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Abstract
In this paper, we study the following Choquard type quasilinear Schrödinger
equation:

–�u + u –�(u2)u = (Iα ∗ G(u))g(u), x ∈ R
N ,

where N ≥ 3, 0 < α < N, and Iα is a Riesz potential. By using the minimization method
developed by (Tang and Chen in Adv. Nonlinear Anal. 9:413–437, 2020; Willem in
Minimax Theorems, 1996), we establish the existence of ground state solutions with
general Choquard type nonlinearity. Our results extend the results obtained by (Chen
et al. in Appl. Math. Lett. 102:106141, 2020).
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1 Introduction
This article is concerned with the following quasilinear Schrödinger equation:

–�u + u – �
(
u2)u =

(
Iα ∗ G(u)

)
g(u), x ∈R

N , (1.1)

where N ≥ 3, 0 < α < N , Iα is a Riesz potential (see [16]), and g : RN →R satisfies
(g1) g ∈ C(R,R);
(g2) there exists C > 0 such that

∣∣G(t)
∣∣ ≤ C

(|t| N+α
N + |t| 2(N+α)

N–2
)
;

(g3) limt→0
G(t)

|t| N+α
N

= 0 and lim|t|→+∞ G(t)

|t|
2(N+α)

N–2
= 0;

(g4) there exists s0 ∈R such that G(s0) > 1
2 s2

0.
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It is well known that the existence of solitary wave solutions for the following quasilinear
Schrödinger equation is a hot problem

i∂tz = –�z + W (x)z – ψ
(|z|2)z – �l

(|z|2)l′
(|z|2)z, (1.2)

where z : R×R
N → C, W : RN →R is a given potential, l : R →R and ψ : RN ×R →R are

suitable functions. For various types of l and ψ , the quasilinear equation of the form (1.1)
has been derived from models of several physical phenomena. For physical background,
the readers can refer to [1, 9, 11, 15] and the references therein. If we set the variable
z(t, x) = exp(–iLt)u(x), where L ∈ R and u is a real function, then so many papers focused
on standing wave solutions for (1.2). The readers can refer to [5, 8, 12, 13, 20] and the
references therein. As for Choquard type quasilinear Schrödinger equation, there are few
papers except for [3, 4, 21]. In [21], a class of quasilinear Choquard equations has been
considered via the perturbation method developed by [13], and they showed the existence
of positive solution, negative solution, and multiple solutions. Furthermore, the authors
[4] established the existence of positive solutions with the periodic potential or bounded
potential. In [3], the authors proved the existence of ground state solutions via Jeanjean’s
monotonic technique [10].

For the following Choquard equation with a local nonlinear perturbation

⎧
⎨

⎩
–�u + V (x)u = (Iα ∗ F(u))f (u) + g(u), x ∈R

N ;

u ∈ H1(RN ),

under some suitable conditions on V , the authors proved the existence of ground state
solutions without super-linear conditions near infinity or monotonicity properties on f
and g in [6].

To our knowledge, there are no articles to prove the existence of ground state solutions
for (1.1) with general Choquard type nonlinearity. In this paper, motivated by [3, 4, 6, 21],
we consider the existence of ground state solutions with the Berstycki–Lions conditions,
which originated from [2]. To prove our results, we use the minimization method devel-
oped by Tang [18] to prove the existence of ground state solutions.

Next, the energy functional associated with (1.1) is given by

J(u) =
1
2

∫

RN

(
1 + 2u2)|∇u|2 +

1
2

∫

RN
u2 –

1
2

∫

RN

(
Iα ∗ G(u)

)
G(u).

To our aim, if we choose the variable u = f (v) in [7, 12], then (1.1) reduces to

–�v + f (v)f ′(v) =
(
Iα ∗ G

(
f (v)

))
g
(
f (v)

)
f ′(v), x ∈R

N , (1.3)

where f : [0, +∞) →R is given by f ′(t) = 1√
1+2f 2(t)

on [0, +∞), f (0) = 0, and f (–t) = f (t) on

(–∞, 0]. Based on the above facts, if v is a weak solution of (1.3), then u = f (v) is a weak
solution of (1.1). The energy functional J reduces to the following functional:

Φ(v) =
1
2

∫

RN

(|∇v|2 + f 2(v)
)

–
1
2

∫

RN

(
Iα ∗ G

(
f (v)

))
G

(
f (v)

)
. (1.4)
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Before stating our results, we need to define the set Q = {v ∈ H1(RN )\{0} : P(v) = 0},
where P is given in Lemma 2.2. Now, we give our result in the following.

Theorem 1.1 Assume that (g1)–(g4) are satisfied. Then problem (1.1) has a ground state
solution u = f (v) such that Φ(v) = infQ Φ = infv∈Θ maxt>0 Φ(vt) > 0, where vt = v(x/t) and

Θ :=
{

v ∈ H1(
R

N)
:
∫

RN

[
1
2

f 2(v) –
N + α

2
(
Iα ∗ G

(
f (v)

))
G

(
f (v)

)]
< 0

}
.

Notions
• Let H1(RN ) = {u ∈ L2(RN ) : ∇u ∈ L2(RN )} with the norm ‖u‖ = (

∫
RN (|∇u|2 + u2)) 1

2 .
• The embedding H1(RN ) ↪→ Ls(RN ) is continuous for s ∈ [2, 2∗] and

H1
r (RN ) ↪→ Ls(RN ) is compact for s ∈ (2, 2∗).

• H1(RN ) ↪→ L
2Nq
N+α (RN ) if and only if N+α

N ≤ q ≤ N–2
N+α

(see [16]).
• Lp(RN ) denotes the usual Lebesgue space with norms ‖u‖p = (

∫
RN |u|p)

1
p , where

1 ≤ p < ∞.
• ∫

RN ♣ denotes
∫
RN ♣dx and C possibly denotes the different constants.

2 Proof of Theorem 1.1
In this section, we give the proof of Theorem 1.1. Next, let us recall some properties of the
variables f : R →R. These properties have been proved in [7, 12].

Lemma 2.1 ([7, 12]) The function f (t) and its derivative satisfy the following properties:
(1) f (t)/t → 1 as t → 0;
(2) f (t) ≤ |t| for any t ∈R;
(3) f (t) ≤ 2 1

4
√|t| for all t ∈R;

(4) f 2(t)/2 ≤ tf (t)f ′(t) ≤ f 2(t) for all t ∈R;
(5) there exists a constant C > 0 such that

∣∣f (t)
∣∣ ≥

⎧
⎨

⎩
C|t|, if |t| ≤ 1,

C|t| 1
2 , if |t| ≥ 1;

(6) |f (t)f ′(t)| ≤ 1√
2 for all t ∈ R.

By the standard argument in [16, 19], we have the following Pohozaev type identity.

Lemma 2.2 If v ∈ H1(RN ) is a critical point of (1.3), then v satisfies

P(v) :=
N – 2

2

∫

RN
|∇v|2 +

N
2

∫

RN
f 2(v) –

N + α

2

∫

RN

(
Iα ∗ G

(
f (v)

))
G

(
f (v)

)
= 0. (2.1)

Motivated by [18], by a simple calculation, for any t ∈ [0, 1) ∪ (1, +∞), one has

β(t) := α + 2 – (N + α)tN–2 + (N – 2)tN+α > 0 and

α – (N + α)tN – N
(
1 – tN+α

)
> 0.

(2.2)
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Lemma 2.3 Assume that (g1)–(g4) hold. Then, for all v ∈ H1(RN ) and t > 0,

Φ(v) ≥ Φ(vt) +
1 – tN+α

N + α
Q(v) +

β(t)
2(N + α)

‖∇v‖2
2.

Proof From (1.4), we have

Φ(vt) =
tN–2

2

∫

RN
|∇v|2 +

tN

2

∫

RN
f 2(v) –

tN+α

2

∫

RN

(
Iα ∗ G

(
f (v)

))
G

(
f (v)

)
.

Thus, by (2.2), we have

Φ(v) – Φ(vt)

=
1 – tN–2

2

∫

RN
|∇v|2 +

1 – tN

2

∫

RN
f 2(v) –

1 – tN+α

2

∫

RN

(
Iα ∗ G

(
f (v)

))
G

(
f (v)

)

=
1 – tN+α

N + α
Q(v) +

α + 2 – (N + α)tN–2 + (N – 2)tN+α

2(N + α)
‖∇v‖2

2

+
α – (N + α)tN – N(1 – tN+α)

N + α

∥∥f (v)
∥∥2

2

≥ 1 – tN+α

N + α
Q(v) +

β(t)
2(N + α)

‖∇v‖2
2.

The proof is completed. �

Corollary 2.4 Assume that (g1)–(g4) hold. Then, for any v ∈Q, Φ(v) = maxt>0 Φ(vt).

Lemma 2.5 Assume that (g1)–(g4) hold. Then, for any Θ �= ∅ and the set

{
v ∈ H1(

R
N)\{0} : P(v) ≤ 0

} ⊂ Θ .

Proof By using (g4) and the method in [17] and [18], it follows that Θ �= ∅. Next, for any
v ∈ H1(RN )\{0}, it follows from P(v) ≤ 0 that

N
2

∫

RN
f 2(v) –

N + α

2

∫

RN

(
Iα ∗ G

(
f (v)

))
G

(
f (v)

) ≤ –
N – 2

2

∫

RN
|∇v|2 < 0,

which shows that v ∈ Θ . The proof is completed. �

Lemma 2.6 Assume that (g1)–(g4) hold. Then, for any v ∈ Θ , there exists unique tv > 0
such that vtv ∈Q.

Proof Let v ∈ Θ be fixed. Set Γ (t) := Φ(vt). Then it follows from Γ ′(t) = 0 that

N – 2
2

tN–3
∫

RN
|∇v|2 +

NtN–1

2

∫

RN
f 2(v) –

(N + α)tN+α–1

2

∫

RN
(Iα ∗ G

(
f (v)

)
G

(
f (v)

)
= 0.

Then

N – 2
2

tN–2
∫

RN
|∇v|2 +

NtN

2

∫

RN
f 2(v) –

(N + α)tN+α

2

∫

RN
(Iα ∗ G

(
f (v)

)
G

(
f (v)

)
= 0,
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which implies that P(vt) = 0 ⇔ vt ∈ Q. It is easy to check that limt→0 Γ (t) = 0, Γ (t) > 0
for t > 0 enough small and Γ (t) < 0 for t large. Thus maxt>0 Γ (t) is achieved at some tv > 0
such that Γ ′(tv) = 0 and vtv ∈Q.

Next, we will prove the uniqueness. For any given v ∈ Θ , if there exist t1, t2 > 0 such that
vt1 , vt2 ∈Q. Thus P(vt1 ) = P(vt2 ) = 0. Therefore, we have

Φ(vt1 ) ≥ Φ(vt2 ) +
tN
1 – tN

2

(N + α)tN
1
P(vt1 ) +

β(t2/t1)
2(N + α)

‖∇vt1‖2
2 = Φ(vt2 ) +

β(t2/t1)
2(N + α)

‖∇vt1‖2
2

and

Φ(vt2 ) ≥ Φ(vt1 ) +
tN
2 – tN

1

(N + α)tN
2
P(vt2 ) +

β(t1/t2)
2(N + α)

‖∇vt2‖2
2 = Φ(vt1 ) +

β(t1/t2)
2(N + α)

‖∇vt2‖2
2,

which shows that t1 = t2. Thus tv > 0 is unique for v ∈Q. This completes the proof. �

Lemma 2.7 Assume that (g1)–(g3) hold, then Q �= ∅ and

inf
M

Φ := c = inf
v∈Θ

max
t>0

Φ(vt).

Proof This result is a consequence of Corollary 2.4, Lemma 2.5, and Lemma 2.6. The proof
is completed. �

By a standard argument in [19], we can get the following Brezis–Lieb lemma.

Lemma 2.8 Assume that (g1)–(g4) hold. If vn ⇀ v0 in H1(RN ), then

Φ(vn) = Φ(v0) + Φ(vn – v0) + on(1)

and

P(vn) = P(v0) + P(vn – v0) + on(1).

Lemma 2.9 Assume that (g1)–(g4) hold. Then
(i) there exists ρ > 0 such that ‖∇v‖2 ≥ ρ for any v ∈Q;

(ii) c = infQ Φ > 0.

Proof (i) By (g3), for any ε > 0, there exists C1
ε > 0 such that

∣
∣G

(
f (v)

)∣∣
2N

N+α ≤ ε|v|2 + C1
ε |s|2

∗
and

∣
∣G

(
f (v)

)∣∣
2N

N+α ≤ ε|v|2 + ε|s|2∗
+ C1

ε |s|p, (2.3)

where p ∈ (2, 2∗). For any v ∈Q, we have thatP(v) = 0. By the Sobolev embedding theorem,
the Hardy–Littlewood–Sobolev inequality in [15], (2.3), and (g1), we get

(N – 2)
2

∫

RN
|∇v|2 +

N
2

∫

RN
f 2(v)

=
N + α

2

∫

RN

(
Iα ∗ G

(
f (v)

))
G

(
f (v)

)
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≤ C
(

ε

∫

RN

∣∣f (v)
∣∣2 + C1

ε

∫

RN
|v|2∗

)
≤ C

(
ε

∫

RN

∣∣f (v)
∣∣2 + C1

ε

(∫

RN
|∇v|2

)2∗/2)
,

which shows that there exists ρ > 0 such that ‖∇v‖2 ≥ ρ for any v ∈Q.
(ii) For any v ∈Q, from Lemma 2.2, we have

Φ(v) = Φ(v) –
1

N + α
P(v) ≥ α + 2

2(N + α)
‖∇v‖2

2. (2.4)

This completes the proof. �

Lemma 2.10 Assume that (g1)–(g3) hold. Then c is achieved.

Proof Let {vn} ⊂ Q be a minimizer for c, that is, P(vn) = 0 and Φ(vn) → c as n → ∞. By
(2.4), one has

c + on(1) = Φ(vn) –
1

N + α
P(vn) =

α + 2
2(N + α)

‖∇vn‖2
2 +

N
2(N + α)

∫

RN
f 2(vn),

which shows that
∫
RN |∇vn|2 +

∫
RN f 2(vn) is bounded and thus {vn} is bounded in D1,2(RN ).

By the Sobolev inequality, Lemma 2.1-(5), it follows that

∫

|vn|≤1
v2

n ≤
∫

RN
f 2(vn) and

∫

|vn|>1
v2

n ≤
∫

|vn|>1
v2∗

n ≤ C
(∫

RN
|∇vn|2

)2∗/2

.

Therefore

∫

RN
v2

n =
∫

|vn|≤1
v2

n +
∫

|vn|>1
v2

n ≤
∫

RN
f 2(vn) + C

(∫

RN
|∇vn|2

)2∗/2

. (2.5)

From (2.5), we infer that there exists C > 0 such that
∫
RN v2

n ≤ C. Up to a subsequence,
there exists v0 ∈ H1(RN ) such that vn ⇀ v0 in H1(RN ), vn → v0 in Lr

loc(RN ) for r ∈ [2, 2∗)
and vn → v0 a.e. on R

N .
Now, we claim that there exist δ > 0 and {yn} ⊂R

N such that
∫

B1(yn) |vn|2 > δ. Assume by
contradiction, by Lion’s concentration compactness lemma in [19], that vn → 0 in Lr(RN )
for 2 < r < 2∗. Moreover, by P(vn) = 0, we know that

0 ←
∫

RN
(Iα ∗ G(f (vn)))G(f (vn))

=
N – 2
N + α

∫

RN
|∇vn|2 +

N
N + α

∫

RN
f 2(vn) ≥ N – 2

N + α
ρ2 > 0,

as n → +∞. This is a contradiction. Thus there exist δ > 0 and {yn} ⊂ R
N such that

∫
B1(yn) |vn|2 > δ. Set v̄n(x) = vn(x + yn). Then ‖v̄n‖ = ‖vn‖. Thus, up to a subsequence, there

exists v̄0 ∈ H1(RN )\{0} such that v̄n ⇀ v̄0 in H1(RN ), v̄n → v̄0 in Lr
loc(RN ) for r ∈ [2, 2∗),

and v̄n → v̄0 a.e. on R
N . By translation invariance, one has

Φ(v̄n) → c, P(v̄n) → 0, as n → +∞ (2.6)
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and
∫

B1(0) |v̄n|2 > δ. Set w̄n := v̄n – v̄0. Thus Lemma 2.7 yields that

c = Φ(v̄0) + Φ(w̄n) + on(1) and 0 = P(v̄0) + P(w̄n) + on(1). (2.7)

If there exists a subsequence {w̄ni} of {w̄n} such that w̄ni = 0, then up to a subsequence, we
have

Φ(v̄0) = c, P(v̄0) = 0. (2.8)

Next, we assume that w̄n �= 0. We claim that P(v̄0) ≤ 0. Otherwise, if P(v̄0) > 0, it follows
from (2.7) that P(w̄n) < 0 for n large. By virtue of Lemma 2.6, there exists tn > 0 such that
(w̄n)tn ∈Q. By (2.7) and Lemma 2.2, we get

c –
N – 2
N + α

∫

RN
|∇ v̄0|2 –

N
N + α

∫

RN
f 2(v̄0) + on(1)

= Φ(w̄n) –
1

N + α
P(w̄n) ≥ Φ

(
(w̄n)tn

)
–

tN+α
n

N + α
P(w̄n) ≥ c –

tN+α
n

N + α
P(w̄n) ≥ c,

which is a contradiction due to
∫
RN |∇ v̄0|2 > 0. Thus P(v̄0) ≤ 0. Since v̄0 �= 0, in view of

Lemma 2.6, there exists t0 > 0 such that (v̄0)t0 ∈ Q. By Lemma 2.3 and the weak semi-
continuity of norm, we have

c = lim
n→∞

[
Φ(v̄n) –

1
N + α

P(v̄n)
]

=
N – 2
N + α

lim
n→∞

∫

RN
|∇ v̄n|2 +

N
N + α

lim
n→∞

∫

RN
f 2(v̄n)

≥ N – 2
N + α

∫

RN
|∇ v̄0|2 +

N
N + α

∫

RN
f 2(v̄0)

≥ Φ(v̄0) –
tN+α
0

N + α
P(v̄0)

≥ Φ
(
(v̄0)t0

)
–

tN+α
0

N + α
P(v̄0)

≥ c –
tN+α
0

N + α
P(v̄0) ≥ c,

which implies that (2.8) holds. The proof is completed. �

By a standard argument in [14, 18, 19], we can get the following lemma.

Lemma 2.11 Assume that (g1)–(g4) hold. If ṽ ∈ Q and Φ(ṽ) = c, then ṽ is a critical point
of Φ .

Proof of Theorem 1.1 By Lemma 2.7, Lemma 2.10, and Lemma 2.11, there exists v0 ∈ Q
such that

Φ(v0) = c = inf
v∈Θ

max
t>0

Φ(vt), Φ ′(v0) = 0.

This completes the proof. �
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