λ0 – β1v∗ – ξ 0 –β1x∗ 0 0
β1v∗ –

(
δ0 + ω1C∗) – ξ β1x∗ –ω1y∗ 0

0 N1δ0 –
(
δ1 + ω2A∗) – ξ 0 –ω2v∗

0 μ1C∗e–ξτ + α1 0 μ1y∗e–ξτ – μ10 – ξ 0
0 0 μ2A∗ 0 μ2v∗ – μ20 – ξ

∣∣∣∣∣∣∣∣∣∣
= 0,

where

b1 = r –
2rx∗

xm
– λ0 – β1v∗, b2 = –β1x∗, b3 = β1v∗, b4 = –

(
δ0 + ω1C∗),

b5 = –ω1y∗, b6 = N1δ0, b7 = –
(
δ1 + ω2A∗), b8 = –ω2v∗, b9 = μ1C∗,

b10 = α1, b11 = μ1y∗, b12 = –μ10, b13 = μ2A∗, b14 = μ2v∗ – μ20.

This is equivalent to the following equation:

ξ 5 + k1ξ
4 + k2ξ

3 + k3ξ
2 + k4ξ + k5 + e–ξτ

(
l1ξ

4 + l2ξ
3 + l3ξ

2 + l4ξ + l5
)

= 0, (4)

k1 = –b1 – b4 – b7 – b12 – b14,

k2 = b1b12 + b4b12 + b7b12 + b12b14 + b1b4 + b1b7 + b1b14 + b4b7 + b4b14

+ b7b14 – b8b13 + b2b6 – b5b10,

k3 = –b1b4b12 – b1b7b12 – b1b12b14 – b4b7b12 – b4b12b14 – b7b12b14

– b1b4b7 – b1b4b14 – b1b7b14 – b4b7b14

+ b1b8b13 + b8b12b13 – b1b2b6 – b2b6b14 – b2b6b12 + b1b5b10 + b5b7b10

+ b5b10b14 – b2b3b6 + b4b8b13,

k4 = b1b4b7b12 + b1b4b12b14 + b1b7b12b14 + b4b7b12b14 + b1b4b7b14 – b1b4b8b13

– b1b12b8b13 – b4b8b12b13 + b1b2b6b14

+ b1b2b6b12 + b2b6b12b14 – b1b5b7b10 – b1b5b10b14 – b5b7b10b14

+ b5b8b10b13 + b2b3b6b14 + b2b3b6b12,

k5 = –b1b4b7b12b14 + b1b4b8b12b13 – b1b2b6b12b14 + b1b5b7b10b14

– b1b5b8b10b13 – b2b3b6b12b14,

l1 = –b11,

l2 = b1b11 + b4b11 + b7b11 + b11b14 – b5b9,

l3 = –b1b4b11 – b1b7b11 – b1b11b14 – b4b7b11 – b4b11b14 – b7b11b14



Geetha and Balamuralitharan Boundary Value Problems        (2020) 2020:132 Page 6 of 15

+ b8b11b13 – b2b6b11 + b1b5b9 + b5b7b9 + b5b9b14,

l4 = b1b4b7b11 + b1b4b11b14 + b1b7b11b14 + b4b7b11b14 – b1b8b11b13

– b4b8b11b13 + b1b2b6b11 + b2b6b11b14 – b1b5b7b9

– b1b5b9b14 – b5b7b9b14 + b5b8b9b13 + b2b3b6b11,

l5 = –b1b4b7b11b14 + b1b4b8b11b13 – b1b2b6b11b14 + b1b5b7b9b14

– b1b5b8b9b13 – b2b3b6b11b14.

Case (i). If R0 > 1 and τ = 0.
If τ = 0 then equation (4) becomes

ξ 5 + u1ξ
4 + u2ξ

3 + u3ξ
2 + u4ξ + u5 = 0. (5)

Here, u1 = k1 + l1, u2 = k2 + l2, u3 = k3 + l3, u4 = k4 + l4, u5 = k5 + l5.
According to the Routh–Hurwitz condition (i) ui > 0, i = 1, 2, 3, 4, 5; (ii) u1u2u3 > u2

3 +
u2

1u4; (iii) (u1u4 – u5)(u1u2u3 – u2
3 – u2

1u4) > u5(u1u2 – u5)2 + u1u2
5; hence all the roots of (5)

have negative real parts, and therefore the infected steady state I∗ is locally asymptotically
stable.

Case (ii). If τ �= 0.
If τ �= 0 then the bifurcation parameter for the delay in immune response when analyzing

the existence of Hopf bifurcations starting from infected steady state I∗.
For τ > 0 and ξ = ip(p > 0), substituting it in to (4) and separating the real and imaginary

parts, we get

(l1p4 – l3p2 + l5) cos pτ + (–l2p3 + l4p) sin pτ = (–k1p4 + k3p2 – k5)
(–l2p3 + l4p) cos pτ – (l1p4 – l3p2 + l5) sin pτ = (–p5 + k2p3 – k4p)

}
(6)

It follows from (6) that

p10 + c1p8 + c2p6 + c3p4 + c4p2 + c5 = 0, (7)

where

c1 = k2
1 – 2k2 – l2

1, c2 = k2
2 + 2k4 – 2k1k3 + 2l1l3 – l2

2,

c3 = k2
3 + 2k1k5 – 2k2k4 + 2l2l4 – 2l1l5 – l2

3,

c4 = k2
4 – 2k3k5 + 2l3l5 – l2

4, c5 = k2
5 – l2

5.

Let m = p2, then equation (7) becomes

m5 + c1m4 + c2m3 + c3m2 + c4m + c5 = 0. (8)

Let ψ(m) = m5 + c1m4 + c2m3 + c3m2 + c4m + c5, since limm→∞ ψ(m) = +∞, we conclude
that if c5 < 0, then equation (8) has at least one positive root. Suppose that (8) has five
positive roots. We have

p1 =
√

m1, p2 =
√

m2, p3 =
√

m3, p4 =
√

m4, p5 =
√

m5.
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From (6) we have

τ
(j)
k =

1
pk

{
arccos

(
a1p8

k + a2p6
k + a3p4

k + a4p2
k + a5

a6p8
k + a7p6

k + a8p4
k + a9p2

k + a10

)
+ 2π j

}
, (9)

k = 1, 2, 3, 4, 5, j = 0, 1, 2, . . . ;

where

a1 = l2 – k1l1, a2 = k3l1 + k1l3 – k2l2 – l4,

a3 = k4l2 + k2l4 – k5l1 – k3l3 – k1l5, a4 = k5l3 + k3l5 – k4l4,

a5 = –k5l5, a6 = l2
1, a7 = l2

2 – 2l1l3, a8 = l2
3 + 2l1l5 – 2l2l4,

a9 = l2
4 – 2l3l5, a10 = l2

5.

τ0 is chosen as τ0 = min(τ j
k).We need to prove that [ d(Re ξ )

dτ
]
τ=τ

(j)
k

�= 0.
By differentiating equation (4) with respect to τ , we get

(
dξ

dτ

)
=

ξe–ξτ (l1ξ
4 + l2ξ

3 + l3ξ
2 + l4ξ + l5)

5ξ 4 + 4k1ξ 3 + 3k2ξ 2 + 2k3ξ + k4 + e–ξτ [(4l1ξ 3 + 3l2ξ 2 + 2l3ξ + l4) – τ (l1ξ 4 + l2ξ 3 + l3ξ 2 + l4ξ + l5)]
,

(
dξ

dτ

)–1

=
5ξ 4 + 4k1ξ

3 + 3k2ξ
2 + 2k3ξ + k4

ξe–ξτ (l1ξ 4 + l2ξ 3 + l3ξ 2 + l4ξ + l5)

+
4l1ξ

3 + 3l2ξ
2 + 2l3ξ + l4

ξ (l1ξ 4 + l2ξ 3 + l3ξ 2 + l4ξ + l5)
–

τ

ξ
, (10)

[
d(Re ξ )

dτ

]–1

τ=τ
(j)
k

= Re

[
(5ξ 4 + 4k1ξ

3 + 3k2ξ
2 + 2k3ξ + k4)eξτ

ξ (l1ξ 4 + l2ξ 3 + l3ξ 2 + l4ξ + l5)

]
τ=τ

(j)
k

+ Re

[
4l1ξ

3 + 3l2ξ
2 + 2l3ξ + l4

ξ (l1ξ 4 + l2ξ 3 + l3ξ 2 + l4ξ + l5)

]
τ=τ

(j)
k

. (11)

Substituting ξ = ip to be the root of (4), we obtain

=
1
Λ

{[(
5p4

k – 3k2p2
k + k4

)
cos(pkτk) – sin(pkτk)

](
l2p4

k – l4p2
k
)

+
[(

5p4
k – 3k2p2

k + k4
)

sin(pkτk) +
(
–4k1p3

k + 2k3pk
)

cos(pkτk)
](

l1p5
k – l3p3

k + l5pk
)

+
(
–3l2p2

k + l4
)(

l2p4
k – l4p2

k
)

+
(
–4l1p3

k + 2l3pk
)(

l1p5
k – l3p3

k + l5pk
)}

,

where,

Λ =
(
l2p4

k – l4p2
k
)2 +

(
l1p5

k – l3p3
k + l5p2

k
)

=
1
Λ

{(
5p4

k – 3k2p2
k + k4

)
pk

((
l1p4

k – l3p2
k + l5

)
cos(pkτk) –

(
l1p4

k – l3p2
k + l5

)
sin(pkτk)

)

+
(
–4k1p3

k + 2k3pk
)
pk

((
l1p4

k – l3p2
k + l5

)
cos(pkτk) –

(
l2p3

k – l4pk
))

+
(
–3l2p2

k + l4
)(

l2p4
k – l4p2

k
)

+
(
–4l1p3

k + 2l3pk
)(

l1p5
k – l3p3

k + l5pk
)}

=
1
Λ

{(
5p4

k – 3k2p2
k + k4

)
pk

(
–p5

k + k2p3
k – k4pk

)
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+
(
–4k1p3

k + 2k3pk
)
pk

(
–k1p4

k + k3p2
k – k5

)
+

(
–3l2p2

k + l4
)(

l2p4
k – l4p2

k
)

+
(
–4l1p3

k + 2l3pk
)(

l1p5
k – l3p3

k + l5pk
)}

=
1
Λ

{
5p10

k + 4
(
k2

1 – 2k2 – l2
1
)
p8

k + 3
(
k2

2 + 2k4 – 2k1k3 + 2l1l3 – l2
2
)
p6

k

+ 2
(
k2

3 + 2k1k5 – 2k2k4 + 2l2l4 – 2l1l5 – l2
3
)
p4

k +
(
k2

4 – 2k3k5 + 2l3l5 – l2
4
)
p2

k
}

=
1
Λ

{
5p10

k + 4c1p8
k + 3c2p6

k + 2c3p4
k + c4p2

k
}

=
mk

Λ

{
5m4

k + 4c1m3
k + 3c2m2

k + 2c3mk + c4
}

=
mk

Λ
ψ1(mk),

sign

[
d(Re ξ )

dτ

]
τ=τ

(j)
k

= sign

[
d(Re ξ )

dτ

]–1

τ=τ
(j)
k

= sign

[
ψ1(mK )

Λ

]
�= 0.

Since mk ,Λ > 0 and ψ1(mK ) �= 0.
This completes the theorem. �

4 Estimation of length of delay to preserve stability
Lemma 4.1 (Nyquist criteria) If L is the arc length of a curve encircling the right half-plane,
the curve PJ (L) will encircle the origin the number of times equal to the difference between
the number of poles and the number of zeros of PJ (L) in the right half-plane.

In this section we shall try to estimate the length of delay to preserve the stability using
Nyquist criteria [29–31].

We consider system (2) and the space of all real-valued continuous functions defined on
[–τ ,∞). satisfying the initial conditions on [–τ , 0].

Let X(t) = x(t) – x∗, Y (t) = y(t) – y∗, V (t) = v(t) – v∗, W (t) = C(t) – C∗, Z(t) = A(t) – A∗.
Linearizing (3) about its steady state I∗, we obtain

•
X(t) =

[
–λ0 + r –

2rx∗

xm
– β1v∗

]
X(t) – β1x∗V (t),

•
Y (t) = β1v∗X(t) –

(
δ0 + ω1C∗)Y (t) + β1x∗V (t) – ω1y∗W (t),

•
V (t) = N1δ0Y (t) –

(
δ1 + ω2A∗)V (t) – ω2v∗Z(t),

•
W (t) = α1Y (t) – μ10W (t) + μ1C∗Y (t – τ ) + μ1y∗W (t – τ ),
•
Z(t) = μ2A∗V (t) +

(
μ2v∗ – μ20

)
Z(t).

(12)

Let P1 = (–λ0 + r – 2rx∗
xm

– β1v∗), P2 = –β1x∗,

Q1 = β1v∗, Q2 = –
(
δ0 + ω1C∗), Q3 = β1x∗, Q4 = –ω1y∗,

R1 = N1δ0, R2 = –
(
δ1 + ω2A∗), R3 = –ω2v∗,

T1 = α1, T2 = –μ10, T3 = μ1C∗, T4 = μ1y∗,

U1 = μ2A∗, U2 =
(
μ2v∗ – μ20

)
.
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Equation (12) becomes

•
X(t) = P1X(t) + P2V (t),
•

Y (t) = Q1X(t) + Q2Y (t) + Q3V (t) + Q4W (t),
•

V (t) = R1Y (t) + R2V (t) + R3Z(t),
•

W (t) = T1Y (t) + T2W (t) + T3Y (t – τ ) + T4W (t – τ ),
•
Z(t) = U1V (t) + U2Z(t).

(13)

Taking the Laplace transform on both sides of (13), we obtain

sL
[
X(t)

]
– X(0) = P1L

[
X(t)

]
+ P2L

[
V (t)

]
,

L
[
Y (t)

]
– Y (0) = Q1L

[
X(t)

]
+ Q2L

[
Y (t)

]
+ Q3L

[
V (t)

]
+ Q4L

[
W (t)

]
,

sL
[
V (t)

]
– V (0) = R1L

[
Y (t)

]
+ R2L

[
V (t)

]
+ R3L

[
Z(t)

]
,

sL
[
W (t)

]
– W (0) = T1L

[
Y (t)

]
+ T2L

[
W (t)

]
+ T3e–sτ L

[
Y (t)

]
+ T3e–sτ K1(s)

+ T4e–sτ L
[
W (t)

]
+ T4e–sτ K2(s),

sL
[
Z(t)

]
– Z(0) = U1L

[
V (t)

]
+ U2L

[
Z(t)

]
,

where K1(s) =
∫ 0

–τ
e–stY (t) dt, K2(s) =

∫ 0
–τ

e–stW (t) dt.
The local asymptotic stability of the infected steady state I∗ according to the Nyquist

criterion is given by

Im H(iρ0) > 0, (14)

Re H(iρ0) = 0, (15)

where ρ0 is the smallest positive root of (15) and

H(s) = s5 + k1s4 + k2s3 + k3s2 + k4s + k5 + e–sτ (l1s4 + l2s3 + l3s2 + l4s + l5
)
.

From (14) and (15) we have

k1ρ
4
0 – k3ρ

2
0 + k5 = –

(
l1ρ

4
0 – l3ρ

2
0 + l5

)
cos(ρ0τ ) –

(
–l2ρ

3
0 + l4ρ0

)
sin(ρ0τ ), (16)

ρ5
0 – k2ρ

3
0 + k4ρ0 >

(
l1ρ

4
0 – l3ρ

2
0 + l5

)
sin(ρ0τ ) –

(
–l2ρ

3
0 + l4ρ0

)
cos(ρ0τ ). (17)

Conditions (16) and (17) are the smallest conditions to ensure stability. We will use these
to obtain an estimate of the length of delay. Our goal is to find an upper bound ρ+ on ρ0,
independent of τ , and we estimate τ equation (17) holds for all values of ρ0, 0 < ρ0 < ρ+.
Maximizing the R.H.S of (16)

Subject to | cos(ρ0τ )| ≤ 1 and | sin(ρ0τ )| ≤ 1, we obtain

k1ρ
4
0 ≤ k3ρ

2
0 – k5 + |l1|ρ4

0 + |l3|ρ2
0 + |l5| + |l2|ρ3

0 + |l4|ρ0. (18)

It is clear that ρ0 ≤ ρ+, where ρ+ is the least positive root of (18).
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From (17) we have

ρ4
0 > k2ρ

2
0 – k4 + l1ρ

3
0 sin(ρ0τ ) – l3ρ0 sin(ρ0τ ) + l5

sin(ρ0τ )
ρ0

+ l1ρ
2
0 cos(ρ0τ ) – l4 cos(ρ0τ ). (19)

Substituting (16) into (19) yields

(
k1l1ρ

2
0 – k1l4 + l1ρ

4
0 – l3ρ

2
0 + l5

)(
cos(ρ0τ ) – 1

)

+
(

k1l1ρ
3
0 – k1l3ρ0 +

k1l5

ρ0
– l2ρ

3
0 + l4ρ0

)
sin(ρ0τ )

< (–l1)ρ3
0 + (k3 – k1k2 – k1l1 + l3)ρ2

0 + (k1k4 – k5 – l5 + k1l4). (20)

By using the bounds

(i)
(
k1l1ρ

2
0 – k1l4 + l1ρ

4
0 – l3ρ

2
0 + l5

)(
cos(ρ0τ ) – 1

)

=
(
k1l1ρ

2
0 – k1l4 + l1ρ

4
0 – l3ρ

2
0 + l5

)
2 sin2

(
ρ0τ

2

)

< 2
(
k1l1ρ

2
0 – k1l4 + l1ρ

4
0 – l3ρ

2
0 + l5

)(ρ0τ

2

)2

<
1
2
(
l1ρ

6
0 + (k1l1 – l3)ρ4

0 + (l5 – k1l4)ρ2
0
)
τ 2.

(ii)
(

k1l1ρ
3
0 – k1l3ρ0 +

k1l5

ρ0
– l2ρ

3
0 + l4ρ0

)
sin(ρ0τ )

<
(

k1l1ρ
3
0 – k1l3ρ0 +

k1l5

ρ0
– l2ρ

3
0 + l4ρ0

)
ρ0τ

<
(
(k1l1 – l2)ρ4

0 + (l4 – k1l3)ρ2
0 + k1l5

)
τ .

In (20) we obtain B1τ
2 + B2τ < B3, where

B1 =
1
2
(
l1ρ

6
0 + (k1l1 – l3)ρ4

0 + (l5 – k1l4)ρ2
0
)
,

B2 = (k1l1 – l2)ρ4
0 + (l4 – k1l3)ρ2

0 + k1l5,

B3 = –l1ρ
3
0 + (k3 – k1k2 – k1l1 + l3)ρ2

0 + (k1k4 – k5 – l5 + k1l4).

Hence if τ+ = –B2+
√

B2
2+4B1B3

2B1
, then the stability is preserved for 0 < τ < τ+. Therefore, we

get Theorem 4.1.

Theorem 4.1 If there exists a delay in 0 < τ < τ+ such that B1τ
2 + B2τ < B3, then τ+ is

locally asymptotically stable, the delay length for the infected steady state I∗.

5 Results and discussion
We exhibit some numerical assumptions with respect to our hypothetical investigation
which are done in MATLAB. Using the following parameter values

λ = 10, λ0 = 0.055, δ1
0 = 0.24, δ1 = 3, β = 0.002, α0 = 0.265,
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α1
1 = 0.01, μ10 = 0.755, μ20 = 0.1, μ1 = 0.03, μ2 = 0.01, ηr = 0.57,

ηp = 0.38, ω1 = 0.05, ω2 = 0.5, N = 100, xm = 1500, r = 0.3,

we get the infected steady state I∗(x∗, y∗, v∗, C∗, A∗) = (1222.89, 21.8376, 10, 4.4869,
63.6732). From (8) and (9) we obtain τ0 = 1.102 and R0 = 21.7348 > 1. In case that the
delay moderately increases from zero, at that point the infected steady state I∗ is locally
asymptotically stable for τ ∈ [0, τ0) (by Theorem 3.1) which is outlined in Fig. 1. In any
case, the delay crosses the critical value τ0 = 1.102,the infected steady state I∗ loses stabil-
ity and undergoes Hopf bifurcation, which is illustrated in Fig. 2. The proposed demon-
stration suggests that as the response of antibody often evolves as possible in free virus

Figure 1 The phase diagrams of system (2) being asymptotically stable when τ = 0.9
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Figure 2 The phase diagrams of system (2) undergoing Hopf bifurcation when τ = 1.2

Figure 3 The phase diagram shows that the neutralizing antibody converges to a certain extent after the
regulation of free viruses and infected cells

response, then the level of non-infected CD4+ T-cells increases with a time delay as shown
in Figs. 3 and 4.In the meantime, the level of infected CD4+ T-cells and free virus decreases
as shown in Figs. 5 and 6.
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Figure 4 The phase diagram shows an increased number of non-infected CD4+ T-cells, while the antibody
neutralization response is increasing

Figure 5 The phase diagram demonstrates that the neutralization of the antibody regulates the infected cells
as antibody neutralization increases

Figure 6 The phase diagram shows that when neutralization of antibody response increases and the free
virus level converges to zero, the free virus is neutralized



Geetha and Balamuralitharan Boundary Value Problems        (2020) 2020:132 Page 14 of 15

6 Conclusion
In this study, the dynamics of an HIV infection model were analyzed and described by
comprising the CTL response delay according to mathematical analysis. We have shown
that the reproduction ratio R0 plays a crucial role for inferring this model dynamics. The
calculation of R0 in an infectious disease transmitted by blood or sex is more complicated.
Several mathematical models have been proposed to explain the rate of spread of the in-
fection. An account should be taken of the window period and HIV pathophysiology. Bet-
ter integration of modeling into the decision-making process is desirable to improve the
effectiveness of interventions and the knowledge of health professionals [32].

Both the viral free steady state and the infected steady state of the HIV model are ascer-
tained. If R0 < 1 then the viral free steady state is locally asymptotically stable, and if R0 > 1
then infected steady state is locally asymptotically stable in absence of delay. Based on the
model of differential delay, we evaluate Hopf bifurcation requirements using time delay as
the bifurcation parameter. This shows that a positive steady state is locally asymptotically
stable when the time delay is relatively small, whereas a Hopf bifurcation may cause a loss
of stability as the delay increases. Using the Nyquist test, we also get that the maximum
delay value to the infected steady State I∗ will remain asymptomatically stable. Finally, it
can be concluded that an antibody immune reaction and the combination of drug efficacy
are important to reduce the potential for HIV infections through numerical simulations.
Maintaining stability may be the goal to prolonging patient survival, but exposes them to
transmission risk. It is interesting to know the duration of the asymptotic period for sub-
sequent consequent clinical evaluations. Dynamic HIV transmission models can provide
evidence-based guidance on optimal combination implementation strategies to treat and
prevent HIV/AIDS [33].
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