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Abstract
We consider the non-self-adjoint Sturm–Liouville operator on a finite interval. The
inverse spectral problem is studied, which consists in recovering this operator from its
eigenvalues and generalized weight numbers. We prove local solvability and stability
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1 Introduction
The paper concerns the theory of inverse spectral problems for differential operators. Such
problems consist in constructing operators by their spectral information.

We consider the Sturm–Liouville boundary value problem (BVP) L = L(q(x), h, H) en-
dowed with Robin boundary conditions (see, e.g., [1]) in the following form:

–y′′ + q(x)y = λy, x ∈ (0,π ), (1.1)

y′(0) – hy(0) = 0, y′(π ) + Hy(π ) = 0. (1.2)

Here, λ is the spectral parameter, q is the complex-valued function from L2(0,π ), called the
potential, h and H are complex numbers. Denote by {λn}∞n=0 the eigenvalues of L counted
with their multiplicities and numbered so that |λn| ≤ |λn+1|, n ≥ 0. The eigenvalue prob-
lem (1.1)–(1.2) appears after separation of variables in problems of mathematical physics,
describing wave propagation, heating, and other processes. More information about ap-
plications and generalizations of the Sturm–Liouville boundary value problems can be
found, e.g., in the recent papers [2–4].

The most complete results on inverse problems of spectral analysis have been obtained
for self-adjoint Sturm–Liouville operators. Those results include uniqueness theorems,
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algorithms for constructive solution, spectral data characterization, local solvability and
stability (see studies [5–11] and the references therein).

Let us formulate one of the classical inverse problems for L in the self-adjoint case (i.e.,
when q(x) for x ∈ (0,π ), h and H are real). In this case, all the eigenvalues {λn}∞n=0 are real
and simple. Let ϕ(x,λ) be the solution of equation (1.1), satisfying the initial conditions
ϕ(0,λ) = 1, ϕ′(0,λ) = h. Define the weight numbers

αn :=
∫ π

0
ϕ2(x,λn) dx, n ≥ 0. (1.3)

Inverse problem 1.1 Given the data {λn,αn}∞n=0, construct q(x), h, and H .

Inverse problem 1.1 is equivalent to the inverse problem by the spectral function, studied
by Marchenko [5].

In the non-self-adjoint case, some of the eigenvalues {λn}∞n=0 can be multiple, so the prob-
lem becomes more difficult to investigate. There are significantly less studies on inverse
problems for the non-self-adjoint operator (1.1)–(1.2). In particular, in [8] the classical re-
sults for the self-adjoint Sturm–Liouville operator are generalized to the non-self-adjoint
case with simple eigenvalues. Tkachenko [12] developed the method for solving another
inverse problem, which consists in recovering the non-self-adjoint Sturm–Liouville oper-
ator from two spectra corresponding to different boundary conditions.

Note that the spectral data {λn,αn}∞n=0 defined above do not uniquely specify q, h, and H
in the general case. Nevertheless, in [13] the so-called generalized spectral data (GSD) has
been introduced in the following way. Without loss of generality, we assume that multiple
eigenvalues are consecutive: λn = λn+1 = · · · = λn+mn–1, where mn is the multiplicity of the
eigenvalue λn. By virtue of the well-known asymptotics

√
λn = n + O

(
n–1), n → ∞, (1.4)

we have mn = 1 for sufficiently large n. Define

S := {0} ∪ {n ∈ N : λn 	= λn–1},

ϕn+ν(x) :=
1
ν!

dν

dλν
ϕ(x,λ)|λ=λn , n ∈ S,ν = 0, mn – 1.

The sequence {ϕn}∞n=0 is a complete system of root-functions for the problem L. The
generalized weight numbers are defined as follows:

αn+ν =
∫ π

0
ϕn+ν(x)ϕn+mn–1(x) dx, n ∈ S,ν = 0, mn – 1. (1.5)

Clearly, definition (1.5) generalizes (1.3).
Thus, Inverse problem 1.1 turns into the inverse problem by GSD {λn,αn}∞n=0. Buterin

[13] has proved the uniqueness theorem for this inverse problem and obtained a con-
structive algorithm for its solution based on the method of spectral mappings [8, 14]. The
question of GSD characterization for Sturm–Liouville operators with complex-valued po-
tentials was investigated in [15, 16]. However, necessary and sufficient conditions on GSD
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from [15, 16] require solvability of some main equations. Those requirements are difficult
to verify.

The aim of this paper is to investigate local solvability and stability of Inverse problem 1.1
in the non-self-adjoint case. Note that, under a small perturbation of the spectrum, mul-
tiple eigenvalues can split into smaller groups, so the generalized weight numbers change
their form. As far as we know, this effect has not been studied before.

Some fragmentary results on stability under splitting of multiple eigenvalues were ob-
tained in [17–19] for various inverse problems. Recently Buterin and Kuznetsova [20]
proved local solvability and stability for the inverse problem by two spectra for the non-
self-adjoint Sturm–Liouville operator. They also took splitting of multiple eigenvalues into
account. However, Inverse problem 1.1 appears to be more interesting for investigation
because of generalized weight numbers changing their structure.

In [15], some results on local solvability and stability were obtained for the inverse prob-
lem of recovering the non-self-adjoint Sturm–Liouville operator with the Dirichlet bound-
ary conditions from GSD. However, the authors of [15] considered only such perturbations
of GSD that preserve eigenvalue multiplicities. In the present paper, arbitrary perturba-
tions that can change eigenvalue multiplicities are studied. We obtain special conditions
on a GSD perturbation, which allow GSD to change their structure, but the perturbation
of the potential remains small in L2-norm. In our sequel studies [21, 22], the results of
this paper are applied to investigate the non-self-adjoint Sturm–Liouville problem with
arbitrary entire functions in the boundary condition.

The paper is organized as follows. In Sect. 2, our main Theorems 2.2 and 2.3 on lo-
cal solvability and stability are formulated. Their proofs are constructive and develop the
ideas of the method of spectral mappings [8, 13, 14]. This method consists in reduction of
a nonlinear inverse problem to a linear equation in a Banach space, called the main equa-
tion. The main equation and the corresponding Banach space are specially constructed for
every certain inverse problem. For our problem, the most important feature of the main
equation is that it contains “continuous” and “discrete” components. Derivation of the
main equation and the proof of its unique solvability are provided in Sect. 3. In Sect. 4, we
finish the proofs of Theorems 2.2 and 2.3, and consider an example. In Sect. 5, analogous
results are formulated for equation (1.1) with the Dirichlet boundary conditions.

2 Main results
We start with some preliminaries. Let Φ(x,λ) be the solution of Eq. (1.1) satisfying the
boundary conditions Φ ′(0,λ)–hΦ(0,λ) = 1, Φ ′(π ,λ)+HΦ(π ,λ) = 0. The function M(λ) :=
Φ(0,λ) is called the Weyl function of the problem L. Weyl functions are natural spectral
characteristics for various self-adjoint and non-self-adjoint operators (see [5, 8]). It is easy
to show that Φ(x,λ) for each fixed x ∈ [0,π ] and M(λ) are meromorphic functions in the
λ-plane having the poles at λ = λn, n ≥ 0. In [13], the following representation has been
obtained:

M(λ) =
∑
n∈S

mn–1∑
ν=0

Mn+ν

(λ – λn)ν+1 .
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The coefficients {Mn}∞n=0 can be uniquely determined by the generalized weight numbers
{αn}∞n=0 and vice versa from the linear system

ν∑
k=0

αn+ν–kMn+mn–k–1 = δν,0, n ∈ S,ν = 0, mn – 1.

In particular, Mn = α–1
n , if mn = 1. Thus, Inverse problem 1.1 by the GSD is equivalent to

the following one.

Inverse problem 2.1 Given the data G := {λn, Mn}∞n=0, find q, h, and H .

Further we study Inverse problem 2.1 instead of Inverse problem 1.1.
Along with the problem L, we consider complex numbers G̃ = {λ̃n, M̃n}∞n=0. We will show

that, if the data G̃ are “sufficiently close” to G = {λn, Mn}∞n=0 in some sense (a rigorous
formulation is given in Theorem 2.2), then G̃ will correspond to some BVP L̃ = L(q̃(x), h̃, H̃)
of the same form as L, but with different coefficients. We agree that, if a certain symbol
γ is related to L, then the symbol γ̃ with tilde is the analogous object constructed by the
data G̃.

Let N = N(L) ≥ 0 be the minimal integer such that mn = 1 for n > N and |λN | < |λN+1|.
Fix any real r ∈ (|λN |, |λN+1|), and consider the contour γN = γN (L) = {λ ∈ C : |λ| = r} sur-
rounding the eigenvalues {λn}N

n=0. Put

SN := S ∩ {0, . . . , N}, S̃N := S̃ ∩ {0, . . . , N},

MN (λ) :=
∑
n∈SN

mn–1∑
ν=0

Mn+ν

(λ – λn)ν+1 , M̃N (λ) :=
∑
n∈S̃N

m̃n–1∑
ν=0

M̃n+ν

(λ – λ̃n)ν+1
,

M̂N := M̃N – MN .

(2.1)

Note that the function M̂N (λ) is constructed by the data {λn, Mn}N
n=0 and {λ̃n, M̃n}N

n=0. De-
fine ρn :=

√
λn, argρn ∈ [– π

2 , π
2 ), and ξn := |ρn – ρ̃n| + |Mn – M̃n| for n ≥ 0.

Theorem 2.2 Let L = L(q(x), h, H) be a fixed BVP in the form (1.1)–(1.2), N = N(L),
γN = γN (L). Then there exists δ0 > 0 (depending on L) such that, for any δ ∈ (0, δ0] and
any complex numbers G̃ = {λ̃n, M̃n}∞n=0 satisfying the conditions

max
λ∈γN

∣∣M̂N (λ)
∣∣ ≤ δ, (2.2)

( ∞∑
n=N+1

(nξn)2

)1/2

≤ δ, (2.3)

there exist a complex-valued function q̃ ∈ L2(0,π ) and complex numbers h̃, H̃ being the
solution of Inverse problem 2.1 for G̃. Moreover,

‖q – q̃‖L2(0,π ) ≤ Cδ, |h – h̃| ≤ Cδ, |H – H̃| ≤ Cδ. (2.4)

Here and below, the same symbol C is used for various positive constants depending on
L and δ0 and independent of δ, G̃, etc.
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Recall that the function MN (λ) is fixed and all its poles lie inside γN . Condition (2.2) for
sufficiently small δ implies that all the poles of M̃N (λ) also lie inside γN . Moreover, the
following estimate holds:

|λn – λ̃n| ≤ Cδ1/(N+1), n = 0, N .

However, the values λn and λ̃n can have different multiplicities. Namely, multiple values
λn can split into smaller groups, so S ⊆ S̃, m̃n = mn = 1 for all n > N .

We also obtain local solvability and stability conditions on the discrete data, not involv-
ing the continuous function M̂N . Such conditions are provided in the following theorem.

Theorem 2.3 Let L = L(q(x), h, H) be a fixed BVP in the form (1.1)–(1.2), N = N(L). Then
there exists δ0 > 0 (depending on L) such that, for any δ ∈ (0, δ0] and any complex numbers
G̃ = {λ̃n, M̃n}∞n=0 satisfying conditions (2.3) and

λ̃n 	= λ̃k , n 	= k, n, k ≥ 0, (2.5)
∣∣∣∣∣
mk –1∑

j=0

(λ̃k+j – λk)sM̃k+j – Mk+s

∣∣∣∣∣ ≤ δ, s = 0, mk – 1,

∣∣∣∣∣
mk –1∑

j=0

(λ̃k+j – λk)sM̃k+j

∣∣∣∣∣ ≤ δ, s = mk , 2(mk – 1),

|λ̃k+j – λk| ≤ δ1/mk , |M̃k+j| ≤ δ(1–mk )/mk ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

k ∈ SN , (2.6)

there exist a complex-valued function q ∈ L2(0,π ) and complex numbers h, H being the
solution of Inverse problem 2.1 for G̃. Moreover, estimates (2.4) hold.

Condition (2.5) is imposed for simplicity. One can similarly consider the case of multi-
ple values among {λ̃n}N

n=0, but then one needs more complicated requirements instead of
relations (2.6).

Theorems 2.2 and 2.3 generalize their analogue for the self-adjoint case [8, Theo-
rem 1.6.4].

3 Main equation
The goal of this section is to derive the main equation in a Banach space, which plays a
crucial role in the proofs of the main results. Our approach is based on the method of
spectral mappings (see [14]). Since a part of the proofs repeat the standard technique of
[8, Sect. 1.6] and [13], we omit the details and focus on the differences of our methods
from the classical ones.

Let us consider two BVPs L = L(q(x), h, H) and L̃ = (q̃(x), h̃, H̃) with different coefficients.
Fix N = N(L) and the contour γN . Assume that the eigenvalues {λ̃n}N

n=0 lie inside γN and
{λ̃n}∞n=N+1 lie outside γN .

Define

D(x,λ, ξ ) :=
ϕ(x,λ)ϕ′(x, ξ ) – ϕ′(x,λ)ϕ(x, ξ )

λ – ξ
=

∫ x

0
ϕ(t,λ)ϕ(t, ξ ) dt.
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For K ∈ N, consider the region ΥK := {λ ∈ C : – p < Reλ < (K + 1
2 )2, | Imλ| < p} and its

boundary υK := ∂ΥK with the counter-clockwise circuit. The constant p is chosen so that
Reλn > –p, Re λ̃n > –p, | Imλn| < p, | Im λ̃n| < p for all n ≥ 0. Using the contour integration
(see [8, p. 53] for details), we obtain the relation

ϕ(x,λ) = ϕ̃(x,λ) + lim
K→∞

1
2π i

∮
υK

D(x,λ, ξ )M̂(ξ )ϕ̃(x, ξ ) dξ ,

where M̂ := M̃ – M. Applying the residue theorem and observing that the function (M̂(λ) –
M̂N (λ)) is analytic inside γN , we obtain the relation

ϕ(x,λ) = ϕ̃(x,λ) +
1

2π i

∮
γN

D(x,λ, ξ )M̂N (ξ )ϕ̃(x, ξ ) dξ

+
∞∑

n=N+1

(
M̃nD(x,λ, λ̃n)ϕ̃(x, λ̃n) – MnD(x,λ,λn)ϕ̃(x,λn)

)
. (3.1)

We use relation (3.1) for deriving the main equation of Inverse problem 2.1 in a special
Banach space. Denote by BC the Banach space of functions continuous on γN with the
norm

‖fC‖BC = max
λ∈γN

∣∣fC(λ)
∣∣, fC ∈ BC .

Denote by BD the Banach space of bounded infinite sequences fD = [fn]∞n=1 with the norm

‖fD‖BD = sup
n≥1

|fn|, fD ∈ BD.

Define the Banach space

B :=
{

f = (fC , fD) : fC ∈ BC , fD ∈ BD
}

, ‖f ‖B := ‖fC‖C + ‖fD‖D.

Here and below the lower indices C and D mean a “continuous” and a “discrete” part,
respectively.

For every x ∈ [0,π ], define the element ψ(x) = (ψC(x),ψD(x)), where

ψC(x,λ) = ϕ(x,λ), λ ∈ γN , ψD(x) =
[
ψn(x)

]∞
n=1,

ψ2j–1(x) = ϕ(x, λ̃N+j), ψ2j(x) = χN+j
(
ϕ(x,λN+j) – ϕ(x, λ̃N+j)

)
, j ≥ 1,

χn :=

⎧⎨
⎩

ξ–1
n , if ξn 	= 0,

0, if ξn = 0.

The element ψ̃(x) is defined analogously by using ϕ̃ instead of ϕ.
For the solution ϕ(x,λ), the following standard asymptotics is valid:

ϕ(x,λ) = cosρx + O
(
ρ–1 exp

(| Imρ|x))
, |ρ| → ∞, (3.2)



Bondarenko Boundary Value Problems        (2020) 2020:123 Page 7 of 13

where ρ =
√

λ, Reρ ≥ 0. Using (1.4) and (3.2), we obtain the estimates

∣∣ϕ(x,λn)
∣∣ ≤ C,

∣∣ϕ(x,λn) – ϕ(x, λ̃n)
∣∣ ≤ Cξn, x ∈ [0,π ], n ≥ 0,

where the constant C does not depend on x and n. Analogous relations are valid for ϕ̃(x,λ).
Consequently, for each fixed x ∈ [0,π ], we have ψ(x) ∈ B and ψ̃(x) ∈ B.

For each fixed x ∈ [0,π ], we define the linear bounded operator R(x) : B → B as follows:

R(x) =

(
RCC(x) RCD(x)
RDC(x) RDD(x)

)
,

RCC(x) : BC → BC , RCD(x) : BD → BC ,

RDC(x) : BC → BD, RDD(x) : BD → BD,

R(x)f =
(
RCC(x)fC + RCD(x)fD, RDC(x)fC + RDD(x)fD

)
, f = (fC , fD) ∈ B,

(
RCC(x)fC

)
(λ) =

1
2π i

∮
γN

D(x,λ, ξ )M̂N (ξ )fC(ξ ) dξ , (3.3)

(
RCD(x)fD

)
(λ) =

∞∑
k=1

((
M̃N+kD(x,λ, λ̃N+k) – MN+kD(x,λ,λN+k)

)
f2k–1

– ξN+kMN+kD(x,λ,λN+k)f2k
)
, (3.4)

(
RDC(x)fC

)
2j–1 =

1
2π i

∮
γN

D(x, λ̃N+j, ξ )M̂N (ξ )fC(ξ ) dξ ,

(
RDC(x)fC

)
2j =

1
2π i

∮
γN

(
D(x,λN+j, ξ ) – D(x, λ̃N+j, ξ )

)
χN+jM̂N (ξ )fC(ξ ) dξ ,

(
RDD(x)fD

)
2j–1 =

∞∑
k=1

((
M̃N+kD(x, λ̃N+j, λ̃N+k) – MN+kD(x, λ̃N+j,λN+k)

)
f2k–1

– ξN+kMN+kD(x, λ̃N+j,λN+k)f2k
)
,

(
RDD(x)fD

)
2j = χN+j

∞∑
k=1

((
M̃N+k

(
D(x,λN+j, λ̃N+k) – D(x, λ̃N+j, λ̃N+k)

)

– MN+k
(
D(x,λN+j,λN+k) – D(x, λ̃N+j,λN+k)

))
f2k–1

– ξN+kMN+k
(
D(x,λN+j,λN+k) – D(x, λ̃N+j,λN+k)

)
f2k

)
,

where λ ∈ γN , j ≥ 1, fD = [fk]∞k=1.
Taking λ ∈ γN , λ = λ̃n and λ = λn, n > N , in (3.1), we obtain the so-called main equation

in the Banach space B:

ψ(x) =
(
I + R(x)

)
ψ̃(x), x ∈ [0,π ]. (3.5)

Here, I is the identity operator in B.
Now suppose that the problem L and the data G̃ = {λ̃n, M̃n}∞n=0 satisfy the conditions

of Theorem 2.2. We choose δ0 to be so small that the values {λ̃n}N
n=0 definitely lie inside

γN and the values {λ̃n}n>N definitely lie outside γN . It is not known whether the data G̃
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correspond to any problem L̃ or not. Let ψ(x) and R(x) be constructed by L and G̃ via the
formulas above. Then the following assertion holds.

Lemma 3.1 For each fixed x ∈ [0,π ], the following estimate is valid:

∥∥R(x)
∥∥

B→B ≤ Cδ, (3.6)

where the constant C does not depend on x, δ and on the choice of G̃ satisfying the conditions
of Theorem 2.2.

Proof In order to prove (3.6), it is sufficient to obtain similar estimates for ‖RCC(x)‖BC→BC ,
‖RCD(x)‖BD→BC , ‖RDC(x)‖BC→BD , and ‖RDD(x)‖BD→BD . Using (2.2) and (3.3), we get

∥∥RCC(x)
∥∥

BC→BC
≤ 1

2π
length(γN ) · max

λ,ξ∈γN

∣∣D(x,λ, ξ )
∣∣ · max

ξ∈γN

∣∣M̂N (ξ )
∣∣ ≤ Cδ.

The standard estimates (see [8, Lemma 1.6.2]) imply

∣∣D(x,λ, λ̃n) – D(x,λ,λn)
∣∣ ≤ C exp(| Imρ|x)ξn

|ρ – n| + 1
, n ≥ 0.

Combining the latter relation with (3.4), (2.3) and the obvious estimates

|Mn| ≤ C, |M̃n – Mn| ≤ ξn, n ≥ 0, (3.7)

we get

∥∥RCD(x)
∥∥

BD→BC
≤ max

λ∈γN

∞∑
k=1

(|M̃N+k – MN+k|
∣∣D(x,λ, λ̃N+k)

∣∣

+ |MN+k|
∣∣D(x,λ, λ̃N+k) – D(x,λ,λN+k)

∣∣
+ ξN+k|MN+k|

∣∣D(x,λ,λN+k)
∣∣)

≤ C
∞∑

n=N+1

ξn

|ρ – n| + 1
≤ C

( ∞∑
n=N+1

(nξn)2

)1/2

≤ Cδ.

One can similarly study the components RDC(x) and RDD(x) and finally arrive at the asser-
tion of the lemma. �

Corollary 3.2 There exists δ0 > 0 such that, for every δ ≤ δ0 and x ∈ [0,π ], the estimate
‖R(x)‖B→B ≤ 1

2 holds. In this case, for each fixed x ∈ [0,π ], the operator (I + R(x)) has a
bounded inverse, and the main equation (3.5) has a unique solution.

4 Proofs
The aim of this section is to prove Theorems 2.2 and 2.3. Using the solution of the main
equation (3.5), we construct the values q̃(x), h̃, and H̃ being the solution of Inverse prob-
lem 2.1 for G̃. Furthermore, stability estimates (2.4) are proved. We just outline the general
strategy, since the detailed proofs are analogous to [8, Sect. 1.6.2].
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Let L be a fixed BVP, and let δ0 satisfy the conditions of Corollary 3.2. Let G̃ = {λ̃n, M̃n}∞n=0

be arbitrary fixed data satisfying the conditions of Theorem 2.2. Then the main equation
(3.5) constructed by L and G̃ has a unique solution for each fixed x ∈ [0,π ]. Denote this
solution by ψ̃(x) = (ψ̃C(x), ψ̃D(x)), ψ̃C(x) = ψ̃C(x,λ), ψ̃D(x) = [ψ̃n(x)]∞n=1.

Lemma 4.1 The functions ψ̃C(x,λ) for each fixed λ ∈ γN and ψ̃n(x) for n ≥ 1 are contin-
uously differentiable with respect to x ∈ [0,π ]. Moreover, the following estimates hold for
x ∈ [0,π ], ν = 0, 1:

∣∣ψ̃ (ν)(x,λ)
∣∣ ≤ C,

∣∣ψ̃ (ν)
C (x,λ) – ψ

(ν)
C (x,λ)

∣∣ ≤ Cδ, λ ∈ γN ,
∣∣ψ̃ (ν)

n (x)
∣∣ ≤ Cnν ,

∣∣ψ̃n(x) – ψn(x)
∣∣ ≤ Cδηn,

∣∣ψ̃ ′
n(x) – ψ ′

n(x)
∣∣ ≤ Cδ, n ≥ 1,

ηn :=

( ∞∑
k=1

1
k2(|n – k| + 1)2

)1/2

,

where the constant C depends only on L and δ0.

Define the function

ϕ̃(x,λ) := ϕ(x,λ) –
1

2π i

∮
γN

D(x,λ, ξ )M̂N (ξ )ψ̃C(x, ξ ) dξ

–
∞∑

k=1

(
M̃N+kD(x,λ, λ̃N+k)ψ̃2k–1(x)

– MN+kD(x,λ,λN+k)
(
ψ̃2k–1(x) + ξN+kψ̃2k(x)

))
.

It is easy to check that

ϕ̃(x,λ) = ψ̃C(x,λ), λ ∈ γN ,

ϕ̃(x, λ̃N+k) = ψ̃2k–1(x), ϕ̃(x,λN+k) = ψ̃2k–1(x) + ξN+kψ̃2k(x), k ≥ 1.

Consequently, Lemma 4.1 implies

∣∣ϕ̃(ν)(x,λ)
∣∣ ≤ C,

∣∣ϕ̃(ν)(x,λ) – ϕ(ν)(x,λ)
∣∣ ≤ Cδ, λ ∈ γN ,

∣∣ϕ̃(ν)(x,λN+k)
∣∣ ≤ Ckν ,

∣∣ϕ̃(x,λN+k) – ϕ(x,λN+k)
∣∣ ≤ Cδηk ,

∣∣ϕ̃′(x,λN+k) – ϕ′(x,λN+k)
∣∣ ≤ Cδ, k ≥ 1,ν = 0, 1, x ∈ [0,π ].

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.1)

Similar estimates also hold for λN+k replaced by λ̃N+k .
Introduce the functions

ε0(x) :=
1

2π i

∮
γN

M̂N (ξ )ϕ(x, ξ )ϕ̃(x, ξ ) dξ +
∞∑

n=N+1

(
M̃nϕ(x, λ̃n)ϕ̃(x, λ̃n)

– Mnϕ(x,λn)ϕ̃(x,λn)
)
, ε(x) := –2ε′

0(x). (4.2)

Using (2.2), (2.3), (3.7), (4.1), and (4.2), we prove the following lemma.
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Lemma 4.2 The integral
∫
γN

(· · · ) dξ and the series
∑∞

n=N+1(· · · ) in (4.2) converge abso-
lutely and uniformly with respect to x ∈ [0,π ]. The function ε0 is absolutely continuous on
[0,π ] and ε ∈ L2(0,π ). In addition,

max
x∈[0,π ]

∣∣ε0(x)
∣∣ ≤ Cδ, ‖ε‖L2(0,π ) ≤ Cδ.

Define

q̃(x) = q(x) + ε(x), h̃ = h – ε0(0), H̃ = H + ε0(π ).

Lemma 4.2 implies that q̃ ∈ L2(0,π ) and estimates (2.4) hold. Consider the BVP L̃ =
L(q̃(x), h̃, H̃) and the function

M̃(λ) :=
∑
n∈S̃

m̃n–1∑
ν=0

M̃n+ν

(λ – λ̃n)ν+1
.

Lemma 4.3 The function M̃(λ) is the Weyl function of L̃.

Thus, Corollary 3.2 and Lemmas 4.1–4.3 together prove Theorem 2.2.

Proof of Theorem 2.3 We prove Theorem 2.3 by reduction to Theorem 2.2. For simplicity,
suppose that the problem L has the only multiple eigenvalue λ0 of multiplicity m := m0.
The general case is completely similar, but more complicated technically. In our special
case, we have

M̂N (λ) =
m–1∑
j=0

M̃j

λ – λ̃j
–

m–1∑
j=0

Mj

(λ – λ0)j+1 . (4.3)

Using the obvious relation

1
λ – λ̃j

=
1

λ – λ0

(
1 +

λ̃j – λ0

λ – λ̃j

)
,

we obtain

1
λ – λ̃j

=
2(m–1)∑

s=0

(λ̃j – λ0)s

(λ – λ0)s+1 +
(λ̃j – λ0)2m–1

(λ – λ0)2m–1(λ – λ̃j)
. (4.4)

Substituting (4.4) into (4.3), we derive

M̂N (λ) =
m–1∑
s=0

1
(λ – λ0)s+1

(m–1∑
j=0

(λ̃j – λ0)sM̃j – Ms

)

+
2(m–1)∑

s=m

1
(λ – λ0)s+1

(m–1∑
j=0

(λ̃j – λ0)sM̃j

)
+

m–1∑
j=0

(λ̃j – λ0)2m–1M̃j

(λ – λ0)2m–1(λ – λ̃j)
.
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For an appropriate choice of δ0, we have |λ– λ̃j| ≥ c0, j = 0, m – 1, |λ–λ0| ≥ c0 for λ ∈ γN ,
where the constant c0 > 0 depends only on L and δ0. Therefore, taking estimates (2.6) into
account, we conclude that

max
λ∈γN

∣∣M̂N (λ)
∣∣ ≤ Cδ.

Using the latter relation together with the other conditions of Theorem 2.3, we apply The-
orem 2.2 and arrive at the assertion of Theorem 2.3. �

Example 4.4 Suppose that m0 = 2, mn = 1 for n ≥ 2, i.e., N = 1. Let us construct a special
family of data G̃ = {λ̃n, M̃n} “close” to G in the sense of Theorem 2.3. For simplicity, put
λ̃n := λn, M̃n := Mn for n ≥ 2, i.e., only the first double eigenvalue λ0 can be perturbed. In
this case, condition (2.3) holds automatically for any δ > 0 and conditions (2.6) take the
form

|M̃0 + M̃1 – M0| ≤ δ, (4.5)
∣∣M̃0(λ̃0 – λ0) + M̃1(λ̃1 – λ0) – M1

∣∣ ≤ δ, (4.6)
∣∣M̃0(λ̃0 – λ0)2 + M̃1(λ̃1 – λ0)2∣∣ ≤ δ,

|λ̃j – λ0| ≤
√

δ, |M̃j| ≤ 1√
δ

, j = 0, 1.

Fix δ > 0 and put

M̃0 :=
a√
δ

+ M0, M̃1 := –
a√
δ

,

λ̃0 := λ0 +
√

δ, λ̃1 := λ0 –
√

δ + cδ,

a :=
M1

2
, c :=

M0

a
.

One can easily check that

M̃0(λ̃0 – λ0)ν + M̃1(λ̃1 – λ0)ν = Mν , ν = 0, 1,

which implies (4.5) and (4.6). It can be also checked that

∣∣M̃0(λ̃0 – λ0)2 + M̃1(λ̃1 – λ0)2∣∣ ≤ Cδ, |λ̃j – λ0| ≤ C
√

δ,

|M̃j| ≤ C√
δ

, j = 0, 1,
(4.7)

for δ ∈ (0, δ0], where δ0 is sufficiently small and the constant C depends only on L and δ0.
Despite the constant C in (4.7), we can apply Theorem 2.3 and conclude that, for suffi-
ciently small δ0 > 0 and δ ∈ (0, δ0], there exists the solution (q̃, h̃, H̃) of Inverse problem 2.1
for the data G̃ and estimates (2.4) hold.

An interesting feature of this example is that the eigenvalues λ̃0, λ̃1 are
√

δ-close to λ0

and the generalized weight numbers M̃0, M̃1 are sufficiently large for sufficiently small δ.
Nevertheless, the potential q̃ is Cδ-close to q in L2-norm. Analogous examples can be
constructed for m0 > 2 and eigenvalues {λ̃n}m0–1

n=0 , being δ1/m0 -close to λ0.
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5 Case of Dirichlet boundary conditions
In this section, we formulate the results similar to Theorems 2.2 and 2.3 for the case of the
Dirichlet boundary conditions. Since the proofs for different types of boundary conditions
are quite similar, we provide only formulations in this section.

Consider the boundary problem L0 = L0(q(x)) for equation (1.1) with the complex-
valued potential q ∈ L2(0,π ) and the Dirichlet boundary conditions

y(0) = y(π ) = 0. (5.1)

Denote by {λn}∞n=1 the eigenvalues of L counted with their multiplicities and numbered so
that |λn| ≤ |λn+1|, n ≥ 1. Equal eigenvalues are consecutive.

The eigenvalue multiplicities {mn}∞n=1 for the problem L0 are introduced similarly to the
case of Robin boundary conditions (1.2). Note that the asymptotic formula (1.4) is valid for
n ≥ 1, so we choose the minimal N = N(L0) such that mn = 1 for n > N and |λN | < |λN+1|.
Fix the contour γN = {λ ∈C : |λ| = r}, r ∈ (|λN |, |λN+1|).

Let Φ(x,λ) be the solution of equation (1.1) under the conditions Φ(0,λ) = 1, Φ(π ,λ) = 0.
The Weyl function is defined as M(λ) := Φ ′(0,λ). Define

Mn+ν := Res
λ=λn

(λ – λn)νM(λ), n ∈ S,ν = 0, mn – 1,

S := {n ∈ N : n = 1 or λn 	= λn–1}.

The following inverse problem is analogous to Inverse problem 2.1.

Inverse problem 5.1 Given the data G := {λn, Mn}∞n=1 for the problem L0(q(x)), find the
potential q.

Consider the data G̃ := {λ̃n, M̃n}∞n=1. Define the function M̂N (λ) via formulas (2.1), using
the data {λn, Mn}N

n=1 and {λ̃n, M̃n}N
n=1 defined in this section and

SN = S ∩ {1, . . . , N}, S̃N = S ∩ {1, . . . , N}.

Put ρn :=
√

λn, argρn ∈ [– π
2 , π

2 ), and ξn := |ρn – ρ̃n| + n–2|Mn – M̃n| for n ≥ 1.

Theorem 5.2 Let L0 = L0(q(x)) be a fixed BVP in the form (1.1), (5.1), N = N(L0), γN =
γN (L0). Then there exists δ0 > 0 (depending on L0) such that, for any δ ∈ (0, δ0] and any com-
plex numbers G̃ = {λ̃n, M̃n}∞n=1 satisfying conditions (2.2) and (2.3), there exists a complex-
valued function q̃ ∈ L2(0,π ) being the solution of Inverse problem 5.1 for G̃. Moreover,

‖q – q̃‖L2(0,π ) ≤ Cδ, (5.2)

where the constant C > 0 depends only on L0 and δ0.

Theorem 5.3 Let L0 = L0(q(x)) be a fixed BVP in the form (1.1), (5.1), N = N(L0). Then
there exists δ0 > 0 (depending on L0) such that, for any δ ∈ (0, δ0] and any complex num-
bers G̃ = {λ̃n, M̃n}∞n=1 satisfying conditions (2.3), (2.5) for n, k ≥ 1 and (2.6), there exists a
complex-valued function q̃ ∈ L2(0,π ) being the solution of Inverse problem 5.1 for G̃. More-
over, estimate (5.2) holds.
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Remark 5.4 The arguments of Sects. 3 and 4 imply that Theorems 2.2 and 5.2 are also
valid if we change M̂N (λ) to M̂(λ) in (2.2).
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