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1 Introduction
The theory of fractional differential equations admits wide applications in the fields of
biology, physics, chemistry, control theory, and so on, and hence it has been regarded as
an active aspect of mathematics in recent years. Controllability of fractional differential
systems of order 0 < α < 1 has been investigated by many authors; we refer the readers to
[6, 13, 15–17] for more detail. However, as far as we know, the works on the fractional
order 1 < α < 2 are limited. In 2013, using the Sadovskii fixed point theorem and vector-
valued operator theory, Li et al. [10] proved the controllability of fractional differential
systems of order α ∈ (1, 2] of the form

{
CDα

t x(t) = Ax(t) + f (t, x(t)) + Bu(t), t ∈ J ,
x(0) + g(x) = x0, x′(0) = y0,

where J = [0, b], b > 0 is a constant, CDα
t denotes the Caputo fractional derivative operator

of order α ∈ (1, 2]. Recently, Lian et al. [12], by using Schauder’s fixed point theorem and
approximate techniques, studied the approximate controllability of fractional evolution
equations of order α ∈ (1, 2). However, investigation of the controllability for fractional
evolution systems of order α ∈ (1, 2) of Sobolev type is seldom.
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In the present work, we consider the controllability of the fractional control system of
Sobolev type with nonlocal conditions in a Hilbert space X of the form

{
CDα

t (Ex(t)) = Ax(t) + f (t, x(t)) + Bu(t), t ∈ J ,
Ex(0) = x0 – g(x), Ex′(0) = y0 – h(x),

(1.1)

where 1 < α < 2, CDα
t denotes the Caputo fractional derivative operator of order α, A and E

are two closed linear operators defined in X with domains D(A) and D(E), respectively, the
control function u is given in L2(J , U), U is a Hilbert space, B is a bounded linear operator
from U to X, and f , g , and h are appropriate functions to be specified later.

To deal with the Sobolev-type differential equations, the common assumptions are:
(1) E, A are linear operators, and A is closed;
(2) D(E) ⊂ D(A), and E is bijective;
(3) E–1 is a compact operator.

In this case, –AE–1 is a bounded operator, which generates a uniformly continuous semi-
group; see [2, 7] for more detail. In this paper, without assuming the existence and com-
pactness of E–1, we define the solution operator of (1.1) by fractional resolvent family
generated by the pair (A, E). More precisely, we assume that the pair (A, E) generates an
(α, 1)-resolvent family {CE

α,1(t)}t≥0. Then we prove some properties of {CE
α,1(t)}t≥0. Apply-

ing these properties and the Laplace transform, we define the solution operator of the
fractional control system (1.1). By utilizing fixed point theorems and resolvent operator
theory we obtain some controllability results without any compactness conditions on the
(α, 1)-resolvent family {CE

α,1(t)}t≥0.

2 Preliminaries
Let X be a Hilbert space with norm ‖ · ‖ and inner product 〈·, ·〉X . We denote by C(J , X) the
set of all X-valued continuous functions on J . Then C(J , X) is a Banach space with norm
‖x‖C = supt∈J ‖x(t)‖. For 1 ≤ p < +∞, Lp(J , X) denotes the Banach space of all Bochner-
measurable functions F : J → X normed by ‖f ‖Lp = (

∫ b
0 ‖f (t)‖p dt)

1
p . Let B(X) := B(X, X)

be the Banach space of all bounded linear operators from X to X with operator norm ‖ · ‖.
We recall some definitions of fractional calculus,; see [1, 3, 5] and the reference therein

for more detail. For simplicity, for every ν ≥ 0, let

gν(t) =

{
tν–1

Γ (ν) , t > 0,
0, t ≤ 0,

where Γ is the gamma function. As usual, we define

(f ∗ g)(t) =
∫ t

0
f (t – s)g(s) ds.

Denote by n = α� the smallest integer greater than or equal to α.

Definition 1 Let u ∈ L1(J). The Riemann–Liouville fractional integral of order α > 0 is
defined by

Jα
t u(t) = (gα ∗ u)(t), t > 0.
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Definition 2 The Riemann–Liouville fractional derivative of order α > 0 is defined for all
u ∈ L1(J) satisfying gn–α ∗ u ∈ W n,1(J) by

LDα
t u(t) = Dn

t (gn–α ∗ u)(t), t > 0,

where Dn
t = dn

dtn .

Definition 3 The Caputo fractional derivative of order α > 0 is defined for all u ∈ L1(J) by

CDα
t u(t) = Jn–α

t
LDn

t u(t), t > 0,

If u ∈ Cn[0,∞), then the Caputo fractional derivative of order α ∈ (n – 1, n) is

CDα
t u =

(
gn–α ∗ u(n))(t), t > 0.

By (1.23) of [1] the Laplace transform of Caputo fractional derivative is given by

ĈDα
t u(λ) = λαû(λ) –

n–1∑
k=0

u(k)(0)λα–1–k , (2.1)

where n = α�.
We further introduce some results on fractional resolvent family; see [4, 14] for more

detail. We assume that A is a closed linear densely defined operator in X. Denote

ρE(A) :=
{
λ ∈C | (λE – A) : D(A) ∩ D(E) → X is invertible, and

(λE – A)–1 ∈ B
(
X, D(A) ∩ D(E)

)}
.

We call R(λE, A) := (λE – A)–1 the E-modified resolvent operator of A.

Definition 4 ([1], Definition 2.4) A strongly continuous family {T(t)}t≥0 ⊂ B(X) is said to
be exponentially bounded if there are constants M ≥ 1 and ω ≥ 0 such that

∥∥T(t)
∥∥ ≤ Meωt , t ≥ 0.

Definition 5 Let A : D(A) ⊂ X → X and E : D(E) ⊂ X → X be closed linear operators on
the Hilbert space X satisfying D(A) ∩ D(E) �= {0}. Let α,β > 0. The pair (A, E) is said to be
the generator of an (α,β)-resolvent family if there exist a constant ω ≥ 0 and a strongly
continuous function CE

α,β : [0,∞) → B(X) such that CE
α,β(t) is exponentially bounded, {λα :

Reλ > ω} ⊂ ρE(A), and for all x ∈ X,

λα–βR
(
λαE, A

)
x =

∫ ∞

0
e–λtCE

α,β(t)x dt, Reλ > ω. (2.2)

In this case, {CE
α,β(t)}t≥0 is called the (α,β)-resolvent family generated by the pair (A, E).

Let {CE
α,1(t)}t≥0 be the (α, 1)-resolvent family generated by the pair (A, E). Then

{CE
α,1(t)}t≥0 is exponentially bounded if M := supt∈J ‖CE

α,1(t)‖ < +∞. From [4, 14], using
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the properties of Laplace transform, (2.1), and (2.2), we obtain the definition of a mild
solution of (1.1).

Definition 6 A function x ∈ C(J , X) is called a mild solution of (1.1) if for each t ∈ J , x
satisfies the integral equation

x(t) = CE
α,1(t)

[
x0 – g(x)

]
+ SE

α,1(t)
[
y0 – h(x)

]
+

∫ t

0
PE

α,1(t – s)
[
f
(
s, x(s)

)
+ Bu(s)

]
ds, t ∈ J , (2.3)

where

SE
α,1(t) =

∫ t

0
CE

α,1(s) ds, t ≥ 0, (2.4)

PE
α,1(t) =

1
Γ (α – 1)

∫ t

0
(t – s)α–2CE

α,1(s) ds, t ≥ 0. (2.5)

Lemma 1 The operator families {SE
α,1(t)}t≥0 and {PE

α,1(t)}t≥0 are bounded, that is,

∥∥SE
α,1(t)

∥∥ ≤ Mb, t ≥ 0,

∥∥PE
α,1(t)

∥∥ ≤ Mbα–1

Γ (α)
, t ≥ 0.

Proof Since M := supt∈J ‖CE
α,1(t)‖ < +∞, by (2.4) and (2.5), for any t ≥ 0, we have

∥∥SE
α,1(t)

∥∥ ≤
∫ t

0

∥∥CE
α,1(s)

∥∥ds ≤ Mb

and

∥∥PE
α,1(t)

∥∥ ≤ 1
Γ (α – 1)

∫ t

0
(t – s)α–2∥∥CE

α,1(s)
∥∥ds ≤ Mbα–1

Γ (α)
.

Thus the conclusion is proved. �

Lemma 2 The operator PE
α,1(t) is equicontinuous for t ∈ J .

Proof For 0 ≤ t1 < t2 ≤ b, by the definition of PE
α,1(t) we have

∥∥PE
α,1(t2) – PE

α,1(t1)
∥∥

≤ 1
Γ (α – 1)

∥∥∥∥
∫ t1

0

[
(t2 – s)α–2 – (t1 – s)α–2]CE

α,1(s) ds
∥∥∥∥

+
1

Γ (α – 1)

∥∥∥∥
∫ t2

t1

(t2 – s)α–2CE
α,1(s) ds

∥∥∥∥
≤ M

Γ (α – 1)

∫ t1

0

∣∣(t2 – s)α–2 – (t1 – s)α–2∣∣ds

+
M

Γ (α – 1)

∫ t2

t1

(t2 – s)α–2 ds
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=
M

Γ (α)
(
tα–1
1 – tα–1

2 + 2(t2 – t1)α–1)
→ 0

as t2 → t1. Hence PE
α,1(t) is equicontinuous for t ∈ [0, b]. �

Now we recall some definitions and lemmas on the Hausdorff measure of noncompact-
ness (H-MNC). Let D ⊂ X be a nonempty bounded subset of X. Denote by γ (D) the H-
MNC of D with respect to X, that is, γ (D) := inf{ε > 0 : D has a finite ε-net in X}.

We denote by γ (·) and γC(·) the H-MNCs of a bounded subset of X and C(J , X), respec-
tively. Let B ⊂ C(J , X) be a bounded subset, and let t ∈ J . Then B(t) := {u(t) : u ∈ B} is a
bounded subset of X, and γ (B(t)) ≤ γC(B). It is well known (see [9]) that the H-MNC γ (·)
has the following properties: For any bounded subsets D1, D2, and D of X, we have

(i) if D1 ⊂ D2, then γ (D1) ≤ γ (D2);
(ii) γ (D1 + D2) ≤ γ (D1) + γ (D2), where D1 + D2 = {x + y : x ∈ D1, y ∈ D2};

(iii) γ (D1 ∪ D2) ≤ max{γ (D1),γ (D2)};
(iv) γ (ρD) ≤ |ρ|γ (D) for ρ ∈R;
(v) γ (D) = 0 ⇔ D is relatively compact in X .

By Example 2.1.1 of [9], if a mapping F : X → X satisfies the Lipschitz condition

∥∥F(x) – F(y)
∥∥ ≤ L‖x – y‖, ∀x, y ∈ D ⊂ X,

then

γ
(
F(D)

) ≤ Lγ (D)

for all nonempty bounded subsets D of X.

Definition 7 Let 0 ≤ k < 1. An operator Q : X → X is said to be condensing if γ (Q(D)) <
kγ (D) for every subset D ⊂ X.

Furthermore, for the H-MNC, we have the following lemmas; see [8, 9, 11, 17] for more
detail.

Lemma 3 Let B ⊂ C(J , X) be a bounded and equicontinuous subset. Then γ (B(t)) is con-
tinuous on J , and γC(B) = maxt∈J γ (B(t)).

Lemma 4 Let B ⊂ C(J , X) be a bounded subset. Then there exists a countable subset B0 ⊂ B
such that γC(B) ≤ 2γC(B0).

Lemma 5 Let X be a separable Hilbert space, and let B0 := {un : n ≥ 1} ⊂ C(J , X) be count-
able. If there exists φ ∈ L1(J ,R+) such that ‖un(t)‖ ≤ φ(t) for a.e. t ∈ J , n = 1, 2, . . . , then
γ (B0(t)) is Lebesgue integrable on J , and

γ

({∫
J
un(t) ds : n ≥ 1

})
≤

∫
J
γ
(
B0(t)

)
dt.

To investigate the nonlocal controllability of system (1.1), we introduce the definition of
controllability.



Yang and Zhao Boundary Value Problems        (2020) 2020:119 Page 6 of 13

Definition 8 (Nonlocal controllability) System (1.1) is said to be nonlocally controllable
on [0, b] if for all x0, y0, x1 ∈ X, there exists a control u ∈ L2(J , U) such that the mild solution
x of system (1.1) satisfies x(b) + g(x) = x1.

At the end of this section, we present a fixed point theorem, on which the proof of our
main results are based.

Lemma 6 ([10], Lemma 2.1 (Sadovskii’s Fixed Point Theorem)) Let Q be a condensing
operator on a Banach space X. If Q(S) ⊂ S for a convex closed bounded subset S of X, then
Q has at least one fixed point in S.

3 Nonlocal controllability
In this section, we state and prove some results on the nonlocal controllability of system
(1.1). The discussion is based on the theory of resolvent operators and fixed point theo-
rems. For this purpose, we first make the following assumptions.

(HAE) The pair (A, E) generates an (α, 1)-resolvent family {CE
α,1(t)}t≥0 in X , and

M := sup
t∈J

∥∥CE
α,1(t)

∥∥ < +∞.

(HW ) The linear operator W : L2(J , U) → X defined by

Wu :=
∫ b

0
PE

α,1(b – s)Bu(s) ds

has a linear bounded inverse operator W –1 taking values in L2(J , U)\Ker(W ), and
let M1 := ‖W –1‖.

(Hf 1) f : J × X → X satisfies the Carathéodory condition, that is, for each x ∈ X , f (·, x) :
J → X is strongly measurable; for each t ∈ J , f (t, ·) : X → X is continuous.

(Hf 2) There is a function Lf ∈ L1(J ,R+) such that

∥∥f (t, x) – f (t, y)
∥∥ ≤ Lf (t)‖x – y‖, ∀t ∈ J , x, y ∈ X.

(Hg) g : C(J , X) → X , and there exists a constant Lg > 0 such that

∥∥g(x) – g(y)
∥∥ ≤ Lg‖x – y‖C , ∀x, y ∈ C(J , X).

(Hh) h : C(J , X) → X , and there exists a constant Lh > 0 such that

∥∥h(x) – h(y)
∥∥ ≤ Lh‖x – y‖C , ∀x, y ∈ C(J , X).

(HB) B : U → X is a linear bounded operator, and let MB := ‖B‖.
By assumption (HW ), for any x1 ∈ X and x ∈ C(J , X), we define the control ux ∈ L2(J , U)

as

ux(t) = W –1
{

x1 – g(x) – CE
α,1(b)

[
x0 – g(x)

]
– SE

α,1(b)
[
y0 – h(x)

]

–
∫ b

0
PE

α,1(b – s)f
(
s, x(s)

)
ds

}
(t), t ∈ J .
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If x ∈ C(J , X) is a mild solution of system (1.1) corresponding to the control ux, then by
(HW ) and (2.3) we have

x(b) = CE
α,1(b)

[
x0 – g(x)

]
+ SE

α,1(b)
[
y0 – h(x)

]
+

∫ b

0
PE

α,1(b – s)f
(
s, x(s)

)
ds +

∫ b

0
PE

α,1(b – s)Bux(s) ds

= x1 – g(x),

which implies x(b) + g(x) = x1, and system (1.1) is nonlocally controllable on J . Hence we
will now prove that system (1.1) has mild solutions by using resolvent operator theory and
fixed point theorems. Define the operator Q : C(J , X) → C(J , X) by

(Qx)(t) = CE
α,1(t)

[
x0 – g(x)

]
+ SE

α,1(t)
[
y0 – h(x)

]
+

∫ t

0
PE

α,1(t – s)
[
f
(
s, x(s)

)
+ Bux(s)

]
ds, t ∈ J . (3.1)

By Definition 6 the mild solution of system (1.1) is equivalent to the fixed point of Q. We
first apply the contraction mapping principle to prove that Q has a fixed point in C(J , X).

Lemma 7 Assume that conditions (HAE), (HW ), (Hf 2), (Hg), and (Hh) are satisfied. Then
for all x, y ∈ C(J , X) and t ∈ J , we have

∥∥ux(t) – uy(t)
∥∥ ≤ M1

[
(1 + M)Lg + MbLh +

Mbα–1

Γ (α)
‖Lf ‖L1

]
‖x – y‖C .

Proof For any x, y ∈ C(J , X) and t ∈ J , by the definition of ux and uy we have

∥∥ux(t) – uy(t)
∥∥

≤ M1

[
(1 + M)

∥∥g(x) – g(y)
∥∥ + Mb

∥∥h(x) – h(y)
∥∥

+
Mbα–1

Γ (α)

∫ b

0

∥∥f
(
s, x(s)

)
– f

(
s, y(s)

)∥∥ds
]

≤ M1

[
(1 + M)Lg‖x – y‖C + MbLh‖x – y‖C

+
Mbα–1

Γ (α)

∫ b

0
Lf (s)

∥∥x(s) – y(s)
∥∥ds

]

≤ M1

[
(1 + M)Lg + MbLh +

Mbα–1

Γ (α)
‖Lf ‖L1

]
‖x – y‖C .

This completes the proof. �

Theorem 1 Let assumptions (HAE), (HW ), (Hf 1), (Hf 2), (Hg), (Hh), and (HB) hold. Then
system (1.1) is nonlocally controllable on J , provided that

M∗ :=
{

MM1MBbα

Γ (α)
Lg + M

(
1 +

MM1MBbα

Γ (α)

)[
Lg + bLh +

bα–1

Γ (α)
‖Lf ‖L1

]}
< 1. (3.2)
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Proof For any x, y ∈ C(J , X) and t ∈ J , by (3.1) and Lemma 7 we have

∥∥(Qx)(t) – (Qy)(t)
∥∥

≤ M
∥∥g(x) – g(y)

∥∥ + Mb
∥∥h(x) – h(y)

∥∥
+

Mbα–1

Γ (α)

[∫ t

0

∥∥f
(
s, x(s)

)
– f

(
s, y(s)

)∥∥ds + MB

∫ t

0

∥∥ux(s) – uy(s)
∥∥ds

]

≤
(

MLg + MbLh +
Mbα–1

Γ (α)
‖Lf ‖L1

)
‖x – y‖C

+
MM1MBbα

Γ (α)

[
(1 + M)Lg + MbLh +

Mbα–1

Γ (α)
‖Lf ‖L1

]
‖x – y‖C

= M∗‖x – y‖C .

From (3.2) it follows that M∗ < 1. Hence by the contraction mapping principle, Q has a
unique fixed point x in C(J , X) satisfying x(b) + g(x) = x1. In other words, system (1.1) is
nonlocally controllable on J . �

Remark 1 If E = I , where I denotes the identity operator in X, and h(x) ≡ 0 for all x ∈
C(J , X), then Theorem 1 is a natural extension of Theorem 3.1 in [10], because we delete
the compactness condition (H4) in [10].

The Lipschitz condition (Hf 2) of the nonlinear term f is difficult to verify in applications.
If we apply more weaker conditions on f , we can also prove the controllability results for
system (1.1). For r > 0, set Ωr := {x ∈ C(J , X) : ‖x‖C ≤ r}.

Lemma 8 Assume that conditions (HAE), (HW ), (Hg), (Hh), and (Hf 2)′ are satisfied, where
(Hf 2)′ For each r > 0, there is a function ϕr ∈ L1(J ,R+) satisfying limr→∞

‖ϕr‖L1
r = σ < ∞

such that

sup
‖x‖≤r

∥∥f (t, x)
∥∥ ≤ ϕr(t), ∀t ∈ J .

Then for any x ∈ Ωr and t ∈ J , we have

∥∥ux(t)
∥∥ ≤ C + M1

[
(1 + M)Lgr + MbLhr +

Mbα–1

Γ (α)
‖ϕr‖L1

]
, (3.3)

where C := M1[‖x1‖ + M‖x0‖ + Mb‖y0‖ + (1 + M)‖g(0)‖ + Mb‖h(0)‖].

Proof Applying assumptions (HAE), (HW ), (Hg), (Hh), and (Hf 2)′, by direct calculation we
can easily prove that ux satisfies inequality (3.3). So we omit the details. �

Remark 2 If f satisfies the linear growth conditions, for example, f (t, x) ≤ a1(t)x + a2(t),
t ∈ J , x ∈ X, where a1, a2 ∈ L1(J ,R), then condition (Hf 2)′ holds when we choose ϕr(t) =
‖a1(t)‖r + ‖a2(t)‖.

Lemma 9 Assume that the conditions (HAE), (HW ), (Hf 1), (Hf 2)′, (Hg), (Hh) and (HB) are
satisfied. Then the operator Q, defined as in (3.1), maps Ωr into itself for some r > 0 provided
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that

MM1MBbα

Γ (α)
Lg + M

(
1 +

MM1MBbα

Γ (α)

)(
Lg + bLh +

bα–1

Γ (α)
σ

)
< 1. (3.4)

Moreover, Q : Ωr → Ωr is continuous.

Proof It is obvious that the operator Q : C(J , X) → C(J , X) is continuous under these as-
sumptions. Hence we just prove Q(Ωr) ⊂ Ωr for some r > 0. If this were not true, then for
any r > 0, there would be x ∈ Ωr such that r < ‖(Qx)(t)‖ for all t ∈ J . By Lemma 7 and (3.1)
we have

r <
∥∥(Qx)(t)

∥∥
≤ M

(‖x0‖ +
∥∥g(x)

∥∥)
+ Mb

(‖y0‖ +
∥∥h(x)

∥∥)
+

Mbα–1

Γ (α)

∫ t

0

∥∥f
(
s, x(s)

)∥∥ds + MB
Mbα–1

Γ (α)

∫ t

0

∥∥ux(s)
∥∥ds

≤ M
(‖x0‖ + Lgr +

∥∥g(0)
∥∥)

+ Mb
(‖y0‖ + Lhr +

∥∥h(0)
∥∥)

+
Mbα–1

Γ (α)
‖ϕr‖L1 + MB

Mbα–1

Γ (α)

∫ t

0

∥∥ux(s)
∥∥ds

≤ M
(‖x0‖ +

∥∥g(0)
∥∥)

+ Mb
(‖y0‖ +

∥∥h(0)
∥∥)

+
MMBbα

Γ (α)
C

+ MLgr + MbLhr

+
Mbα–1

Γ (α)
‖ϕr‖L1

MM1MBbα

Γ (α)

[
(1 + M)Lgr + MbLhr +

Mbα–1

Γ (α)
‖ϕr‖L1

]
.

Dividing both sides by r and taking the lower limit as r → ∞, we obtain

1 ≤ MM1MBbα

Γ (α)
Lg +

(
1 +

MM1MBbα

Γ (α)

)(
MLg + MbLh +

Mbα–1

Γ (α)
σ

)
,

which is a contradiction to (3.4). Thus there is r > 0 such that Q(Ωr) ⊂ Ωr . �

Theorem 2 Let assumptions (HAE), (HW ), (Hf 1), (Hf 2)′, (Hg), (Hh), (HB), and (Hf 3) hold,
where

(Hf 3) For t ∈ [0, b], the set Vε := {PE
α,1(t – s)[f (s, x(s)) + Bu(s)] : x ∈ Ωr , s ∈ [0, t – ε],

ε ∈ (0, t)} is compact.
Then system (1.1) is nonlocally controllable on J when (3.4) is satisfied.

Proof We define two operators Q1, Q2 : C(J , X) → C(J , X) by

(Q1x)(t) = CE
α,1(t)

[
x0 – g(x)

]
+ SE

α,1(t)
[
y0 – h(x)

]
, t ∈ J , (3.5)

and

(Q2x)(t) =
∫ t

0
PE

α,1(t – s)
[
f
(
s, x(s)

)
+ Bu(s)

]
ds, t ∈ J . (3.6)
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Then by (3.1) we know that Q = Q1 + Q2. By (HAE), (Hg), and (Hh) it is clear that

∥∥(Q1x)(t) – (Q1y)(t)
∥∥ ≤ M(Lg + bLh)‖x – y‖C , ∀x, y ∈ C(J , X). (3.7)

Next, we prove that the set V := {Q2x : x ∈ Ωr} is relatively compact in C(J , X). To apply
the Ascoli–Arzelà theorem, we prove that V := {Q2x : x ∈ Ωr} is equicontinuous in C(J , X)
and V (t) := {(Q2x)(t) : x ∈ Ωr} is relatively compact in X. For any 0 ≤ t1 < t2 ≤ b and x ∈ Ωr ,
by Lemmas 2 and 8 we have

∥∥(Q2x)(t2) – (Q2x)(t1)
∥∥ ≤

∥∥∥∥
∫ t1

0

[
PE

α,1(t2 – s) – PE
α,1(t1 – s)

][
f
(
s, x(s)

)
+ Bu(s)

]
ds

∥∥∥∥
+

∥∥∥∥
∫ t2

t1

PE
α,1(t2 – s)

[
f
(
s, x(s)

)
+ Bu(s)

]
ds

∥∥∥∥
≤

∫ t1

0

∥∥f
(
s, x(s)

)
+ Bu(s)

∥∥ds sup
s∈[0,t1]

∥∥PE
α,1(t2 – s) – PE

α,1(t1 – s)
∥∥

+
Mbα–1

Γ (α)

∫ t2

t1

∥∥f
(
s, x(s)

)
+ Bu(s)

∥∥ds

→ 0

as t2 – t1 → 0, which implies that the set V is equicontinuous in C(J , X).
Let

(
Qε

2x
)
(t) =

∫ t–ε

0
PE

α,1(t – s)
[
f
(
s, x(s)

)
+ Bu(s)

]
ds, t ∈ J .

By the assumption (Hf 3), conv(Vε) is also a compact set, where conv(Vε) means the convex
closure of Vε . By the mean value theorem for Bochner integrals, we deduce that (Qε

2x)(t) ∈
(t – ε)conv(Vε) for t ∈ J . So the set V ε

2 (t) := {(Qε
2x)(t) : x ∈ Ωr} is relatively compact in X.

Moreover, for any x ∈ Ωr , we have

∥∥(Q2x)(t) –
(
Qε

2x
)
(t)

∥∥ ≤ Mbα–1

Γ (α)

∫ t

t–ε

∥∥f
(
s, x(s)

)
+ Bu(s)

∥∥ds

≤ Mbα–1

Γ (α)

∫ t

t–ε

ϕr(s) ds +
MMBbα–1M∗∗

Γ (α)
ε

→ 0

as ε → 0+, where M∗∗ := C + M1[(1 + M)Lgr + MbLhr + Mbα–1

Γ (α) ‖ϕr‖L1 ]. Thus the set V (t) :=
{(Q2x)(t) : x ∈ Ωr} is relatively compact in X. By the Ascoli–Arzelà theorem the set V is
relatively compact. Hence γC(V ) = γC(Q2(Ωr)) = 0.

At last, by the properties of H-MNC and because of M(Lg + bLh) < 1, we obtain that

γC
(
Q(Ωr)

) ≤ γC
(
Q1(Ωr)

)
+ γC

(
Q2(Ωr)

)
≤ M(Lg + bLh)γC(Ωr)

< γC(Ωr),
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which implies that Q : Ωr → Ω is a condensing mapping. By Sadovskii’s fixed point the-
orem (see Lemma 6) Q has at least one fixed point x in Ωr , which is the mild solution of
system (1.1) satisfying x(b) + g(x) = x1. Therefore system (1.1) is nonlocally controllable. �

H-MNC condition is another important tool guaranteeing the compactness of the solu-
tion operator. In what follows, we assume that f satisfies the following H-MNC condition:

(Hf 4) There exists a constant L1 > 0 such that

γ
(
f (t, D0)

) ≤ L1γ (D0), t ∈ J ,

for every countable subset D0 ⊂ X .

Lemma 10 Let X be a separable Hilbert space. Assume that conditions (HAE), (HW ), (Hf 2)′,
(Hf 4), (Hg), and (Hh) hold. Then

γ
({

ux(s) : x ∈ D0
}) ≤ M1

[
(1 + M)Lg + MbLh +

2MbαL1

Γ (α)

]
γC(D0), s ∈ J ,

where D0 ⊂ Ωr is a countable subset of Ωr .

Proof By Lemma 5 we obtain that

γ
({

ux(s) : x ∈ D0
}) ≤ M1

(
(1 + M)Lgγ (D0) + MbLhγ (D0)

)
+

MM1bα–1

Γ (α)

∫ b

0
L1γ

(
D0(s)

)
ds

≤ M1

[
(1 + M)Lg + MbLh +

MbαL1

Γ (α)

]
γC(D0).

The proof is completed. �

Theorem 3 Let X be a separable Hilbert space. Assume that assumptions (HAE), (HW ),
(Hf 1), (Hf 2)′, (Hf 4), (Hg), (Hh), and (HB) are satisfied. If the inequality conditions (3.4) and

2MMBbαM1

Γ (α)
Lg +

(
1 +

2MMBbαM1

Γ (α)

)
(MLg + MbLh) +

2MbαL1

Γ (α)

(
1 +

MMBbαM1

Γ (α)

)
< 1

hold, then system (1.1) is nonlocally controllable on J .

Proof Define two operators Q1 and Q2 as in (3.5) and (3.6), respectively. By the properties
of H-MNC and (3.7) we easily obtain that

γC
(
Q1(Ωr)

) ≤ M(Lg + bLh)γC(Ωr). (3.8)

On the other hand, since Q2(Ωr) ⊂ Ωr and the set Q2(Ωr) is equicontinuous in C(J , X),
by Lemmas 3 and 4 there is a countable set D0 ⊂ Ωr such that

γC
(
Q2(Ωr)

) ≤ 2γC
(
Q2(D0)

)
= 2 max

t∈J
γ
(
Q2(D0)(t)

)
. (3.9)
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Applying assumption (Hf 4) and Lemma 10, we have

γ
(
Q2(D0)(t)

)
= γ

({∫ t

0
PE

α,1(t – s)
[
f
(
s, x(s)

)
+ Bux(s)

]
ds : x ∈ D0

})

≤ Mbα–1L1

Γ (α)

∫ t

0
γ
(
D0(s)

)
ds +

MMBbα–1

Γ (α)

∫ t

0
γ
({

ux(s) : x ∈ D0
})

ds

≤ MbαL1

Γ (α)
γC(D0) +

MMBbαM1

Γ (α)

[
(1 + M)Lg + MbLh +

MbαL1

Γ (α)

]
γC(D0).

This, together with (3.9), gives

γC
(
Q2(Ωr)

) ≤ 2MbαL1

Γ (α)
γC(D0)

+
2MMBbαM1

Γ (α)

[
(1 + M)Lg + MbLh +

MbαL1

Γ (α)

]
γC(D0). (3.10)

Combining (3.8) and (3.10), because of γC(D0) ≤ γC(Ωr), we obtain that

γC
(
Q(Ωr)

)
= γC

(
Q1(Ωr)

)
+ γC

(
Q2(Ωr)

)
≤

[
2MMBbαM1

Γ (α)
Lg +

(
1 +

2MMBbαM1

Γ (α)

)
(MLg + MbLh)

+
2MbαL1

Γ (α)

(
1 +

MMBbαM1

Γ (α)

)]
γC(Ωr)

< γC(Ωr).

Thus we conclude that Q : Ωr → Ωr is a condensing mapping. By Sadovskii’s fixed point
theorem, Q has at least one fixed point x in Ωr , which is the mild solution of system (1.1)
satisfying x(b) + g(x) = x1. Therefore system (1.1) is nonlocally controllable. �

4 Conclusion
In this paper, we investigated the nonlocal controllability of α ∈ (1, 2)-ordered fractional
evolution systems of Sobolev type of the form (1.1) in a Hilbert space X. We first define the
(α, 1)-resolvent family {CE

α,1(t)}t≥0 generated by the pair (A, E). Without assuming the com-
pactness of {CE

α,1(t)}t≥0, we prove some nonlocal controllability results for the fractional
evolution system (1.1) by using Banach’s contraction mapping principle and Sadovskii’s
fixed point theorem. The discussion is based on fractional resolvent operator theory. Our
results improve and extend some existing results.
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