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Abstract
In this paper, we consider a class of fractional Kirchhoff equations with L2 critical
exponents. By using the scaling technique and concentration-compactness principle
we obtain the existence and nonexistence of ground state for fractional Kirchhoff
equation with L2 critical exponent.

Keywords: L2 critical exponent; Besov space; Fractional Kirchhoff equation; Ground
state

1 Introduction
In this paper, we consider the existence of ground state for the following fractional Kirch-
hoff equation:

–
(

a + b
∫
RN

∣∣(–�)
s
2 u

∣∣2 dx
)

(–�)su + V (x)|u|γ u = |u| 8s
N u + μu in R

N , (1)

where a, b > 0, N > 2s > N
2 with s ∈ (0, 1), 0 ≤ γ ≤ 8s

N , 2∗(s) = 2N
N–2s , and V (x) is a bounded

function in R
N .

If s = 1, then equation (1) is related to the stationary solutions of

utt –
(

a + b
∫
RN

|∇u|2 dx
)

�u = f (x, u), (2)

where f (x, u) is a general nonlinear function. Equation (2) comes from free vibrations of
elastic strings by taking into account the changes in length of the string produced by trans-
verse vibrations [13]. After the pioneering works [17] and [15], equation (1) has attracted
considerable attention. The existence and asymptotic behavior of nodal solutions of equa-
tion (1) were considered by Deng, Peng, and Shuai [5]. The existence and concentration
behavior of positive solutions were studied in [8, 9]. The uniqueness and nondegeneracy of
positive solutions were obtained by Li et al. [14] and the references therein. The existence
of multipeak solutions was considered in [23].

Equation (1) can be viewed as an eigenvalue problem by taking μ as an unknown La-
grange multiplier. Hence some mathematicians considered equation (1) by studying some
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constrained variational problems and obtained the existence of ground state of equa-
tion (1). This technique was generally used for other types of equations, for example,
semilinear Schrödinger equation [11, 24], Schrödinger–Poisson equation [4, 12], quasi-
linear Schrödinger equation [29, 30]; see also [1, 2, 18, 21, 22]. For s = 1, as far as we know,
the first work comes from Ye [25], who considered the following minimization problem:

Ic2 := inf
u∈Sc

I(u), (3)

where

I(u) =
a
2

∫
RN

|∇u|2 dx +
b
4

(∫
RN

|∇u|2 dx
)2

–
1
p

∫
RN

|u|p dx

and

Sc :=
{

u ∈ H1(
R

N)
:
∫
RN

|u|2 dx = c2
}

.

Using the scaling technique and concentration-compactness principle, Ye obtained the
sharp existence of global constraint minimizers of problem (3). Then Zeng and Zhang [28]
improved the results of [25] and obtained the sharp existence and uniqueness of global
constraint minimizers of problem (3). From [25, 28] we know that there is an L2 critical
exponent p∗ = 2 + 8

N such that problem (3) has global constraint minimizers for p < p∗ and
no global constraint minimizers for p ≥ p∗. Then, for the L2 critical exponent, Ye [26] and
Zeng and Chen [31] added a perturbation function and obtained the existence of mini-
mizers on Sc. Moreover, for the L2 critical exponent, Ye [27] gave some mass concentra-
tion behavior. Recently, Guo, Zhang, and Zhou [7] considered the following minimization
problem:

dβ (p) := inf
u∈S1

Eβ
p (u), (4)

where

Eβ
p =

a
2

∫
RN

|∇u|2 dx +
b
4

(∫
RN

|∇u|2 dx
)2

+
1
2

∫
RN

V (x)|u|2 dx –
β

p

∫
RN

|u|p dx,

and S1 := {u ∈ H(RN ) :
∫
RN |u|2 dx = 1} with H = {u ∈ H1(RN ) :

∫
RN V (x)|u|2 dx < ∞}. They

first proved the sharp existence and nonexistence of global minimizer of problem (4) with
V (x) = 0. Then, for the trapping potential V (x), they considered the existence of mini-
mizers for problem (4). Especially, for the L2 critical exponent, they proved that there is
βp∗ > 0 such that problem (4) has at least one minimizer for β ≤ βp∗ and has no minimiz-
ers for β > βp∗ . Furthermore, for minimizers of problem (4) with p < p∗ and β > βp∗ , they
obtained the blowup behavior of minimizers as p tends to p∗.

For s ∈ (0, 1), Autuori, Fiscella, and Pucci [3] obtained the existence of solutions for equa-
tion (1) with critical nonlinearity. The existence of solutions of (1) with critical exponents
was also considered in [19]. The multiplicity of solutions was obtained by Pucci, Xiang,



Han and Zhang Boundary Value Problems        (2020) 2020:125 Page 3 of 15

and Zhang [20] and so on. Recently, Huang and Zhang [10] considered the existence and
uniqueness of minimizers for the following problem:

e(c) := inf
u∈Sc

Ep(u), (5)

where

Ep(u) =
a
2

∫
RN

∣∣(–�)
s
2 u

∣∣2 dx +
b
4

(∫
RN

∣∣(–�)
s
2 u

∣∣2 dx
)2

–
1

p + 2

∫
RN

|u|p+2 dx,

and Sc := {u ∈ Hs(RN ) :
∫
RN |u|2 dx = c2}. Using the scaling technique and some energy

estimates, they obtained the existence and uniqueness of minimizers for problem (5) if
p < 8s

N and proved that there are no minimizers for problem (5) when p ≥ 8s
N .

For the existence of ground state of equation (1), we consider the following minimization
problem:

e(c) := inf
u∈Sc

Ip(u), (6)

where

Ip(u) =
a
2

∫
RN

∣∣(–�)
s
2 u

∣∣2 dx +
b
4

(∫
RN

∣∣(–�)
s
2 u

∣∣2 dx
)2

+
1

γ + 2

∫
RN

V (x)|u|γ +2 dx –
1

p + 2

∫
RN

|u|p+2 dx,

and

Sc :=
{

u ∈ Hs(
R

N)
:
∫
RN

|u|2 dx = c2
}

.

Here Hs(RN ) is the Besov space defined by

Hs =
{

u ∈ L2(
R

N)
:

u(x) – u(y)
|x – y| N+2s

2
∈ L2(

R
N ×R

N)}

with the norm

‖u‖Hs(RN ) =
(∫

RN

(∣∣(–�)
s
2 u

∣∣2 + |u|2)dx
) 1

2
,

where

∫
RN

∣∣(–�)
s
2 u

∣∣2 dx =
∫ ∫

R2N

|u(x) – u(y)|2
|x – y|N+2s dx dy.

It is easy to see that there are no minimizers for problem (6) if p > 8s
N . Indeed, for any

u ∈ Sc and constant λ > 0, let uλ(x) = λ
N
2 u(λx). Then

∫
RN

u2
λ(x) dx =

∫
RN

u2(x) dx = c2,
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∫
RN

∫
RN

|u2
λ(x) – u2

λ(y)|2
|x – y|N+2s dx dy = λ2s

∫
RN

∫
RN

|u2(x) – u2(y)|2
|x – y|N+2s dx dy

= λ2s
∫
RN

∣∣(–�)
s
2 u

∣∣2 dx,
∫
RN

∣∣uλ(x)
∣∣2+p dx = λ

Np
2

∫
RN

∣∣u(x)
∣∣2+p dx,

∫
RN

V (x)
∣∣uλ(x)

∣∣2+γ dx = λ
Nγ

2

∫
RN

V
(

x
λ

)∣∣u(x)
∣∣2+γ dx.

Hence we can deduce that

Ip(uλ) =
a
2
λ2s

∫
RN

∣∣(–�)
s
2 u

∣∣2 dx +
b
4
λ4s

(∫
RN

∣∣(–�)
s
2 u

∣∣2 dx
)2

+
1

2 + γ
λ

Nγ
2

∫
RN

V
(

x
λ

)∣∣u(x)
∣∣2+γ dx –

1
p + 2

λ
Np
2

∫
RN

∣∣u(x)
∣∣2+p dx. (7)

Since γ < 8s
N , it is easy to see that Nγ

2 < 4s. If p > 8s
N , then for λ large enough, the dominant

term in (7) is 1
p+2λ

Np
2

∫
RN |u(x)|2+p dx. Then Ip(uλ) → –∞ as λ → ∞. This means that there

are no minimizers for problem (6) if p > 8s
N . Therefore it seems that p = 8s

N is the L2 critical
exponent for problem (6). Moreover, from (7) with V (x) = 0 we have Ip(uλ) → 0 as λ → 0.
Hence e(c) ≤ 0 for any c > 0, and 0 < p < 2∗(s) – 2. For p = 8s

N , similarly to the proof of
[10, 28], using the Gagliardo–Nirenberg inequality (12), we have

Ip(u) =
a
2

∫
RN

∣∣(–�)
s
2 u

∣∣2 dx +
b
4

(∫
RN

∣∣(–�)
s
2 u

∣∣2 dx
)2

–
N

2N + 8s

∫
RN

|u|2+ 8s
N dx

≥ a
2

∫
RN

∣∣(–�)
s
2 u

∣∣2 dx +
b
4

(
1 –

(
c
c∗

) 8s–2N
N

)(∫
RN

∣∣(–�)
s
2 u

∣∣2 dx
)2

, (8)

where the definition of c∗ is given further. If c ≤ c∗, then (8) means that e(c) > 0, a contra-
diction to e(c) ≤ 0, which indicates that for p = 8s

N and c ≤ c∗, problem (6) with V (x) = 0

has no minimizers. If c > c∗, then in view of Lemma 2.3, let uλ(x) = cλ
N
2

|U|2 U(λx). Then we
have e(c) ≤ –∞, which means that for p = 8s

N and c > c∗, there are no minimizers for prob-
lem (6) with V (x) = 0. In other words, for V (x) = 0, there is no minimizer for problem
(6) with p = 8s

N . Hence, in this paper, when the potential function V (x) satisfies some con-
ditions, we consider the existence and nonexistence of minimizers for problem (6) with
p = 8s

N . In addition, we consider the existence and nonexistence of ground states for equa-
tion (1) under some conditions on the function V (x). Moreover, in this paper, the energy
estimate method used in [10, 28] is invalid because of the existence of a potential function
V (x). Hence we use the concentration-compactness principle to overcome the compact-
ness of a minimizing sequence. Using this technique, it is natural that γ ≥ 2 is necessary
by Lemma 2.6.

In this paper, we assume that

V (x) ∈ L∞(
R

N)
. (9)
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Let

c∗ =
(
b
∣∣U(x)

∣∣ 8s
N
2

) N
8s–2N ,

where the function U(x) is defined in Sect. 2. We first give a nonexistence result.

Theorem 1.1 Let p = 8s
N , and let V (x) satisfy (9). Then problem (6) has no minimizers if

one of the following conditions holds:
(1) c > c∗ for any γ ∈ [0, 8s

N ).
(2) V (x) ≥ 0 for any c ∈ (0, c∗) and γ ∈ [0, 8s

N ).
(3) For γ ∈ ( 4s

N , 8s
N ) and |V |∞c

8s–γ N+γ (4s–N)
4s small enough, we have

|V |∞
γ + 2

(
N + 4s

2N |U|
8s
N
2

) γ N
8s

c
8s–γ N+γ (4s–N)

4s

≤
(

2as
8s – γ N

) 8s–γ N
4s

(
bs

γ N – 4s

(
1 –

(
c
c∗

) 8s–2N
N

)) γ N–4s
4s

.

From (2) of Theorem 1.1 we know that problem (6) has minimizers if and only if the
function V (x) has a negative part. Hence, in this paper, we first give a certain condition
for V (x) at infinity and get the following existence result.

Theorem 1.2 Let p = 8s
N , c ∈ (0, c∗), γ ∈ [2, 8s

N ), Nγ

2 + α < 4s for some α > 0, and let a be
small enough. Suppose that the function V (x) satisfies (9) and

V (x) ∼ –|x|–β as |x| → ∞. (10)

Then problem (6) has at least a minimizer.

According Theorem 1.2, we get the existence of minimizers of problem (6) for V (x)
tending to 0 at infinity with some rates as |x| → ∞. Next, if we assume a general condition
for V (x) at infinity, then we have the following:

Theorem 1.3 Let p = 8s
N , c ∈ (0, c∗), and γ ∈ [2, 8s

N ), and suppose that the function V (x)
satisfies (9) and

lim|x|→∞ V (x) = 0. (11)

Then if e(c) < 0, the problem (6) has at least one minimizer.

Throughout the paper, C denotes some constant, and |u|p denotes the Lp-norm of a
function u.

2 Preliminary results
Since we want to consider the existence of minimizers for problem (6) with p = 8s

N , we first
introduce the following Gagliardo–Nirenber inequality [6]:

∫
RN

|u|2+ 8s
N dx ≤ N + 4s

2N |U(x)|
8s
N
2

(∫
RN

|u|2 dx
) 4s–N

N
(∫

RN

∣∣(–�)
s
2 u

∣∣2 dx
)2

. (12)
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Here the function U(x) is the unique ground state of the equation

(–�)su +
4s – N

2N
u = |u| 8s

N u, x ∈R
N . (13)

Using the Pohozaev identity and equation (13) [6, 10], we can get that

∫
RN

∣∣(–�)
s
2 u

∣∣2 dx =
∫
RN

|u|2 dx =
2N

N + 4s

∫
RN

|u|2+ 8s
N dx. (14)

Lemma 2.1 Assume that V (x) ≥ 0. Then, for any c ∈ (0, c∗), we have e(c) ≥ 0.

Proof For any u ∈ Sc, using the Gagliardo–Nirenberg inequality (12), we get that

Ip(u) =
a
2

∫
RN

∣∣(–�)
s
2 u

∣∣2 dx +
b
4

(∫
RN

∣∣(–�)
s
2 u

∣∣2 dx
)2

+
1

γ + 2

∫
RN

V (x)|u|γ +2 dx

–
N

2N + 8s

∫
RN

|u|2+ 8s
N dx

≥ b
4

(∫
RN

∣∣(–�)
s
2 u

∣∣2 dx
)2

–
c

8s–2N
N

4|U(x)|
8s
N
2

(∫
RN

∣∣(–�)
s
2 u

∣∣2 dx
)2

+
1

γ + 2

∫
RN

V (x)|u|γ +2 dx

≥ b
4

(
1 –

(
c
c∗

) 8s–2N
N

)(∫
RN

∣∣(–�)
s
2 u

∣∣2 dx
)2

+
1

γ + 2

∫
RN

V (x)|u|γ +2 dx, (15)

which, together with V (x) ≥ 0, implies that Ip(u) > 0. Hence we have

e(c) ≥ 0. �

Lemma 2.2 Let γ ∈ ( 4s
N , 8s

N ), and let |V |∞c
8s–γ N+γ (4s–N)

4s be small enough such that

|V |∞
γ + 2

(
N + 4s

2N |U|
8s
N
2

) γ N
8s

c
8s–γ N+γ (4s–N)

4s

≤
(

2as
8s – γ N

) 8s–γ N
4s

(
bs

γ N – 4s

(
1 –

(
c
c∗

) 8s–2N
N

)) γ N–4s
4s

.

Then e(c) ≥ 0.

Proof For any u ∈ Sc, using the Hölder and Gagliardo–Nirenberg inequalities, we have

∫
RN

|u|γ +2 dx ≤
(∫

RN
|u|2 dx

) 8s–γ N
8s

(∫
RN

|u|2+ 8s
N dx

) γ N
8s

≤
(

N + 4s

2N |U|
8s
N
2

) γ N
8s

c
8s–γ N+γ (4s–N)

4s

(∫
RN

∣∣(–�)
s
2 u

∣∣2 dx
) γ N

4s
,
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which, combined with (15), indicates that

Ip(u) =
a
2

∫
RN

∣∣(–�)
s
2 u

∣∣2 dx +
b
4

(∫
RN

∣∣(–�)
s
2 u

∣∣2 dx
)2

+
1

γ + 2

∫
RN

V (x)|u|γ +2 dx

–
N

2N + 8s

∫
RN

|u|2+ 8s
N dx

≥ a
2

∫
RN

∣∣(–�)
s
2 u

∣∣2 dx +
b
4

(
1 –

(
c
c∗

) 8s–2N
N

)(∫
RN

∣∣(–�)
s
2 u

∣∣2 dx
)2

–
|V |∞
γ + 2

(
N + 4s

2N |U|
8s
N
2

) γ N
8s

c
8s–γ N+γ (4s–N)

4s

(∫
RN

∣∣(–�)
s
2 u

∣∣2 dx
) γ N

4s
. (16)

Let δ = 8s–γ N
4s and β = 1 – δ = γ N–4s

4s . Using the Young inequality, we have

a
2

t +
b
4

(
1 –

(
c
c∗

) 8s–2N
N

)
t2

≥
(

a
2δ

)δ(b(1 – ( c
c∗ )

8s–2N
N )

4β

)β

tδ+2β

=
(

2as
8s – γ N

) 8s–γ N
4s

(
bs

γ N – 4s

(
1 –

(
c
c∗

) 8s–2N
N

)) γ N–4s
4s

t
γ N
4s .

Thus from (16) it follows that

Ip(u) ≥
[(

2as
8s – γ N

) 8s–γ N
4s

(
bs

γ N – 4s

(
1 –

(
c
c∗

) 8s–2N
N

)) γ N–4s
4s

–
|V |∞
γ + 2

(
N + 4s

2N |U|
8s
N
2

) γ N
8s

c
8s–γ N+γ (4s–N)

4s

](∫
RN

∣∣(–�)
s
2 u

∣∣2 dx
) γ N

4s
. (17)

If we choose |V |∞c
8s–γ N+γ (4s–N)

4s small enough such that

|V |∞
γ + 2

(
N + 4s

2N |U|
8s
N
2

) γ N
8s

c
8s–γ N+γ (4s–N)

4s

≤
(

2as
8s – γ N

) 8s–γ N
4s

(
bs

γ N – 4s

(
1 –

(
c
c∗

) 8s–2N
N

)) γ N–4s
4s

,

then (17) indicates that

e(c) ≥ 0. �

Lemma 2.3 If c > c∗, then e(c) < –∞.

Proof Set

uλ(x) =
cλ N

2

|U|2 U(λx).
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Then using (14), we have

∫
RN

u2
λ(x) dx = c2,

∫
RN

∫
RN

|u2
λ(x) – u2

λ(y)|2
|x – y|N+2s dx dy =

c2λ2s

|U|22

∫
RN

∣∣(–�)
s
2 U

∣∣2 dx = c2λ2s,

∫
RN

∣∣uλ(x)
∣∣2+ 8s

N dx =
(N + 4s)c2+ 8s

N λ4s

2N |U|
8s
N
2

,

∫
RN

V (x)
∣∣uλ(x)

∣∣2+γ dx =
c2+γ λ

Nγ
2

|U|2+γ
2

∫
RN

V
(

x
λ

)∣∣U(x)
∣∣2+γ dx.

Hence we can deduce that uλ ∈ Sc and

Ip(uλ) =
a
2

c2λ2s +
b
4

c4λ4s +
cγ +2

(2 + γ )|U|2+γ
2

λ
Nγ

2

∫
RN

V
(

x
λ

)
|U|2+γ dx –

c2+ 8s
N

4|U|
8s
N
2

λ4s

=
a
2

c2λ2s +
b
4

c4λ4s
(

1 –
(

c
c∗

) 8s–2N
N

)

+
cγ +2

(2 + γ )|U|2+γ
2

λ
Nγ

2

∫
RN

V
(

x
λ

)
|U|2+γ dx. (18)

From γ < 8s
N we get that Nγ

2 < 4s. Then (18) indicates that Ip(uλ) → –∞ as λ → ∞, and the
lemma is proved. �

Lemma 2.4 For any c > 0, we have e(c) ≤ 0.

Proof For any u ∈ Sc and constant λ > 0, let uλ(x) = λ
N
2 u(λx). Then uλ ∈ Sc, and from (7)

we have

Ip(uλ) =
a
2
λ2s

∫
RN

∣∣(–�)
s
2 u

∣∣2 dx +
b
4
λ4s

(∫
RN

∣∣(–�)
s
2 u

∣∣2 dx
)2

+
1

2 + γ
λ

Nγ
2

∫
RN

V
(

x
λ

)∣∣u(x)
∣∣2+γ dx –

1
p + 2

λ4s
∫
RN

∣∣u(x)
∣∣2+ 8s

N dx. (19)

Hence Ip(uλ) → 0 as λ → 0, which indicates that e(c) ≤ 0. �

Lemma 2.5 Assume that the function V (x) satisfies condition (10), Nγ

2 + α < 4s, and a is
small enough. Then e(c) < 0.

Proof For fixed |x0| = 2, assume that ϕ(x) ∈ C∞
c (RN ) is such that suppϕ ∈ B1(x0) and∫

RN ϕ2(x) dx = c2. For constant λ > 0, take

ϕλ(x) = λ
N
2 ϕ(λx).

Then
∫
RN

ϕ2
λ(x) dx =

∫
RN

ϕ2(x) dx = c2, (20)
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∫
RN

∫
RN

|ϕ2
λ(x) – ϕ2

λ(y)|2
|x – y|N+2s dx dy = λ2s

∫
RN

∫
RN

|ϕ2(x) – ϕ2(y)|2
|x – y|N+2s dx dy

= λ2s
∫
RN

∣∣(–�)
s
2 ϕ

∣∣2 dx, (21)
∫
RN

∣∣ϕλ(x)
∣∣2+ 8s

N dx = λ4s
∫
RN

∣∣ϕ(x)
∣∣2+ 8s

N dx, (22)

and
∫
RN

V (x)
∣∣ϕλ(x)

∣∣2+γ dx = λ
Nγ

2

∫
RN

V
(

x
λ

)∣∣ϕ(x)
∣∣2+γ dx ≤ –Cλ

Nγ
2 +α (23)

as λ → 0.
From (20) we know that ϕλ ∈ Sc. Then (21)–(23) indicate that

Ip(ϕλ) ≤ aλ2s

2

∫
RN

∣∣(–�)
s
2 ϕ

∣∣2 dx +
bλ4s

4

∫
RN

∣∣(–�)
s
2 ϕ

∣∣2 dx

– Cλ
Nγ

2 +α –
Nλ4s

2N + 8s

∫
RN

∣∣ϕ(x)
∣∣2+ 8s

N dx. (24)

For 2 ≤ γ < 8s
N , we have 2s < N ≤ Nγ

2 < 4s. If Nγ

2 + α < 4s, then there is a small λ0 > 0 such
that

bλ4s
0

4

∫
RN

∣∣(–�)
s
2 ϕ

∣∣2 dx – Cλ
Nγ

2 +α

0 –
Nλ4s

0
2N + 8s

∫
RN

∣∣ϕ(x)
∣∣2+ 8s

N dx < 0.

Moreover, if

a <
– bλ2s

0
2

∫
RN |(–�) s

2 ϕ|2 dx + 2Cλ
Nγ

2 +α–2s
0 + Nλ2s

0
N+4s

∫
RN |ϕ(x)|2+ 8s

N dx∫
RN |(–�) s

2 ϕ|2 dx
,

then from (24) we can deduce that

e(c) ≤ inf Ip(ϕλ) < 0. �

Lemma 2.6 For any c ∈ (0, c∗) and any d ∈ (0, c), if e(c) < 0, then

e(c) < e(d) + e
(√

c2 – d2
)
.

Proof Let {un} be any minimizing sequence. Then

∫
RN

|un|γ +2 dx =
∫
RN

|un|(γ +2)θ |un|(γ +2)(1–θ ) dx

≤
(∫

RN
|un|2 dx

) (2+γ )θ
2

(∫
RN

|un|2∗(s) dx
) (2+γ )(1–θ )

2∗(s)

≤ C
(∫

RN

∣∣(–�)
s
2 u

∣∣2 dx
) γ N

4s
, (25)

where θ = 2s(2+γ )–γ N
2(2+γ )s .
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Using (12) and (25), we have

Ip(un) =
a
2

∫
RN

∣∣(–�)
s
2 un

∣∣2 dx +
b
4

(∫
RN

∣∣(–�)
s
2 un

∣∣2 dx
)2

+
1

γ + 2

∫
RN

V (x)|un|γ +2 dx –
N

2N + 8s

∫
RN

|un|2+ 8s
N dx

≥ b
4

(
1 –

(
c
c∗

) 8s–2N
N

)(∫
RN

∣∣(–�)
s
2 un

∣∣2 dx
)2

– C
(∫

RN

∣∣(–�)
s
2 un

∣∣2 dx
) γ N

4s
, (26)

where c∗ = (b|U(x)|
8s
N
2 )

N
8s–2N . Since γ < 8s

N , we have that γ N
4s < 2. Since {un} is a minimizing

sequence and c < c∗, we have e(c) = limn→∞ Ip(un), and the sequence {un} is bounded in
the space Hs(RN ). Moreover, from (26) we can deduce that 0 > e(c) > –∞ and

lim
n→∞

1
γ + 2

∫
RN

V (x)|un|γ +2 dx

≤ e(c) –
a
2

∫
RN

∣∣(–�)
s
2 un

∣∣2 dx –
b
4

(
1 –

(
c
c∗

) 8s–2N
N

)(∫
RN

∣∣(–�)
s
2 un

∣∣2 dx
)2

< 0. (27)

For λ > 1, defining ūn = λun, we have

∫
RN

ū2
n dx = λ2

∫
RN

u2
n dx = λ2c2,

∫
RN

V (x)ūγ +2
n dx = λγ +2

∫
RN

V (x)uγ +2
n dx,

∫
RN

∫
RN

|ū2
n(x) – ū2

n(y)|2
|x – y|N+2s dx dy = λ2

∫
RN

∫
RN

|u2
n(x) – u2

n(y)|2
|x – y|N+2s dx dy

= λ2
∫
RN

∣∣(–�)
s
2 un

∣∣2 dx,
∫
RN

|ūn|2+ 8s
N dx = λ2+ 8s

N

∫
RN

|un|2+ 8s
N dx.

Then

Ip(ūn) =
aλ2

2

∫
RN

∣∣(–�)
s
2 un

∣∣2 dx +
bλ4

4

(∫
RN

∣∣(–�)
s
2 un

∣∣2 dx
)2

+
λ2

γ + 2

∫
RN

V (x)|un|γ +2 dx –
Nλ2+ 8s

N

2N + 8s

∫
RN

|un|2+ 8s
N dx

≥ λ4Ip(un) +
(
λ2 – λ4)∫

RN

∣∣(–�)
s
2 un

∣∣2 dx

+
(
λ4 – λ2+ 8s

N
) N

2N + 8s

∫
RN

|un|2+ 8s
N dx

+
(
λγ +2 – λ4) 1

γ + 2

∫
RN

V (x)|un|γ +2 dx, (28)
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which, together with λ > 1, γ ≥ 2, and (27), indicates that

e(λc) ≤ lim
n→∞ Ip(ūn) ≤ λ4 lim

n→∞ Ip(un) = λ4e(c). (29)

Since e(c) < 0, this means that

e(λc) < λe(c).

Then for any d ∈ [0, c), we have

e(c) < e(d) + e
(√

c2 – d2
)
. �

3 The proof of theorems

Proof of Theorem 1.1 (1) From Lemma 2.3 we know that e(c) < –∞. Hence it is natural
that for any c > c∗, there are no minimizers for problem (6).

(2) From Lemma 2.1 we know that since V (x) ≥ 0, e(c) ≥ 0. This, together with
Lemma 2.4, indicates that e(c) = 0. Assume that there is u0 ∈ Sc such that

Ip(u0) = e(c) = 0,

which contradicts with (15) since Ip(u0) > 0 for any V (x) ≥ 0. Thus there are no minimizers
for problem (6).

(3) From Lemma 2.2 we have that e(c) ≥ 0. This, together with Lemma 2.4, indicates
that e(c) = 0. Similarly to the proof of (2), we can deduce that there are no minimizers for
problem (6). �

Proof of Theorem 1.2 Let {un} be a minimizing sequence of e(c). From (26) we get that∫
RN |(–�) s

2 un|2 dx is bounded above, which, combined with
∫
RN |un|2 dx = c2, implies that

{un} is bounded in the space Hs(RN ). Hence there is u ∈ Hs(RN ) such that there is a
subsequence of {un}, denoted still by {un}, such that un ⇀ u in Hs(RN ). Then by the
concentration-compactness principle [16] the sequence {un} is compact. Hence the key
point is excluding the case of vanishing (i.e., u = 0 in Hs(RN )) and dichotomy (i.e.m u �= 0
in Hs(RN ) but 0 < |u|2 < c).

For any 0 < R < ∞, set

δ = lim sup
n→∞,y∈RN

∫
BR(y)

|un|2 dx.

If δ = 0, then using the vanishing lemma (Lemma I.1 in [16]), we have

un → 0, in Lq(
R

N)
, q ∈ (

2, 2∗(s)
)
.

This indicates that

lim
n→∞

∫
RN

|un|2+ 8s
N dx = 0, (30)
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lim
n→∞

∣∣∣∣
∫
RN

V (x)|un|2+γ dx
∣∣∣∣ ≤ |V∞| lim

n→∞

∫
RN

|un|2+γ dx = 0. (31)

Using (30) and (31), we can deduce that

e(c) = lim
n→∞ Ip(un)

= lim
n→∞

[
a
2

∫
RN

∣∣(–�)
s
2 un

∣∣2 dx +
b
4

(∫
RN

∣∣(–�)
s
2 un

∣∣2 dx
)2

+
1

γ + 2

∫
RN

V (x)|un|γ +2 dx –
N

2N + 8s

∫
RN

|un|2+ 8s
N dx

]

= lim
n→∞

(
a
2

∫
RN

∣∣(–�)
s
2 un

∣∣2 dx +
b
4

(∫
RN

∣∣(–�)
s
2 un

∣∣2 dx
)2)

≥ 0, (32)

a contradiction to Lemma 2.5. Hence vanishing is impossible.
Now we assume that dichotomy occurs. Then there are d ∈ (0, c) and bounded sequences

{u1
n}, {u2

n} in Hs(RN ) such that for any q ∈ [2, 2∗(s)), we have

∣∣un – u2
n – u2

n
∣∣
q ≤ σq(ε), (33)

∣∣∣∣
∫
RN

∣∣u1
n
∣∣2 dx – d2

∣∣∣∣ ≤ ε,
∣∣∣∣
∫
RN

∣∣u2
n
∣∣2 dx –

(
c2 – d2)∣∣∣∣ ≤ ε, (34)

dist
(
supp u1

n, supp u2
n
) → ∞ as n → ∞, (35)

and

lim
n→∞

∫
RN

[∣∣(–�)
s
2 un

∣∣2 –
∣∣(–�)

s
2 u1

n
∣∣2 –

∣∣(–�)
s
2 u2

n
∣∣2]dx. (36)

Using (33)–(36), we can deduce that

e(c) = lim
n→∞ Ip(un) ≥ lim

n→∞
[
Ip

(
u1

n
)

+ Ip
(
u2

n
)]

+ σ (ε)

≥ e(d) + e
(√

c2 – d2
)

+ σ (ε), (37)

where σ (ε) → 0 as ε → 0. Let ε → 0. Then (37) contradicts to Lemma 2.6. Hence di-
chotomy cannot occur, and for any ε > 0, there exist Rε > 0 and {yn} ⊂ R

N such that

∫
BRε (yn)

|un|2 dx ≥ c – ε. (38)

Next, we discuss this problem for two cases: {yn} is bounded and yn → ∞ as n → ∞.
(1) If {yn} is bounded from above, then (38) indicates that

un → u in L2(
R

N)
.

Since {un} is bounded in the space Hs(RN ), the Gagliardo–Nirenberg inequality gives that

∫
RN

|un|2+ 8s
N dx ≤ C

(∫
RN

|un|2 dx
) 4s–N

2
.
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By Lebesgue’s dominate convergence theorem we get that

lim
n→∞

∫
RN

|un|2+ 8s
N dx =

∫
RN

|u|2+ 8s
N dx. (39)

Similarly to the proof of (39), we obtain that

lim
n→∞

∫
RN

V (x)|un|2+γ dx =
∫
RN

V (x)|u|2+γ dx. (40)

From [6] we know that the norm
∫
RN |(–�) s

2 un|2 dx satisfies weak lower semi-continuity,
that is,

∫
RN

∣∣(–�)
s
2 u

∣∣2 dx ≤ lim inf
n→∞

∫
RN

∣∣(–�)
s
2 un

∣∣2 dx.

Then
(∫

RN

∣∣(–�)
s
2 u

∣∣2 dx
)2

≤
(

lim inf
n→∞

∫
RN

∣∣(–�)
s
2 un

∣∣2 dx
)2

≤ lim inf
n→∞

(∫
RN

∣∣(–�)
s
2 un

∣∣2 dx
)2

,

which, together with (39) and (40), implies that

e(c) ≤ Ip(u) ≤ lim inf
n→∞ Ip(un) = e(c).

This implies that

lim
n→∞

∫
RN

∣∣(–�)
s
2 un

∣∣2 dx =
∫
RN

∣∣(–�)
s
2 u

∣∣2 dx,

lim
n→∞

(∫
RN

∣∣(–�)
s
2 un

∣∣2 dx
)2

=
(∫

RN

∣∣(–�)
s
2 u

∣∣2 dx
)2

.

Then the sequence {un} has a strongly convergent subsequence, which means that u is a
minimizer of e(c).

(2) If yn → ∞ as n → ∞, then from the definition of V (x) we know that

lim
ε→0

lim
n→∞

∫
BRε (yn)

V (x)|un|γ +2 dx = 0. (41)

From (25) we have

lim
n→∞

∣∣∣∣
∫
RN \BRε (yn)

V (x)|un|γ +2 dx
∣∣∣∣ ≤ C lim

n→∞

(∫
RN \BRε (yn)

|un|2 dx
) 2s(γ +2)–γ N

4s

≤ Cε
2s(γ +2)–γ N

4s ,

from which by letting ε → 0 we have

lim
n→∞

∫
RN \BRε (yn)

V (x)|un|γ +2 dx = 0.
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This, together with (41), indicates that

lim
n→∞

∫
RN

V (x)|un|γ +2 dx = 0. (42)

Using (42) and the Gagliardo–Nirenberg inequality (12), we deduce that

e(c) = lim
n→∞

[
a
2

∫
RN

∣∣(–�)
s
2 un

∣∣2 dx +
b
4

(∫
RN

∣∣(–�)
s
2 un

∣∣2 dx
)2

+
1

γ + 2

∫
RN

V (x)|un|γ +2 dx –
N

2N + 8s

∫
RN

|un|2+ 8s
N dx

]

= lim
n→∞

[
a
2

∫
RN

∣∣(–�)
s
2 un

∣∣2 dx +
b
4

(∫
RN

∣∣(–�)
s
2 un

∣∣2 dx
)2

–
N

2N + 8s

∫
RN

|un|2+ 8s
N dx

]

≥ lim
n→∞

[
a
2

∫
RN

∣∣(–�)
s
2 un

∣∣2 dx +
b
4

(
1 –

(
c
c∗

) 8s–2N
N

)(∫
RN

∣∣(–�)
s
2 un

∣∣2 dx
)2]

> 0,

which contradicts to Lemma 2.5. Hence yn → ∞ as n → ∞ cannot occur. �

Proof of Theorem 1.3. The proof is similar to that of Theorem 1.2. We omit it. �
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