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constants γ ′,Γ ′ > 0, and t0 ≥ 0 such that

γ ′tp ≤ A
(
t2) ≤ Γ ′tp for all t ≥ t0. (3)

Hence, in particular, A satisfies the �2-condition near infinity (cf. Adams [3, p. 232]), that
is,

lim sup
t→+∞

A(2t)
A(t)

< +∞.

Conditions (1) and (2) also imply that

the mapping R 	 t 
→ ta
(
t2) ∈R is an odd increasing homeomorphism. (4)

Indeed,

(
ta

(
t2))′ = 2t2a′(t2) + a

(
t2) ≥ (2γ – 1)a

(
t2) + a

(
t2) = 2γ a

(
t2) > 0.

It follows that the function

t 
→ A
(
t2) = 2

∫ t

0
sa

(
s2)ds

is of class C1 and convex on R. This means that if p = 2, then the potential a(t) satisfies the
hypotheses in the recent paper by Jeanjean and Rădulescu [4], which develops and extends
previous contributions of Stuart [5].

By (2), we also observe that there exists η > 1 such that

t
d
dt

A
(
t2) ≥ ηA

(
t2) for all t ≥ 0.

To fix the ideas, we give examples of potentials a satisfying (1) and (2) in the case p = 2.
Of course, related examples can be given for any p > 1. For instance, if a(t) = t(p–2)/2 (t > 0),
we obtain the p-Laplace operator. We refer both to the Laplace operator (for a(t) ≡ 1)
but also to combinations between the Laplace operator and the mean curvature operator,
which is generated by

a(t) =

⎧
⎪⎪⎨

⎪⎪⎩

1√
1+t if t ∈ [0, 1],

α(t – 2)2 + β if t ∈ (1, 2),

β if t ∈ [2,∞),

where the real numbers α and β are chosen to guarantee the smoothness of the potential
a.

The analysis initiated by Tolksdorf [1] was extended by Omari and Zanolin [6] who stud-
ied the existence of infinitely many solutions for quasilinear elliptic problems driven by the
operator div(a(|∇u|2)∇u) and with oscillatory reaction. In particular, Omari and Zano-
lin introduced a notion of upper and lower solutions, which is adequate to the analysis of
Dirichlet problems involving the quasilinear operatorA. Our purpose in the present paper
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is to use variational methods for the qualitative analysis of a class of nonlinear eigenvalue
problems driven by the differential operator div(a(|∇u|2)∇u).

The abstract tools used in this paper rely on some methods developed in the mono-
graphs [7–9].

2 The main result
Throughout this paper we assume that Ω ⊂R

N (N ≥ 2) is a bounded domain with smooth
boundary.

In order to describe the main contributions of the present paper, we recall the following
classical results. Consider the problem

⎧
⎪⎪⎨

⎪⎪⎩

–�u = λu + |u|q–2u in Ω ,

u = 0 on ∂Ω ,

u > 0 in Ω ,

(5)

where 1 < q < 2N/(N –2) if N ≥ 3 and 1 < q < +∞ if N = 2. Then, by the mountain pass the-
orem (see Ambrosetti and Rabinowitz [10]), problem (5) has a solution for all λ < λ1, where
λ1 denotes the first eigenvalue of (–�) in H1

0 (Ω). We point out that the assumption λ < λ1

is used to argue the existence of the “valley” condition in the Ambrosetti–Rabinowitz the-
orem. If λ ≥ λ1, then problem (5) does not have a mountain pass geometry. In this case
we can deduce easily that problem (5) cannot have a positive solution. This follows easily
by multiplication with ϕ1 > 0 (the first eigenfunction of the Laplace operator) in (5) and
integration over Ω . We refer to Pucci and Rădulescu [11] for more details.

The aim of the present paper is to study the following nonlinear Dirichlet problem driven
by a nonhomogeneous differential operator:

⎧
⎪⎪⎨

⎪⎪⎩

–div(a(|∇u|2)∇u) = λa(u2)u + |u|q–2u in Ω ,

u = 0 on ∂Ω ,

u �≡ 0 in Ω ,

(6)

where λ is a real parameter and the potential a satisfies hypotheses (1) and (2). We also
assume that

1 < p < q < p∗ :=

⎧
⎨

⎩

Np
N–p if p < N ,

+∞ if p ≥ N .
(7)

In this paper we use standard notations and terminology. We denote by W 1,p
0 (Ω) the

Sobolev space equipped with the norm

‖u‖W 1,p
0 (Ω) =

(∫

Ω

|∇u|p
)

dx)1/p.

For simplicity we will often denote the above norm by ‖u‖.
Define

Λ := min{Λ1,Λ2}, (8)
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where

Λ1 = inf

{∫

Ω

A
(|∇u|2)dx; u ∈ W 1,p

0 (Ω),
∫

Ω

A
(
u2)dx = 1

}

and

Λ2 = inf

{∫

Ω

a
(|∇u|2)|∇u|2 dx; u ∈ W 1,p

0 (Ω),
∫

Ω

a
(
u2)u2 dx = 1

}
.

The numbers Λ1 and Λ2 are associated with two different Rayleigh quotients. Since the
problem is nonhomogeneous, these constrained minimization problems do not coincide.

We define a weak solution for problem (6) as a function u ∈ W 1,p
0 (Ω) \ {0} satisfying for

all v ∈ W 1,p
0 (Ω)

∫

Ω

a
(|∇u|2)∇u∇v dx = λ

∫

Ω

a
(
u2)uv dx +

∫

Ω

|u|q–2uv dx. (9)

In this case, we say that λ is an eigenvalue of problem (6) and the corresponding solution
u ∈ W 1,p

0 (Ω) is an eigenfunction corresponding to this eigenvalue. This definition is in ac-
cordance with the definition introduced by Fučik et al. [12, p. 117] in the case of nonlinear
eigenvalue problems. Generally speaking, problem (6) can be understood as a nonlinear
eigenvalue problem of the form

S(u) = λT(u), λ ∈R,

where S, T : X → X∗ (X is a Banach space) are nonlinear potential operators generated by
the potentials s, t : X →R. In this framework, the element Λ defined in (8) plays a crucial
role for the existence of solutions to problem (6). In fact, Λ is in close relationship with
the principal eigenvalues of two nonlinear eigenvalue problems.

The main result of our paper establishes that in the “coercive” case λ < Λ, problem (6)
admits at least one solution. In this case, we can also prove that this solution is positive.
So, by the symmetry of (6), the problem has also a negative solution. However, in the
“noncoercive” case corresponding to λ ≥ Λ, we prove that (6) admits a solution but we
do not have any sign information. This property is established in the “nonresonant” case,
that is, if λ is not an eigenvalue of a suitable pair of nonlinear operators.

Theorem 1 Assume that hypotheses (1), (2), and (7) are fulfilled.
(i) Then, for all λ < Λ, problem (6) has at least one positive solution.

(ii) Suppose that λ ≥ Λ and the operator u 
→ Tu := –div(a(|∇u|2)∇u) – λa(u2)u is
bijective. Then problem (6) has at least one solution.

We point out that with similar arguments we can extend this result to the more general
problem

⎧
⎪⎪⎨

⎪⎪⎩

–div(a(|∇u|2)∇u) = λa(u2)u + b(u2)u in Ω ,

u = 0 on ∂Ω ,

u �≡ 0 in Ω ,
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where the potential b : (0, +∞) → (0, +∞) is of class C1 and satisfies the following elliptic-
ity and growth conditions of Leray–Lions type:

There exist constants γ ,Γ > 0, κ ∈ [0, 1], and q ∈ (p, p∗) such that, for every t > 0,

γ tq–2 ≤ b
(
t2) ≤ Γ (κ + t)q–2

and
(

γ –
1
2

)
b(t) ≤ tb′(t) ≤ Γ b(t).

3 The coercive case
Let J : W 1,p

0 (Ω) →R be the variational functional defined by

J (u) =
1
2

∫

Ω

(
A

(|∇u|2) – λA
(
u2))dx –

1
q

∫

Ω

|u|q dx.

By hypothesis (7) and the Sobolev embedding theorem, J is well defined. Moreover, J ∈
C1(W 1,p

0 (Ω),R) and its Gâteux directional derivative is given by

〈
J ′(u), v

〉
=

∫

Ω

(
a
(|∇u|2)∇u∇v – λa

(
u2)uv

)
dx –

∫

Ω

|u|q–2uv dx

for any u, v ∈ W 1,p
0 (Ω).

Since the problem has a variational structure, then solutions of problem (6) are critical
points of the energy functional J .

We define the truncation

h(t) =

⎧
⎨

⎩
tq–1 if t > 0,

0 if t ≥ 0,

and we set H(t) :=
∫ t

0 h(s) ds.
Consider the variational functional

E(u) =
1
2

∫

Ω

(
A

(|∇u|2) – λA
(
u2))dx –

∫

Ω

H(u) dx.

Then E is well defined, E ∈ C1(W 1,p
0 (Ω)) and, for all u, v ∈ W 1,p

0 (Ω),

〈
E ′(u), v

〉
=

∫

Ω

[
a
(|∇u|2)∇u∇v – λa

(
u2)uv

]
dx –

∫

Ω

h(u)v dx.

3.1 Verification of the Palais–Smale condition
Let (un) ⊂ W 1,p

0 (Ω) be a Palais–Smale sequence of E , that is,

E(un) = O(1) and
∥
∥E ′(un)

∥
∥

W –1,p′ (Ω) = o(1) as n → ∞.

It follows that

1
2

∫

Ω

A
(|∇un|2

)
dx –

λ

2

∫

Ω

A
(
u2

n
)

dx –
∫

Ω

H(un) dx = O(1) (10)
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and, for all v ∈ W 1,p
0 (Ω),

∫

Ω

a
(|∇un|2

)∇un∇v dx – λ

∫

Ω

a
(
u2

n
)
unv dx –

∫

Ω

h(un)v dx = o(1)‖v‖. (11)

Taking v = un in (11), we obtain

∫

Ω

a
(|∇un|2

)|∇u2
n dx – λ

∫

Ω

a
(
u2

n
)
u2

n dx –
∫

Ω

h(un)un dx = o(1)‖un‖. (12)

But, for all n ≥ 1,

∫

Ω

h(un)un dx = q
∫

Ω

H(un) dx. (13)

Relations (10), (11), and (13) yield

(1 – q)
∫

Ω

H(un) dx =
∫

Ω

[
1
2

A
(|∇un|2

)
– a

(|∇un|2
)|∇un|2

]
dx

– λ

∫

Ω

[
1
2

A
(
u2

n
)

– a
(
u2

n
)
u2

n

]
dx + O(1) as n → ∞. (14)

But A(t2) = 2
∫ t

0 sa(s2) ds and the mapping (0, +∞) 	 s 
→ sa(s2) is increasing. Therefore

A
(
t2) ≤ 2t2a

(
t2) for all t ≥ 0. (15)

Claim. The sequence (un) ⊂ W 1,p
0 (Ω) is bounded.

For this purpose, we first show that

the sequence (un) is bounded in Lq(Ω). (16)

Assume first that λ ≤ 0. Thus, from (14) and (15) we deduce that

0 ≤ (q – 1)
∫

Ω

H(un) dx ≤ O(1) as n → ∞.

hence (un) is bounded in Lq(Ω).
If λ > 0, relations (14) and (15) yield

0 ≤ (q – 1)
∫

Ω

H(un) dx ≤ λ

∫

Ω

[
1
2

A
(
u2

n
)

– a
(
u2

n
)
u2

n

]
dx. (17)

Since 1 < p < q, relation (17) shows that (un) is bounded in Lq(Ω).
By (8) and since λ < Λ, there exists c0 > 0 such that, for all u ∈ W 1,p

0 (Ω),

∫

Ω

A
(|∇u|2)dx – λ

∫

Ω

A
(
u2)dx ≥ c0

∫

Ω

A
(|∇u|2)dx. (18)

Returning to (10) and using (16) in combination with (18) and the hypothesis λ < Λ, we
obtain the claim.
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Next, we prove that (un) ⊂ W 1,p
0 (Ω) contains a strongly convergent subsequence.

Relation (11) yields, for all v ∈ W 1,p
0 (Ω),

∫

Ω

a
(|∇un|2

)∇un∇v dx =
∫

Ω

ψ(un)v dx + o(1)‖v‖ as n → ∞, (19)

where

ψ(w) = λa
(
w2)w + h(w) for all w ∈ W 1,p

0 (Ω).

Obviously, ψ is a continuous function.
Assume that 1 < p < N (similar arguments work if p ≥ N ). It follows that

∣∣ψ(w)
∣∣ ≤ C

(
1 + |w|(Np–N+p)/(N–p)) for all w ∈ W 1,p

0 (Ω) (20)

and

ψ(w) = o
(|w|Np/(N–p)) as |w| → ∞. (21)

A crucial idea in the proof is to show that the sequence {ψ(un)} ⊂ W –1,p′ (Ω) contains
a strongly convergent subsequence. Indeed, in this case, relation (19) combined with the
Sobolev embedding theorem implies that, up to a subsequence, {ψ(un)} converges strongly
in (LNp/(N–p)(Ω))∗ = LNp/(Np–N+p)(Ω).

By our claim and the Rellich–Kondrachov embedding theorem, we can assume, up to a
subsequence, that

un → u in LNp/(N–p)(Ω).

Fix δ > 0. Thus, by the Egorov theorem, there exists ω ⊂ Ω such that |ω| < δ and

un → u uniformly in Ω \ ω.

Fix η > 0 small enough. Thus, to conclude the proof, it is enough to show that

∫

ω

∣∣ψ(un) – ψ(u)
∣∣Np/(Np–N+p) dx ≤ η for all n big enough.

Relation (20) implies that

∫

ω

∣∣ψ(u)
∣∣Np/(Np–N+p) dx ≤ C

∫

ω

(
1 + |u|Np/(N–p))dx

and the right-hand side can be made smaller than any positive constant if we choose δ > 0
small enough.

Next, by (21),

∫

ω

∣∣ψ(un) – ψ(u)
∣∣Np/(Np–N+p) dx ≤ ε

∫

ω

|un – u|Np/(N–p) dx + Cε|ω|,
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and the right-hand side can be made as small as we wish. This follows by combining our
claim with the Sobolev embedding theorem.

We conclude that the energy functional E satisfies the Palais–Smale condition.

3.2 Proof of Theorem 1(i) concluded
We first prove that E satisfies the geometric hypotheses of the mountain pass theorem.

Fix λ < Λ. We have for all u ∈ W 1,p
0 (Ω)

E(u) ≥ c0

2

∫

Ω

A
(|∇u|2)dx –

∫

Ω

H(u) dx

≥ c0

2

∫

Ω

A
(|∇u|2)dx –

1
q

∫

Ω

|u|q dx,

where c0 is as in (18).
Next, by (3), we obtain for all u ∈ W 1,p

0 (Ω)

E(u) ≥ c0γ
′

2

∫

Ω

|∇u|p dx –
1
q

∫

Ω

|u|q dx.

Fix ε > 0 small enough. Thus, by (7) and the Sobolev embedding theorem, there exists
r > 0 such that

E(u) ≥ ε for all u ∈ W 1,p
0 (Ω) with ‖u‖ = r.

This establishes the existence of a “mountain” near the origin.
Next, we show the existence of a “valley” far from the origin.
Let ϕ1 > 0 be the first eigenfunction of the Laplace operator, hence ϕ1 ∈ W 1,p

0 (Ω). For all
t > 0, we have

E(tϕ1) =
1
2

∫

Ω

(
A

(
t2|∇ϕ1|2

)
– λA

(
t2ϕ2

1
))

dx –
tq

q

∫

Ω

ϕ
q
1 dx

≤ 1
2

∫

[t|∇ϕ1|≥t0]
A

(
t2|∇ϕ1|2

)
dx +

1
2

∫

[t|∇ϕ1|<t0]
A

(
t2|∇ϕ1|2

)
dx

–
λ

2

∫

[tϕ1≥t0]
A

(
t2ϕ2

1
)

dx –
λ

2

∫

[tϕ1<t0]
A

(
t2ϕ2

1
)

dx –
tq

q

∫

Ω

ϕ
q
1 dx, (22)

where t0 is defined in (3).
Next, we evaluate the terms arising in (22). By (3) we have

1
2

∫

[t|∇ϕ1|≥t0]
A

(
t2|∇ϕ1|2

)
dx ≤ c1tp, where c1 =

Γ ′

2

∫

Ω

|∇ϕ1|p dx > 0,

and

–
λ

2

∫

[tϕ1≥t0]
A

(
t2ϕ2

1
)

dx ≤ c2tp, where c2 =
|λ|Γ ′

2

∫

Ω

ϕ
p
1 dx > 0.

Recall that A(t2) = 2
∫ t

0 sa(s2) ds. Thus, by (1),

A(t) ≤ 2p–1Γ
[
(κ + t)p – κp].
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It follows that

1
2

∫

[t|∇ϕ1|<t0]
A

(
t2|∇ϕ1|2

)
dx ≤ Γ

p

∫

[t|∇ϕ1|<t0]

(
κ + t|∇ϕ1|

)p dx – c4

× Γ

p

∫

Ω

(κ + t0)p dx – c4 = O(1).

Similarly, we deduce that

–
λ

2

∫

[tϕ1<t0]
A

(
t2ϕ2

1
)

dx ≤ O(1).

Returning now to (22) we obtain

E(tϕ1) ≤ (c1 + c2)tp – c3tq + O(1),

where c3 = q–1 ∫
Ω

ϕ
q
1 dx > 0. Using (7) we deduce that E(tϕ1) < 0 for t large enough.

We have verified all the hypotheses of the mountain pass theorem. It follows that E has
a nontrivial critical point u. Thus, for all v ∈ W 1,p

0 (Ω),

∫

Ω

a
(|∇u|2)∇u∇v dx = λ

∫

Ω

a
(
u2)uv dx +

∫

Ω

h(u)v dx.

Taking v = u– as a test function, we obtain
∫

Ω

a
(|∇u|2)∣∣∇u–∣

∣2 dx – λ

∫

Ω

a
(
u2)∣∣u–∣

∣2 dx = 0.

Finally, by (8) and since λ < Λ, we conclude that u– = 0, hence u ≥ 0. This means that
h(u) = uq–1, so u is a solution of problem (6).

It remains to show that u > 0 in Ω . For this purpose, we observe that relations (4) and
(7) imply that the hypotheses of the generalized maximum principle of Pucci and Serrin
[13] are fulfilled. We conclude that u > 0 in Ω .

4 The noncoercive case
In this section we are concerned with the proof of Theorem 1(ii). The basic idea in this
case is to use the dual variational principle of Clarke [14]. For more details, we refer to
the seminal paper of Clarke [14], which is concerned with the dual action principle and
its applications to the existence of periodic solutions to Hamilton’s equations.

We introduce as a new unknown the function w = |u|q–2u. It follows that

u = |w|r–2w with r =
q

q – 1
> 1.

Since the operator T is bijective, problem (6) can be rewritten as

u = T–1(w)

or, equivalently,

|w|r–2w = T–1(w). (23)
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The energy functional associated with problem (23) is I : Lr(Ω) →R defined by

I(w) =
1
r

∫

Ω

|w|r dx –
∫

Ω

T (w) dx,

where T (t) =
∫ t

0 T–1(u) du.
Since T–1 maps Lr(Ω) into W 2,r(Ω) ⊂ Lq(Ω), it follows that I is well defined and of class

C1 on Lr(Ω).
Next, we observe that I satisfies the hypotheses of the mountain pass theorem. In what

concerns the geometric hypotheses of the energy functional, we observe that the growth of
the first term of I around the origin is r = q/(q – 1), while the second term of I behaves like
p/(p – 1) near zero. By hypothesis (7), we deduce that r < p/(p – 1), so the first term of I is
dominating in a neighborhood of the origin, which implies the existence of a “mountain”
near zero. Since the second term of I is the dominating one at infinity, we deduce the
existence of a “valley” far from the origin.

Next, we show that I satisfies the Palais–Smale condition. For this purpose, we first
prove that any Palais–Smale sequence is bounded and then that it is relatively compact.

Let (wn) ⊂ Lr(Ω) be a Palais–Smale sequence of I , that is,

I(wn) = O(1) as n → ∞ (24)

and

∥∥I ′(wn)
∥∥

Lq(Ω) → 0 as n → ∞. (25)

By (25) we deduce that

|wn|r–2wn – T–1(wn) → 0 in Lq(Ω). (26)

Multiplying relation (26) by wn, integrating over Ω , and comparing with (24) we deduce
that the sequence (wn) is bounded in Lr(Ω). So, up to a subsequence,

wn ⇀ w in Lr(Ω).

Next, since the operator T : Lr(Ω) → Lq(Ω) is compact and the space W 2,r(Ω) is com-
pactly embedded into Lq(Ω), we deduce that T (wn) → T (w) in Lq(Ω), hence wn → w in
Lr(Ω) as n → ∞.

We conclude that T has a critical point w, which is a solution of problem (23). Moreover,
this solution is nontrivial since T (w) > 0. This completes the proof of Theorem 1.

4.1 Final remarks
(i) Analyzing the proof of Theorem 1 we observe that the conclusion still remains true if
the right-hand side f (u) of problem (6) satisfies the almost critical growth condition

f (u) = o
(
up∗–1) as u → +∞ (if p < N).

We have already checked the validity of the Palais–Smale condition under this more gen-
eral assumption.
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(ii) By hypothesis (7), the reaction of problem (6) has a (p – 1)-superlinear growth. This
is due to the term |u|q–2u (q > p). We do not know whether Theorem 1 holds if |u|q–2u is
replaced with a smooth subcritical nonlinearity g(u) satisfying the weaker condition

lim
u→+∞

g(u)
up–1 = +∞.

(iii) We conjecture that the results established in Theorem 1 remain true for the problem

⎧
⎪⎪⎨

⎪⎪⎩

–div(a(|∇u|2)∇u) = λa(u2)u + |u|q–2u + V (x) in Ω ,

u = 0 on ∂Ω ,

u �≡ 0 in Ω ,

provided that V is an indefinite potential such that ‖V‖L∞(Ω) is small enough.
(iv) We consider that a very interesting research direction concerns the study of problem

(6) in the framework of variable exponents, that is, if the potential a : (0, +∞) → (0, +∞) is
replaced by a = a(x, t) : Ω × (0, +∞) → (0, +∞) such that the following hypotheses hold:
there are functions γ ,Γ : Ω → (0,∞), κ : Ω → [0, 1], and p : Ω → (1, +∞) such that, for
all t > 0 and x ∈ Ω ,

γ (x)tp(x)–2 ≤ a
(
x, t2) ≤ Γ (x)

(
κ(x) + t

)p(x)–2

and
(

γ (x) –
1
2

)
a(x, t) ≤ tat(x, t) ≤ Γ (x)a(t).

We refer to the monograph by Rădulescu and Repovš [15] for advances in the variational
analysis of nonlinear PDEs with variable exponent.

(v) Finally, we consider that new properties can be obtained in the framework of “double-
phase” problems, that is, if the left-hand side of problem (6) is replaced by

–div
(
a
(|∇u|2)∇u

)
– div

(
b
(|∇u|2)∇u

)
,

where the potentials a and b satisfy hypotheses like (1) and (2) for different exponents, say
p and r. We refer to the recent papers [16–23], which are concerned either with double-
phase problems or with eigenvalue problems in isotropic or anisotropic settings. We con-
sider that the differential operator studied in the present paper could be a source of inspi-
ration for further developments, eventually in critical or supercritical cases.

Appendix
In the proof of Theorem 1 we have used the following version of the mountain pass theo-
rem, see Ambrosetti and Rabinowitz [10].

Theorem 2 Let X be a real Banach space and J : X →R be a C1-functional. Assume that
J satisfies the Palais–Smale condition and the following hypotheses:

(i) There exist positive constants r and c0 such that J(u) ≥ c0 for all u ∈ X with ‖u‖ = r;
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(ii) J(0) = 0 and there exists v ∈ X such that ‖v‖ > r and J(v) < c0.
Then the functional J has at least one critical point.
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