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Abstract
This paper deals with the existence of multiple solutions for the following Kirchhoff
type equations involving p-biharmonic operator:

–M
(∫

Ω

(|�pu|2 + |u|p)dx
)
(�2

pu – |u|p–2u) = λf (x)|u|q–2u + g(x)|u|m–2u, x ∈ Ω ,

where Ω is a bounded domain in R
N (N > 1), λ > 0, p,q,m > 1,M is a continuous

function, and the weight functions f and g are measurable. We obtain the existence
results by combining the variational method with Nehari manifold and fibering maps.
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1 Introduction
The theory of p-Laplacian and p-biharmonic operators has been developed very quickly.
The investigation of the existence and multiplicity of solutions has attracted a considerable
attention of researchers (see, for instance, [1, 3, 15, 18, 22, 24, 26–28] and the references
therein). The motivation of this interest stems from the fact that these nonhomogeneous
differential operators are a very productive and rich area of research in recent decades.
This theory have relevant applications in various fields; we refer the reader to [17, 20–23].

Kirchhof-type equations, known as nonlocal differential equations, have received spe-
cific attention in recent years. An important number of surveys dealing with this type
of equations can model phenomenons arising from the study of elastic mechanics, in
numerous physical phenomena such as systems of particles in thermodynamical equi-
librium, dielectric breakdown, image restoration, biological phenomena, and so on (see
[9, 14, 19, 25, 30] and references therein for discussions of various applications ).

In recent years, several authors have considered the Nehari manifold to study problems
involving sign-changing weight functions [2, 4, 6, 7, 10–13, 15, 16, 26, 28]. More precisely,
Ji and Wang [16] proved the existence of two nontrivial solutions for the following per-
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turbed nonlinear p-biharmonic boundary value problem:

{
�2

pu = |u|q–2u + λh(x)|u|r–2u, x ∈ Ω ,
u = ∇u = 0 on ∂Ω ,

where 1 < r < p < q < p∗ with p∗ = Np
N–2p if p < N

2 and p∗ = ∞ if p ≥ N
2 , h is a continuous

function in Ω , which can change sign, and �2
pu := �(|�u|p–2�u) is the p-biharmonic op-

erator.
Chen et al. [8] considered the following nonhomogeneous Kirchhof-type problem:

{
–M(

∫
Ω

|∇u|2 dx)�u = λf (x)|u|q–2u + g(x)|u|m–2u, x ∈ Ω ,
u = 0 on ∂Ω ,

(1.1)

where 1 < q < 2 < m < 2∗ (2∗ = 2N
N–2 if N ≥ 3, 2∗ = ∞ if N = 1, 2), M(s) = a + bs, and a, b, λ,

are positive real numbers. The weight functions f and g are continuous in Ω . Based on
the Nehari manifold method and the fibering maps, the authors proved that problem (1.1)
admits at least two nontrivial solutions.

Inspired by the works mentioned, we study the following Kirchhof-type system:

⎧⎪⎨
⎪⎩

–M(
∫
Ω

(|�pu|2 + |u|p) dx)(�2
pu – |u|p–2u)

= λf (x)|u|q–2u + g(x)|u|m–2u, x ∈ Ω ,
u ∈ W 2,p(Ω) \ {0},

(1.2)

where Ω ⊂ R
N (N ≥ 2) is a bounded domain with smooth boundary ∂Ω , λ > 0, the func-

tions f , g are measurable in Ω , and the function M is defined on [0,∞) by M(s) = a + bsl

for some a, b > 0 and 0 ≤ l < 2p
N–2p .

Before giving our main result, we assume the following hypotheses:

(H1) g is a measurable function such that g ∈ L
p∗

p∗–m (Ω) and g+ := max(g, 0) 	= 0.

(H2) f is a measurable function such that f ∈ L
p∗

p∗–q (Ω) and f + := max(f , 0) 	= 0.
Our main result of this paper is the following theorem.

Theorem 1.1 Assume (H1)–(H2). If 2p < N and 1 < m < p ≤ p(l + 1) < q < p∗, then there
exists λ0 > 0 such that for all |λ| ∈ (0,λ0), problem (1.2) has at least two nontrivial solutions.

The rest of this paper is organized as follows. In Sect. 2, we give some definitions and ba-
sic results that will be used in this paper. Section 3 is devoted to the proof of Theorem 1.1.

2 Definitions and basic results
In this section, we collect some basic preliminary results that will be used in the proof of
our main result. To state our main result, let us introduce some definitions and notations.
First, we define the Sobolev space

W 2,p(Ω) =
{

u ∈ Lp(Ω), |�u| ∈ Lp(Ω)
}

equipped with the norm

‖u‖ =
(∫

Ω

(|�u|p + |u|p)dx
) 1

p
.



Alsaedi Boundary Value Problems        (2020) 2020:118 Page 3 of 15

For 1 < s ≤ p∗, we denote by Cs the best Sobolev constant for the embedding operator
W 2,p(Ω) ↪→ Ls(Ω), which is given by

Cs := inf
u∈W 2,p(Ω)\{0}

∫
Ω

|�u|p dx

(
∫
Ω

|u|s dx)
p
s

.

In particular, we have

(∫

Ω

|u|s dx
) 1

s
≤ (Cs)– 1

p ‖u‖,

that is,

‖u‖s ≤ (Cs)– 1
p ‖u‖, (2.1)

where ‖ · ‖s is the usual norm in Ls(Ω).

Definition 2.1 We say that a function u ∈ W 2,p(Ω) is a weak solution of (1.2) if for all
v ∈ W 2,p(Ω), we have

M
(∫

Ω

(|�pu|2 + |u|p)dx
)∫

Ω

(|�|p–2�u�v – |u|p–2uv
)

dx = λ

∫

Ω

f (x)|u|q–2uv dx

+
∫

Ω

g(x)|u|m–2uv dx.

Associated with the problem (1.2), we define the functional energy Jλ,M(u) : W 2,p(Ω) −→
R by

Jλ,M(u) =
1
p

M̂
(‖u‖p) –

λ

q

∫

Ω

f (x)|u|q dx –
1
m

∫

Ω

g(x)|u|m dx, (2.2)

where M̂(t) = at + b
l+1 tl+1.

Lemma 2.1 The functional Jλ,M belongs to C1(W 2,p(Ω),R). Moreover, for all u ∈ W 2,p(Ω),
we have

〈
J ′
λ,M(u), u

〉
= a‖u‖p + b‖u‖p(l+1) – λ

∫

Ω

f (x)|u|q dx –
∫

Ω

g(x)|u|m dx, (2.3)

where 〈·, ·〉 denotes the usual duality between the space W 2,p(Ω) and its dual W –2,p(Ω).

Proof From the hypotheses (H1)–(H2) it is obvious that Jλ,M ∈ C1(W 2,p(Ω),R) and its
Gateaux derivative is given by

〈
J ′
λ,M(u),ϕ

〉
= M

(∫

Ω

(|�pu|2 + |u|p)dx
)∫

Ω

(|�|p–2�u�ϕ – |u|p–2uϕ
)

dx

– λ

∫

Ω

f (x)|u|q–2uϕ dx –
∫

Ω

g(x)|u|m–2uϕ dx ∀u,ϕ ∈ W 2,p(Ω).

This completes the proof of Lemma 2.1. �
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Since the energy functional is not bounded from bellow on W 2,p(Ω), we introduce the
following subspace of W 2,p(Ω), which is called Nehari manifold:

Nλ,M =
{

u ∈ W 2,p(Ω) \ {0}; 〈J ′
λ,M(u), u

〉
= 0

}
.

Thus u ∈ Nλ,M if and only if

a‖u‖p + b‖u‖p(l+1) – λ

∫

Ω

f (x)|u|q dx –
∫

Ω

g(x)|u|m dx = 0. (2.4)

Note that the Nehari manifold Nλ,M contains every nonzero solution of equation (1.2).

Lemma 2.2 Suppose that (H1) and (H2) hold. Then the energy functional Jλ,M is coercive
and bounded below on Nλ,M .

Proof Let u ∈ Nλ,M . Then from (2.1), (2.4), and the Hölder inequality we have

Jλ,M(u) =
1
p

M̂
(‖u‖p) –

λ

q

∫

Ω

f (x)|u|q dx –
1
m

∫

Ω

g(x)|u|m dx

≥ q – p
pq

a‖u‖p + b
(

q – p(l + 1)
qp(l + 1)

)
‖u‖p(l+1) –

q – m
mq

∫

Ω

g(x)|u|m dx

≥ q – p
pq

a‖u‖p + b
(

q – p(l + 1)
qp(l + 1)

)
‖u‖p(l+1)

–
q – m

mq

(∫

Ω

|g|
p∗

p∗–m dx
) p∗–m

p∗ (∫

Ω

|u|p∗
dx

) m
p∗

≥ q – p
pq

a‖u‖p + b
(

q – p(l + 1)
qp(l + 1)

)
‖u‖p(l+1) –

q – m
mq

‖g‖ p∗
p∗–m

(Cp∗ )– m
p ‖u‖m.

Since m < p(l + 1) < q, Jλ,M is coercive and bounded below on Nλ,M . �

The Nehari manifold Nλ,M is closely linked to the behavior of the function hu : t −→
Jλ,M(tu) for t > 0, defined as follows:

hu(t) =
1
p

M̂
(
tp‖u‖p) – λ

tq

q

∫

Ω

f (x)|u|q dx –
tm

m

∫

Ω

g(x)|u|m dx.

Such maps, introduced by Drábek and Pohozaev [10], are known as fibering maps. A sim-
ple calculation shows that, for each u ∈ W 2,p(Ω), we have

h′
u(t) = atp–1‖u‖p + btp(l+1)–1‖u‖p(l+1) – λtq–1

∫

Ω

f (x)|u|q dx – tm–1
∫

Ω

g(x)|u|m dx

and

h′′
u(t) = a(p – 1)tp–2‖u‖p + b

(
p(l + 1) – 1

)
tp(l+1)–2‖u‖p(l+1)

– λ(q – 1)tq–2
∫

Ω

g(x)|u|q dx – (m – 1)tm–2
∫

Ω

g(x)|u|m dx.
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Clearly,

th′
u(t) =

〈
J ′
λ,M(tu), tu

〉
= 0.

Thus, for all u ∈ W 2,p(Ω) \ {0} and t > 0, we have

h′
u(t) = 0 if and only if tu ∈ Nλ,M.

In particular, h′
u(1) = 0 if and only if u ∈ Nλ,M . Also, by equation (2.4) it is easy to see that

for u ∈ Nλ,M ,

h′′
u(1) = a(p – 1)‖u‖p + b

(
p(l + 1) – 1

)‖u‖p(l+1)

– λ(q – 1)
∫

Ω

g(x)|u|q dx – (m – 1)
∫

Ω

g(x)|u|m dx

= a(p – m)‖u‖p + b
(
p(l + 1) – m

)‖u‖p(l+1) – λ(q – m)
∫

Ω

f (x)|u|q dx (2.5)

= a(p – q)‖u‖p + b
(
p(l + 1) – q

)‖u‖p(l+1) + (q – m)
∫

Ω

g(x)|u|m dx (2.6)

= bpl‖u‖p(l+1) + λ(p – q)
∫

Ω

f (x)|u|q dx + (p – m)
∫

Ω

g(x)|u|m dx.

In order to have multiplicity of solutions, we split Nλ,M into three parts

N+
λ,M =

{
u ∈ Nλ,M; h′′

u(1) > 0
}

,

N0
λ,M =

{
u ∈ Nλ,M; h′′

u(1) = 0
}

,

N–
λ,M =

{
u ∈ Nλ,M; h′′

u(1) < 0
}

.

Furthermore, using arguments similar to those in of Theorem 2.3 in [6], we have the fol-
lowing lemma.

Lemma 2.3 Let u be a local minimizer for Jλ,M on Nλ,M not belonging to N0
λ,M . Then

J ′
λ,M(u) = 0.

Put

λ1 =
a(p – m)(Cp∗ )

q
p

(q – m)‖f ‖ p∗
p∗–q

(
a(q – p)(Cp∗ )

q
p

(q – m)‖g‖ p∗
p∗–m

) q–p
p–m

.

Then we have the following lemma.

Lemma 2.4 If 0 < |λ| < λ1, then N0
λ,M = φ.

Proof Suppose, otherwise, that 0 < |λ| < λ1 with N0
λ,M 	= φ. Let u ∈ N0

λ,M . Then we have

h′′
u(1) = 0.
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From (2.5) and (2.6) we get

(q – m)
∫

Ω

g(x)|u|m dx = a(q – p)‖u‖p + b
(
q – p(l + 1)

)‖u‖p(l+1)

and

λ(q – m)
∫

Ω

f (x)|u|q dx = a(p – m)‖u‖p + b
(
p(l + 1) – m

)‖u‖p(l+1).

Therefore

a(q – p)‖u‖p ≤ (q – m)
∫

Ω

g(x)|u|m dx (2.7)

and

a(p – m)‖u‖p ≤ λ(q – m)
∫

Ω

f (x)|u|q dx. (2.8)

On the other hand, from (2.1) and the Hölder inequality we obtain

(q – m)
∫

Ω

g(x)|u|m dx ≤ (q – m)‖g‖ p∗
p∗–m

(Cp∗ )– m
p ‖u‖m (2.9)

and

λ(q – m)
∫

Ω

f (x)|u|q dx ≤ |λ|(q – m)‖f ‖ p∗
p∗–q

(Cp∗ )– q
p ‖u‖q. (2.10)

By combining (2.7) and (2.9) we get

‖u‖ ≤
( (q – m)‖g‖ p∗

p∗–m
(Cp∗ )– m

p

a(q – p)

) 1
p–m

. (2.11)

Moreover, by combining (2.8) and (2.10) we get

‖u‖ ≥
(

a(p – m)(Cp∗ )
q
p

|λ|(q – m)‖f ‖ p∗
p∗–q

) 1
q–p

. (2.12)

Finally, by combining (2.11) and (2.12) we obtain λ1 ≤ |λ|, which is a contradiction. �

From Lemma 2.4, for 0 < |λ| < λ1, we can write Nλ,M = N+
λ,M ∪ N–

λ,M .
Put

θλ,M = inf
u∈Nλ,M

Jλ,M(u), θ+
λ,M = inf

u∈N+
λ,M

Jλ,M(u) and θ–
λ,M = inf

u∈N–
λ,M

Jλ,M(u),

and

λ2 :=
a(p – m)(Cp∗ )

q
p

(q – m)‖f ‖ p∗
p∗–q

(
ma(q – p)(Cp∗ )

m
p

p(q – m)‖g‖ p∗
p∗–m

) q–p
p–m

.
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Then we have the following:

Proposition 2.1 If 0 < |λ| < λ2, then:
(i)

θλ,M ≤ θ+
λ,M < 0. (2.13)

(ii) There exists C > 0 such that

θ–
λ,M ≥ C > 0. (2.14)

Proof (i) Let u ∈ N+
λ,M . Then from (2.6) and the fact that h′′

u(1) > 0 we obtain

a(q – p)‖u‖p + b
(
q – p(l + 1)

)‖u‖p(l+1) < (q – m)
∫

Ω

g(x)|u|m dx.

So, by (2.4) we obtain

Jλ,M(u) = a
(

q – p
pq

)
‖u‖p + b

(
q – p(l + 1)

qp(l + 1)

)
‖u‖p(l+1) –

q – m
mq

∫

Ω

g(x)|u|m dx

<
a(q – p)

q

(
m – p

pm

)
‖u‖p +

b(q – p(l + 1))
q

m – p
m – q

(
m – p(l + 1)

mp(l + 1)

)
‖u‖p(l+1) < 0.

Thus we can deduce that θλ,M ≤ θ+
λ,M < 0.

(ii) Let u ∈ N–
λ,M . Then from equations (2.5) and the fact that h′′

u(1) < 0 we get

a(p – m)‖u‖p + b
(
p(l + 1) – m

)‖u‖p(l+1) < λ(q – m)
∫

Ω

f (x)|u|q.

So,

a(p – m)‖u‖p < λ(q – m)
∫

Ω

f (x)|u|q.

Therefore equation (2.10) implies that

‖u‖ ≥
(

a(p – m)(Cp∗ )
q
p

|λ|(q – m)‖f ‖ p∗
p∗–q

) 1
q–p

.

In addition, from equations (2.1), (2.4), and (2.9), using the Hölder inequality, we have

Jλ,M(u) = a
(

q – p
pq

)
‖u‖p + b

(
q – p(l + 1)

qp(l + 1)

)
‖u‖p(l+1) –

q – m
mq

∫

Ω

g(x)|u|m dx

≥ a
(

q – p
pq

)
‖u‖p –

q – m
mq

∫

Ω

g(x)|u|m dx

≥ a
(

q – p
pq

)
‖u‖p –

q – m
mq

‖g‖ p∗
p∗–m

(Cp∗ )– m
p ‖u‖m

≥ ‖u‖m
(

a
(

q – p
pq

)
‖u‖p–m –

q – m
mq

‖g‖ p∗
p∗–m

(Cp∗ )– m
p

)
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≥
(

a(p – m)(Cp∗ )
q
p

|λ|(q – m)‖f ‖ p∗
p∗–q

) m
q–p

×
(

a
(

q – p
pq

)(
a(p – m)(Cp∗ )

q
p

|λ|(q – m)‖f ‖ p∗
p∗–q

) p–m
q–p

–
q – m

mq
‖g‖ p∗

p∗–m
(Cp∗ )– m

p

)

:= C.

It is not difficult to see that if 0 < |λ| < λ2, then C > 0. This completes the proof of Propo-
sition 2.1. �

Set

λ0 = min(λ1,λ2).

Proposition 2.2 Suppose that 0 < |λ| < λ0. Then for each u ∈ W 2,p(Ω) with

∫

Ω

g(x)|u|m dx > 0,

there exists T > 0 such that:
(i) If λ

∫
Ω

f (x)|u|q dx ≤ 0, then there exists a unique t+ < T such that t+u ∈ N+
λ,M and

Jλ,M
(
t+u

)
= inf

0≤t≤T
Jλ,M(tu).

(ii) If λ
∫
Ω

f (x)|u|q dx > 0, then there are unique 0 < t+ < T < t– such that
(t–u, t+u) ∈ N–

λ,M × N+
λ,M and

Jλ,M
(
t–u

)
= sup

t≥0
Jλ,M(tu); Jλ,M

(
t+u

)
= inf

0≤t<T
Jλ,M(tu).

Proof Fix u ∈ W 2,p(Ω) with
∫
Ω

g(x)|u|m dx > 0 and define the map Ψu on (0,∞) by

Ψu(t) = atp–q‖u‖p + btp(l+1)–q‖u‖p(l+1) – tm–q
∫

Ω

g(x)|u|m dx.

A simple calculation shows that

h′
u(t) = tq–1

(
Ψu(t) – λ

∫

Ω

f (x)|u|q dx
)

.

Moreover, for t > 0, we have

Ψ ′
u(t) = tm–q–1ψu(t),

where

ψu(t) = a(p – q)tp–m‖u‖p + b
(
p(l + 1) – q

)
tp(l+1)–m‖u‖p(l+1) + (q – m)

∫

Ω

g(x)|u|m dx.
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Since m < p < p(l + 1) < q, then we have

lim
t→0

ψu(t) = (q – m)
∫

Ω

g(x)|u|m dx > 0 and lim
t→∞ψu(t) = –∞.

Also, ψu is decreasing on (0,∞). So, there is a unique T > 0 such that ψu(t) > 0 for 0 < t < T ,
ψu(T) = 0, and ψu(t) < 0 for t > T . Therefore Ψu admits a global maximum at T , ψu is
increasing on (0, T), decreasing on (T ,∞), limt→0 Ψu(t) = –∞, and limt→∞ Ψu(t) = 0.

(i) If λ
∫
Ω

f (x)|u|q dx < 0, then there is a unique t+ ∈ (0, T) such that

Ψu
(
t+)

= λ

∫

Ω

f (x)|u|q dx and Ψ ′
u
(
t+)

> 0.

Therefore h′
u(t+) = 0 and h′′

u(t+) > 0, that is, hu has a global maximum at t+, and t+u ∈ N+
λ,M .

(ii) Assume that λ
∫
Ω

f (x)|u|q dx > 0, and put

T0 =
( (q – m)

∫
Ω

g(x)|u|m dx
a(q – p)‖u‖p

) 1
p–m

.

Then we have

ψu(T0) = b
(
p(l + 1) – q

)
Tp(l+1)–m

0 ‖u‖p(l+1) < 0 = ψu(T).

Since ψu is a decreasing function, we get T0 > T . Moreover, since Ψu is decreasing on
(T ,∞), from (2.9) we have

Ψu(T) ≥ Ψu(T0)

≥ a(T0)p–q‖u‖p – (T0)m–q
∫

Ω

g(x)|u|m dx

≥ a
(

a(q – p)‖u‖p

(q – m)
∫
Ω

g(x)|u|m dx

) q–p
p–m

‖u‖p

–
(

a(q – p)‖u‖p

(q – m)
∫
Ω

g(x)|u|m dx

) q–m
p–m

∫

Ω

g(x)|u|m dx

≥ a(p – m)
q – m

(
a(q – p)
q – m

) q–p
q–m ‖u‖p q–m

p–m

(
∫
Ω

g(x)|u|m dx)
q–p
p–m

≥ a(p – m)
q – m

(
a(q – p)
q – m

) q–p
q–m ‖u‖p q–m

p–m

((Cp∗ )– m
p ‖g‖ p∗

p∗–m
‖u‖m)

q–p
p–m

≥ a(p – m)
q – m

(
a(q – p)

(q – m)(Cp∗ )– m
p ‖g‖ p∗

p∗–m

) q–p
q–m

‖u‖q.
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Therefore by (2.1) we obtain

Ψu(T) – λ

∫

Ω

f (x)|u|q dx ≥ a(p – m)
q – m

(
a(q – p)

(q – m)(Cp∗ )– m
p ‖g‖ p∗

p∗–m

) q–p
q–m

‖u‖q

– |λ|‖f ‖ p∗
p∗–q

(Cp∗ )– q
p ‖u‖q

≤ ‖f ‖ p∗
p∗–q

(Cp∗ )– q
p ‖u‖q(λ1 – |λ|).

Since 0 < |λ| < λ0, we have

0 < λ

∫

Ω

f (x)|u|q dx < Ψu(T).

Hence there are unique t– and t+ such that 0 < t+ < T < t–,

Ψu
(
t+)

= λ

∫

Ω

f (x)|u|q dx = Ψu
(
t–)

and

Ψ ′
u
(
t+)

> 0 > Ψ ′
u
(
t–)

.

By a similar argument as in case (i) we conclude that t–u ∈ N–
λ,M and t+u ∈ N+

λ,M . Moreover,

Jλ,M
(
t+u

) ≤ Jλ,M(tu) ≤ Jλ,M
(
t–u

)
for each t ∈ [

t+, t–]
,

and Jλ,M(tu) ≤ Jλ,M(t–u) for each t ≥ 0. Thus

Jλ,M
(
t+u

)
= inf

0≤t≤T
Jλ,M(tu) and Jλ,M

(
t–u

)
= sup

T≤t
Jλ,M(tu). �

Proposition 2.3 For every u ∈ W 2,p(Ω) with λ
∫
Ω

f (x)|u|m dx > 0, there exists T̃ such that:
(i) If

∫
Ω

g(x)|u|m dx ≤ 0, then there exists a unique t– > T̃ such that t–u ∈ N–
λ,M and

Jλ,M
(
t–u

)
= sup

t≥T̃
Jλ,M(tu).

(ii) If
∫
Ω

g(x)|u|m dx > 0, then there are unique 0 < t+ < T̃ < t– such that
(t–u, t+u) ∈ N–

λ,M × N+
λ,M and

Jλ,M
(
t–u

)
= sup

t≥0
Jλ,M(tu); Jλ,M

(
t+u

)
= inf

0≤t<T̃
Jλ,M(tu).

Proof Let u ∈ W 2,p(Ω) be such that λ
∫
Ω

f (x)|u|q dx > 0 and define the map Ψu by

Ψu(t) = atp–m‖u‖p + btp(l+1)–m‖u‖p(l+1) – λtq–m
∫

Ω

f (x)|u|q dx, for t ≥ 0.
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Put

T̃0 =
(

b(p(l + 1) – m)‖u‖p(l+1)

λ(q – m)
∫
Ω

f (x)|u|q dx

) 1
q–p(l+1)

.

Then by similar arguments as in the proof of Proposition 2.2 we can deduce the results of
Proposition 2.3 �

Proposition 2.4 There exist sequences {u±
k } in N±

λ such that

Jλ,M
(
u±

k
)

= θ±
λ,M + o(1) and J ′

λ,M
(
u±

k
)

= o(1).

Proof We omit the proof, which is almost the same as that in Wu ([29], Proposition 9). �

3 Proof of our main result
In this section, we apply the method of Nehari manifold combined with the fibering maps
to investigate the multiplicity of nontrivial solutions for problem (1.2). To this aim, we
assume that |λ| ∈ (0,λ0).

Theorem 3.1 Assume that (H1)–(H2) hold. Then problem (1.2) has a nontrivial solution
u+

λ,M in N+
λ,M such that

Jλ,M
(
u+

λ,M
)

= θ+
λ,M.

Proof By Proposition 2.4 there exists a sequence {u+
k } in N+

λ,M such that

Jλ,M
(
u+

k
)

= θ+
λ,M + o(1) and J ′

λ,M
(
u+

k
)

= o(1) in W –2,p. (3.1)

Using Lemma 2.2, up to a subsequence, there exists u+
λ,M in W 2,p(Ω) such that

⎧⎪⎨
⎪⎩

u+
k ⇀ u+

λ,M weakly in W 2,p(Ω),
u+

k −→ u+
λ,M strongly inLs(Ω) for 1 < s < p∗,

u+
k −→ u+

λ,M a.e. in Ω .
(3.2)

We will prove that u+
k −→ u+

λ,M strongly in W 2,p(Ω) and Jλ,M(u+
λ,M) = θ+

λ,M .
Since u+

λ,M ∈ Nλ,M , by Fatou’s lemma and equation (3.1) we get

θ+
λ,M ≤ Jλ,M

(
u+

λ,M
)

=
1
p

M̂
(∥∥u+

λ,M
∥∥p) –

λ

q

∫

Ω

f (x)
∣∣u+

λ,M
∣∣q dx –

1
m

∫

Ω

g(x)
∣∣u+

λ,M
∣∣m dx

≤ lim inf
k→∞

(
1
p

M̂
(∥∥u+

k
∥∥p) –

λ

q

∫

Ω

f (x)
∣∣u+

k
∣∣q dx –

1
m

∫

Ω

g(x)
∣∣u+

k
∣∣m dx

)

≤ lim inf
k→∞

Jλ,M
(
u+

k
)

= θλ,M

= lim
k↑∞

Jλ,M
(
u+

k
)

= θ+
λ,M.

So, it is easy to see that

Jλ,M
(
u+

λ,M
)

= θ+
λ,M and M̂

(∥∥u+
k
∥∥p) −→ M̂

(∥∥u+
λ,M

∥∥p) as k −→ ∞.
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From the Brezis–Lieb lemma [5] we obtain ‖u+
k – u+

λ,M‖p = ‖u+
k ‖p – ‖u+

λ,M‖p. Therefore
uk −→ uλ,M strongly in W 2,p(Ω).

Now we will prove that u+
λ,M ∈ N+

λ,M . We proceed by contradiction assuming that u+
λ,M ∈

N–
λ,M .
We have

Jλ,M
(
u+

k
)

=
q – p

pq
a
∥∥u+

k
∥∥p + b

(
q – p(l + 1)

qp(l + 1)

)∥∥u+
k
∥∥p(l+1) –

q – m
mq

∫

Ω

g(x)
∣∣u+

k
∣∣m dx

≥ –
q – m

mq

∫

Ω

g(x)
∣∣u+

k
∣∣m dx.

By letting k tend to infinity we obtain

∫

Ω

g(x)
∣∣u+

λ,M
∣∣m dx ≥ –

mq
q – m

θ+
λ,M > 0.

Therefore u+
λ,M is nontrivial. Moreover, Propositions 2.2 and 2.3(ii) imply the existence of

a unique t+ such that t+u+
λ,M ∈ N+

λ,M . Since u+
λ,M ∈ N–

λ,M , we have

d2

dt2 hu+
λ,M

(
t+)

> 0 and
d
dt

hu+
λ,M

(1) < 0.

So, there exists t̃ ∈ (t+, 1) such that

hu+
λ,M

(
t+)

= Jλ,M
(
t+u+

λ,M
)

< hu+
λ,M

(̃t) = Jλ,M
(̃
tu+

λ,M
)
.

Therefore

Jλ,M
(
t+u+

λ,M
)

< Jλ,M
(̃
tu+

λ,M
) ≤ Jλ,M

(
t–u+

λ,M
)

= Jλ,M
(
u+

λ,M
)
,

which is a contradiction. Therefore u+
λ,M ∈ N+

λ,M , Moreover, it is not difficult to see that
(3.1) and (3.2) imply that u+

λ,M is a weak solution of problem (1.2). The proof is now com-
pleted. �

Theorem 3.2 If 0 < |λ| < λ0 and (H1)–(H3) hold, then problem (1.2) admits a nontrivial
solution u–

λ,M in N–
λ,M satisfying

Jλ,M
(
u–

λ,M
)

= θ–
λ,M.

Proof By Proposition 2.4 there exists a sequence {u–
k } in N–

λ,M such that

Jλ,M
(
u–

k
)

= θ–
λ,M + o(1) and J ′

λ,M
(
u–

k
)

= o(1) in W –2,p(Ω). (3.3)

Using Lemma 2.2, up to a subsequence, there exists u–
λ,M in W 2,p(Ω) such that

⎧⎪⎨
⎪⎩

u–
k ⇀ u–

λ,M weakly in W 2,p(Ω),
u–

k −→ u–
λ,M strongly inLs(Ω) for 1 < s < p∗,

u–
k −→ u–

λ,M a.e. in Ω .
(3.4)
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We begin by proving that the sequence {u–
k } converges strongly to u–

λ,M in W 2,p(Ω). Sup-
pose that, on the contrary,

∥∥u–
λ,M

∥∥ < lim inf
k−→∞

∥∥u–
k
∥∥.

Since u–
k ∈ N–

λ,M , from equations (2.5) and the fact that h′′
u–

k
(1) < 0 we get

a(p – m)
∥∥u–

k
∥∥p + b

(
p(l + 1) – m

)∥∥u–
k
∥∥p(l+1) < λ(q – m)

∫

Ω

f (x)
∣∣u–

k
∣∣q,

which implies that

a(p – m)
∥∥u–

k
∥∥p < λ(q – m)

∫

Ω

f (x)
∣∣u–

k
∣∣q. (3.5)

Therefore equation (2.10) implies that

∥∥u–
k
∥∥ ≥

(
a(p – m)(Cp∗ )

q
p

|λ|(q – m)‖f ‖ p∗
p∗–q

) 1
q–p

. (3.6)

By combining (3.5) and (3.6) we obtain

λ

∫

Ω

f (x)
∣∣u–

k
∣∣q >

a(p – m)
q – m

(
a(p – m)(Cp∗ )

q
p

|λ|(q – m)‖f ‖ p∗
p∗–q

) p
q–p

.

Passing to the limits as k tends to infinity, we obtain

λ

∫

Ω

f (x)
∣∣u–

λ,M
∣∣q ≥ a(p – m)

q – m

(
a(p – m)(Cp∗ )

q
p

|λ|(q – m)‖f ‖ p∗
p∗–q

) p
q–p

> 0.

Therefore u–
λ,M is nontrivial. Moreover, by Proposition 2.3 there exist a unique t– > 0 such

that t–u–
λ,M ∈ N–

λ,M . Therefore

Jλ,M
(
t–u–

λ,M
)

< lim
k−→∞

Jλ,M
(
t–u–

k
) ≤ lim

k−→∞
Jλ,M

(
u–

k
)

= θ–
λ,M,

a contradiction. Hence u–
k −→ u–

λ,M strongly in W 2,p(Ω). This implies that

Jλ,M
(
u–

k
) −→ Jλ,M

(
u–

λ,M
)

= θ–
λ,M as n −→ ∞.

Finally, from (3.3) and (3.4) we obtain that u–
λ,M is a weak solution of problem (1.2). This

ends the proof of Theorem 3.2 . �

Now Theorems 3.1 and 3.2 and the fact that N–
λ,M ∩ N–

λ,M = ∅ finishes the proof of The-
orem 1.1.
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