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Abstract
The aim of this paper is to study properties of solutions to the fractional p-subLaplace
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1 Introduction
Let

(–�H)s
pu(ξ ) = CQ,s,pPV

∫
Hn

|u(ξ ) – u(η)|p–2(u(ξ ) – u(η))
|η–1 ◦ ξ |Q+sp

H

dη (1.1)

be the fractional p-subLaplacian on the Heisenberg group H
n, where 0 < s < 1, Q = 2n + 2,

CQ,s is a positive constant, and PV is the Cauchy principal value. In this paper we study
the properties of cylindrical solutions to the fractional p-subLaplace equation

(–�H)s
pu(ξ ) = f

(
u(ξ )

)
, (1.2)

where 2 ≤ p < ∞.
Recall that the fractional Laplacian in R

n is a nonlocal pseudodifferential operator de-
fined by

(–�)αu(x) = Cn,α lim
ε→0

∫
Rn\Bε (x)

u(x) – u(y)
|x – y|n+2α

dy, (1.3)

where 0 < α < 1, Cn,α is a constant, and u belongs to the Schwartz space. Since the non-
local property of the operator (–�)α brings new difficulties to investigate, Caffarelli and
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Silvestre in [4] developed the extension method which can reduce the nonlocal problem
relating to (–�)α to a local one in higher dimensions. This method has been applied to deal
with equations involving the fractional Laplacian, and fruitful results have been obtained,
see [3] and the references therein. Chen et al. [7] developed a direct method of moving
planes to handle the problem involving (–�)α for 0 < α < 1, and this direct method has
been used successfully to study symmetry, monotonicity, and nonexistence for many frac-
tional Laplace equations, see [6, 7] and the references therein. Recently, Chen and Li [6]
considered the fractional p-Laplacian

(–�)αp u(x) = Cn,α,pPV
∫
Rn

|u(x) – u(y)|p–2(u(x) – u(y))
|x – y|n+αp dy (1.4)

and obtained the radial symmetry and monotonicity of solutions to the equations involv-
ing operator (1.4).

To the elliptic equation

–�u = g(u) (1.5)

in R
n, Li and Ni [19] proved that the positive solutions to (1.5) are radially symmetric with

the assumptions that the limit of u is zero at the infinity and g ′ ≤ 0 if u is sufficiently small.
Under the same conditions, the authors in [6] extended the result in [19] to the fractional
p-Laplace equation

(–�)αp u = g(u), (1.6)

and got the radial symmetry and monotonicity of the solutions. They also pointed out that
the fractional p-Laplacian becomes p-Laplacian as α → 1 and, furthermore, it reduces to
–� when p = 2.

There are many interesting results about subLaplace and p-subLaplace equations on the
Heisenberg group (see [13, 15, 17, 18] and [10, 11, 20, 21, 25–27]). There have been sev-
eral different definitions of the fractional power subLaplacian in H

n (see [12, 14, 22] etc.).
The definition of fractional power subLaplacian given by Roncal and Thangavelu in [22] is
indeed a generalization of the definition given by Cowling and Haagerup in [9] about the
heat semigroup. The fractional power subLaplace equations can also be studied by gen-
eralizing the extension method in [4] to H

n, although the fractional power subLaplacian
(–�H)s (0 < s < 1) does not have the concrete integral expression, for example, see [14] and
[8] for s = 1

2 . There are also some results of the fractional power subLaplacian which are
the extension of [8], see [23, 24]. Note that the expression of fractional power subLaplacian
on H

n (see [22])

(–�H)su(ξ ) = CQ,sPV
∫
Hn

u(ξ ) – u(η)
|η–1 ◦ ξ |HQ+2s dη (1.7)

is the special form of fractional p-subLaplacian (1.1). By extending the method of moving
planes in [5–7] to H

n, in this paper, we study the properties of the solutions to (1.2) on H
n

and H
n
+ = {ξ ∈ H

n | t > 0}.
Our main results are the following.
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Theorem 1.1 Let 0 < s < 1, 2 ≤ p < ∞, and u ∈ Lsp(Hn) ∩ C1,1
loc(Hn) be a nonnegative cylin-

drical solution to (1.2) with

lim|ξ |H→∞ u(ξ ) = 0, (1.8)

and suppose that f ′(a) is nonpositive and locally bounded for a sufficiently small. Then u
must be symmetric and monotone with respect to t about some point in H

n.

Theorem 1.2 Let 0 < s < 1, 2 ≤ p < ∞, and u ∈ Lsp(Hn
+) ∩ C1,1

loc(Hn
+) be a nonnegative cylin-

drical solution to the problem

⎧⎨
⎩

(–�H)s
pu(ξ ) = f (u(ξ )), ξ ∈H

n
+,

u(ξ ) = 0, ξ /∈H
n
+,

(1.9)

and suppose that u satisfies (1.8) and is lower semicontinuous on H̄
n
+. If f (0) = 0, f ′(a) is

nonpositive and locally bounded for a sufficiently small, then u ≡ 0.

Observe that Theorem 1.1 is the extension of symmetry and monotonicity of solutions to
the fractional p-Laplace equation on R

n in [6] to the Heisenberg group, and Theorem 1.2
is the Liouville property on a half space in H

n. When f (a) = –a + aq (q > 1), our results still
hold.

The authors in [22] assumed that u ∈ C∞
0 (Hn) in (1.7). We point out that (1.1) is also

well defined for u ∈ Lsp(Hn) ∩ C1,1
loc(Hn), where

Lsp
(
H

n) =
{

u : Hn → R

∣∣∣
∫
Hn

|u(ξ )|p–1

1 + |ξ |HQ+sp dξ < ∞
}

.

The paper is organized as follows. Section 2 collects some well-known results on H
n,

and we show that (1.1) is well defined for u ∈ Lsp(Hn) ∩ C1,1
loc(Hn). In Sect. 3, we establish

three maximum principles. Theorem 1.1 and Theorem 1.2 are proved in Sect. 4.

2 Preliminaries
The Heisenberg group H

n is the Euclidean space R
2n+1(n ≥ 1) endowed with the group

law ◦:

ξ̄ ◦ ξ =

(
x + x̄, y + ȳ, t + t̄ + 2

n∑
i=1

(xiȳi – yix̄i)

)
, (2.1)

where ξ = (x1, . . . , xn, y1, . . . , yn, t) := (x, y, t) ∈R
n ×R

n ×R and ξ̄ = (x̄, ȳ, t̄). Denote by δκ the
dilations on H

n, i.e.,

δκ (ξ ) =
(
κx,κy,κ2t

)
, κ > 0, (2.2)

which satisfy δκ (ξ̄ ◦ ξ ) = δκ (ξ̄ ) ◦ δκ (ξ ).
The left invariant vector fields corresponding to H

n are

Xi =
∂

∂xi
+ 2yi

∂

∂t
, i = 1, . . . , n,
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Yi =
∂

∂yi
– 2xi

∂

∂t
, i = 1, . . . , n,

T =
∂

∂t
.

It is easy to check that Xi and Yj satisfy

[Xi, Yj] = –4Tδij, [Xi, Xj] = [Yi, Yj] = 0, i, j = 1, . . . , n.

The Heisenberg gradient of a function u is defined by

∇Hu = (X1u, . . . , Xnu, Y1u, . . . , Ynu), (2.3)

and the subLaplacian �H on H
n is

�H :=
n∑

i=1

(
Xi

2 + Yi
2)

=
n∑

i=1

(
∂2

∂xi2 +
∂2

∂yi2 + 4yi
∂2

∂xi∂t
– 4xi

∂2

∂yi∂t
+ 4

(
xi

2 + yi
2) ∂2

∂t2

)
. (2.4)

The family {X1, . . . , Xn, Y1, . . . , Yn} satisfies Hörmander’s rank condition (see [16]) which
implies that �H is hypoelliptic and the maximum principle holds for solutions to the equa-
tion involving �H (see [2]).

The integer Q = 2n + 2 is called the homogeneous dimension of Hn. Denote by |ξ |H the
distance from ξ to the zero (see [13])

|ξ |H =

( n∑
i=1

(
xi

2 + yi
2)2 + t2

) 1
4

. (2.5)

Authors in [22] used the norm |(z, w)| = (
∑n

i=1 (xi
2 + yi

2)2 + 16t2)
1
4 for (x, y, t) := (z, w) ∈ H

n,
which is equivalent to (2.5). The distance between two points of Hn is defined by

dH(ξ ,η) =
∣∣η–1 ◦ ξ

∣∣
H

,

where η–1 denotes the inverse of η with respect to ◦, that is, η–1 = –η. The open ball of
radius R > 0 centered at ξ is the set

BH(ξ , R) =
{
η ∈H

n | dH(η, ξ ) < R
}

.

It is well known that ξ → |ξ |H is homogeneous of degree one with respect to δκ and

∣∣BH(ξ , R)
∣∣ =

∣∣BH(0, R)
∣∣ =

∣∣BH(0, 1)
∣∣RQ,

where | · | denotes the Lebesgue measure.
A function u is called the cylindrical function if

u(x, y, t) = u(r, t),
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where (x, y, t) ∈ H
n, r = (|x|2 + |y|2)

1
2 .

Proposition 2.1 For u ∈ Lsp(Hn) ∩ C1,1
loc(Hn), the operator in (1.1) is well defined.

Proof For any ξ ∈H
n,

PV
∫
Hn

|u(ξ ) – u(η)|p–2(u(ξ ) – u(η))
|η–1 ◦ ξ |Q+sp

H

dη

= lim
ε→0

[∫
BH(ξ ,1)\BH(ξ ,ε)

(∣∣〈 – (∇Hu, Tu),η–1 ◦ ξ
〉
+ o

(∣∣η–1 ◦ ξ
∣∣2
H

)∣∣p–2

× (〈
– (∇Hu, Tu),η–1 ◦ ξ

〉
+ o

(∣∣η–1 ◦ ξ
∣∣2
H

)))(∣∣η–1 ◦ ξ
∣∣Q+sp
H

)–1 dη

+
∫
Hn\BH(ξ ,1)

|u(ξ ) – u(η)|p–2(u(ξ ) – u(η))
|η–1 ◦ ξ |Q+sp

H

dη

]

≤ C lim
ε→0

[∫
BH(ξ ,1)\BH(ξ ,ε)

o(1)
|η–1 ◦ ξ |Q+sp

H

dη +
∫

BH(ξ ,1)\BH(ξ ,ε)

o(1)
|η–1 ◦ ξ |Q+sp

H

dη

+
∫
Hn\BH(ξ ,1)

up–1(ξ )
|η–1 ◦ ξ |Q+sp

H

dη +
∫
Hn\BH(ξ ,1)

up–1(η)
|η–1 ◦ ξ |Q+sp

H

dη

]

:= C lim
ε→0

(I1 + I2 + I3 + I4),

where ε is sufficiently small. Noting that u ∈ C1,1
loc(Hn), Q+sp–p < Q, and Q+sp–2p+2 < Q,

we know that I1 and I2 are finite; I3 is clearly convergent when |ξ |H → ∞; and I4 is finite
from u ∈ Lsp(Hn). Hence, (1.1) is well defined. �

3 Maximum principles
In this section, we prove three maximum principles which will be used in the process of
moving planes. These maximum principles are on a bounded domain in H

n, on a bounded
domain in the left domain of some hyperplane, and on a narrow region.

Lemma 3.1 Let Ω be a bounded domain in H
n. Assume u ∈ Lsp(Hn) ∩ C1,1

loc(Hn) is lower
semicontinuous on Ω̄ and satisfies

⎧⎨
⎩

(–�H)s
pu(ξ ) ≥ 0, ξ ∈ Ω ,

u(ξ ) ≥ 0, ξ ∈H
n \ Ω ,

(3.1)

then

u(ξ ) ≥ 0, ξ ∈ Ω . (3.2)

Furthermore, if u = 0 at some point in Ω , then

u(ξ ) = 0 almost everywhere in H
n.

These conclusions also hold on the unbounded region Ω if we further assume that

lim
|ξ |H→∞

u(ξ ) ≥ 0.
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Proof Suppose that (3.2) is not true, then by the lower semicontinuity of u on Ω̄ there
exists ξ 0 ∈ Ω̄ such that

u
(
ξ 0) = min

Ω̄

u < 0.

From (3.1), we know that ξ 0 is a point in Ω , and

(–�H)s
pu

(
ξ 0) = CQ,s,pPV

∫
Hn

|u(ξ 0) – u(η)|p–2(u(ξ 0) – u(η))
|η–1 ◦ ξ 0|HQ+sp dη

≤ CQ,s,p

∫
Hn\Ω

|u(ξ 0) – u(η)|p–2(u(ξ 0) – u(η))
|η–1 ◦ ξ 0|HQ+sp dη

< 0,

which contradicts (3.1). This implies (3.2).
If there exists some point ξ 0 ∈ Ω such that u(ξ 0) = 0, then

0 ≤ (–�H)s
pu

(
ξ 0) = CQ,s,p

∫
Hn

|u(η)|p–2(–u(η))
|η–1 ◦ ξ 0|HQ+sp dη.

Using u(ξ ) ≥ 0, we have u(ξ ) = 0 almost everywhere in H
n.

For an unbounded region Ω , the condition lim|ξ |H→∞u(ξ ) ≥ 0 implies that the negative
minimum ξ 0 of u cannot be reached at infinity. Then the condition of lower semicontinuity
ensures that the proof can go on as above. The proof is ended. �

Let Tλ be a hyperplane in H
n defined by

Tλ =
{
ξ ∈ H

n | t = λ,λ ∈R
}

.

Denote by ξ̃ = (y, x, 2λ – t) the H-reflection of ξ = (x, y, t) about the plane Tλ and by

Σλ =
{
ξ ∈H

n | t < λ
}

the region in the left of the plane Tλ. Letting

uλ(ξ ) = uλ

(∣∣(x, y)
∣∣, t

)
:= u

(∣∣(x, y)
∣∣, 2λ – t

)

and using the H-refection (see [1]), we have

uλ(ξ ) = u(y, x, 2λ – t) = u
(
ξλ

)
.

Set

wλ(ξ ) = uλ(ξ ) – u(ξ ).
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Lemma 3.2 Let Ω be a bounded domain in Σλ. Assume that the cylindrical function u ∈
Lsp(Hn) ∩ C1,1

loc(Hn) is lower semicontinuous on Ω̄ and satisfies

⎧⎪⎪⎨
⎪⎪⎩

(–�H)s
puλ(ξ ) – (–�H)s

pu(ξ ) ≥ 0, ξ ∈ Ω ,

wλ(ξ ) ≥ 0, ξ ∈ Σλ \ Ω ,

wλ(ξλ) = –wλ(ξ ), ξ ∈ Σλ,

(3.3)

then

wλ(ξ ) ≥ 0, ξ ∈ Ω . (3.4)

Furthermore, if wλ = 0 at some point in Ω , then

wλ(ξ ) = 0 almost everywhere in H
n.

These conclusions also hold for the unbounded region Ω if we further assume that

lim
|ξ |H→∞

wλ(ξ ) ≥ 0.

Proof Suppose that (3.4) is incorrect. By the lower semicontinuity of wλ on Ω̄ , there exists
ξ 0 ∈ Ω̄ such that

wλ

(
ξ 0) = min

Ω̄

wλ < 0.

For simplicity, we denote

G(a) = |a|p–2a, a ≥ 0.

Note that G(a) is increasing and G′(a) = (p – 1)|a|p–2 ≥ 0. A direct calculation gives

(–�H)s
puλ

(
ξ 0) – (–�H)s

pu
(
ξ 0)

= CQ,s,pPV
∫
Hn

G(uλ(ξ 0) – uλ(η)) – G(u(ξ 0) – u(η))
|η–1 ◦ ξ 0|HQ+sp dη

= CQ,s,pPV
∫

Σλ

G(uλ(ξ 0) – uλ(η)) – G(u(ξ 0) – u(η))
|η–1 ◦ ξ 0|HQ+sp dη

+ CQ,s,pPV
∫

Σλ

G(uλ(ξ 0) – u(η)) – G(u(ξ 0) – uλ(η))

|(ηλ)–1 ◦ ξ 0|HQ+sp dη

= CQ,s,pPV
∫

Σλ

(
1

|η–1 ◦ ξ 0|HQ+sp –
1

|(ηλ)–1 ◦ ξ 0|HQ+sp

)

× (
G

(
uλ

(
ξ 0) – uλ(η)

)
– G

(
u
(
ξ 0) – u(η)

))
dη

+ CQ,s,pPV
∫

Σλ

(
G

(
uλ

(
ξ 0) – uλ(η)

)
– G

(
u
(
ξ 0) – uλ(η)

)
+ G

(
uλ

(
ξ 0) – u(η)

)
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– G
(
u
(
ξ 0) – u(η)

))(∣∣(ηλ
)–1 ◦ ξ 0∣∣

H

Q+sp)–1 dη

:= CQ,s,p(J1 + J2). (3.5)

For J1, we have for any ξ 0,η ∈ Σλ,

1
|η–1 ◦ ξ 0|HQ+sp –

1

|(ηλ)–1 ◦ ξ 0|HQ+sp > 0.

By the monotonicity of G and the fact that

(
uλ

(
ξ 0) – uλ(η)

)
–

(
u
(
ξ 0) – u(η)

)
= wλ

(
ξ 0) – wλ(η)

is nonpositive but not identity to 0, we deduce that

G
(
uλ

(
ξ 0) – uλ(η)

)
– G

(
u
(
ξ 0) – u(η)

)

is also nonpositive but not identity to 0. So we have

J1 < 0. (3.6)

For J2, by the mean value theorem,

J2 =
∫

Σλ

G(uλ(ξ 0) – uλ(η)) – G(u(ξ 0) – uλ(η)) + G(uλ(ξ 0) – u(η)) – G(u(ξ 0) – u(η))

|(ηλ)–1 ◦ ξ 0|HQ+sp dη

= wλ

(
ξ 0)∫

Σλ

G′(g(η)) + G′(h(η))

|(ηλ)–1 ◦ ξ 0|HQ+sp dη

≤ 0. (3.7)

In fact, if uλ(η) ≥ u(η), then we have wλ(η) ≥ 0, i.e., (3.4) holds. If uλ(η) > u(η), we know
G is strictly increasing, then G′(g(η)) ≥ 0 and G′(h(η)) ≥ 0. Hence, we have (3.7).

Putting (3.6) and (3.7) into (3.5) implies

(–�H)s
puλ

(
ξ 0) – (–�H)s

pu
(
ξ 0) < 0.

This contradicts (3.3) and we obtain (3.4).
If there exists some point ξ 0 ∈ Ω such that wλ(ξ 0) = 0, then (3.5) holds and J2 ≥ 0. Hence

from the first inequality in (3.3) we have J1 ≥ 0, and by the monotonicity of G,

G
(
uλ

(
ξ 0) – uλ(η)

)
– G

(
u
(
ξ 0) – u(η)

) ≥ 0.

We have, for almost all η ∈ Σλ,

(
uλ

(
ξ 0) – uλ(η)

)
–

(
u
(
ξ 0) – u(η)

)
= wλ

(
ξ 0) – wλ(η) = –wλ(η) ≥ 0.

Using (3.4), we have

wλ(ξ ) = 0 almost everywhere in Σλ.
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From the antisymmetry of wλ,

wλ(ξ ) = 0 almost everywhere in H
n. �

Lemma 3.3 Let Ω be a bounded narrow domain in Σλ and locate in {ξ | λ – l < t < λ} for
small l. Assume that the cylindrical function u ∈ Lsp(Hn)∩C1,1

loc(Hn) is lower semicontinuous
on Ω̄ . If c(x) is bounded from below in Ω and u satisfies

⎧⎪⎪⎨
⎪⎪⎩

(–�H)s
puλ(ξ ) – (–�H)s

pu(ξ ) + c(ξ )wλ(ξ ) ≥ 0, ξ ∈ Ω ,

wλ(ξ ) ≥ 0, ξ ∈ Σλ \ Ω ,

wλ(ξλ) = –wλ(ξ ), ξ ∈ Σλ,

(3.8)

then

wλ(ξ ) ≥ 0, ξ ∈ Ω . (3.9)

Furthermore, if wλ = 0 at some point in Ω , then

wλ(ξ ) = 0 almost everywhere in H
n.

These conclusions also hold for the unbounded region Ω if we further assume that

lim
|ξ |H→∞

wλ(ξ ) ≥ 0.

Proof By the proof of Lemma 3.2, we have

(–�H)s
puλ

(
ξ 0) – (–�H)s

pu
(
ξ 0)

= CQ,s,pPV
∫

Σλ

(
1

|η–1 ◦ ξ 0|HQ+sp –
1

|(ηλ)–1 ◦ ξ 0|HQ+sp

)

× (
G

(
uλ

(
ξ 0) – uλ(η)

)
– G

(
u
(
ξ 0) – u(η)

))
dη

+ CQ,s,pPV
∫

Σλ

(
G

(
uλ

(
ξ 0) – uλ(η)

)
– G

(
u
(
ξ 0) – u(η)

)
+ G

(
uλ

(
ξ 0) – u(η)

)

– G
(
u
(
ξ 0) – uλ(η)

))(∣∣(ηλ
)–1 ◦ ξ 0∣∣

H

Q+sp)–1 dη

:= CQ,s,p(I1 + I2). (3.10)

Obviously,

I2 ≤ 0. (3.11)

Similar to (3.6), we know

I1 < 0.
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Denote

δξ0 = dist
(
ξ 0, ∂Σλ

)
=

∣∣λ – t0∣∣.

Combining (3.10), (3.11), and I1 < 0, we have

(–�H)s
puλ(ξ 0) – (–�H)s

pu(ξ 0)
δξ0

< 0. (3.12)

Noting that ξ 0 is a negative minimum of wλ, we infer ∇wλ0 (ξ 0) = 0, and so

∂wλ

∂t
(
ξ 0) = lim

δk→0

wλ(ξ 0)
δξ0

= 0,

i.e.,

c(ξ 0)wλ(ξ 0)
δξ0

≤ o(1). (3.13)

Now (3.12) and (3.13) contradict (3.8), and then (3.9) is proved. �

4 Proof of the main results
Following the idea in [6], we first use Lemma 3.1, Lemma 3.2, and Lemma 3.3 to prove
Theorem 1.1.

Proof of Theorem 1.1 First we check that for λ sufficiently negative it holds

wλ(ξ ) ≥ 0, ξ ∈ Σλ. (4.1)

Indeed, suppose that (4.1) is violated, then by (1.8) there exists a point ξ 0 ∈ Σλ such that

wλ

(
ξ 0) = min

Σλ

wλ < 0,

i.e., uλ(ξ 0) ≤ ςλ(ξ 0) ≤ u(ξ 0). Note by (1.2) that

(–�H)s
puλ(ξ ) – (–�H)s

pu(ξ ) = f ′(ςλ(ξ )
)
wλ(ξ ), (4.2)

where ςλ(ξ ) between uλ(ξ ) and u(ξ ). For sufficiently negative λ, u(ξ 0) is small by (1.8),
hence so is ςλ(ξ 0). Due to the condition of f ′, we have f ′(ςλ(ξ 0)) ≤ 0. From (4.2),

(–�H)s
puλ

(
ξ 0) – (–�H)s

pu
(
ξ 0) ≥ 0. (4.3)

On the other hand, it follows by the proof of Lemma 3.2 that

(–�H)s
puλ

(
ξ 0) – (–�H)s

pu
(
ξ 0) < 0. (4.4)

This contradicts (4.3), and hence (4.1) is proved.
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The above result provides the starting point of moving planes. Let us move the plane Tλ

to the right as long as (4.1) holds to its limiting position

λ0 = sup
{
λ | wμ(ξ ) ≥ 0,∀ξ ∈ Σμ,μ ≤ λ

}
.

We will show that

λ0 = 0 (4.5)

i.e.,

wλ0 (ξ ) = 0, ξ ∈ Σλ0 . (4.6)

In fact, suppose that (4.6) is false, we have by Lemma 3.2 that

wλ0 (ξ ) > 0, ξ ∈ Σλ0 . (4.7)

From the definition of λ0, there exist a sequence λk → λ0 and a point ξ k ∈ Σλk such that

wλk

(
ξ k) = min

Σλk
wλk < 0, ∇wλk

(
ξ k) = 0. (4.8)

Note that

(–�H)s
puλk

(
ξ k) – (–�H)s

pu
(
ξ k) = f ′(ςλk

(
ξ k))wλk

(
ξ k). (4.9)

If |ξ k|H is sufficiently large, then u(ξ k) is small and so ςλk (ξ k) is also small, this implies
f ′(ςλk (ξ k)) ≤ 0 (because f ′(a) ≤ 0 for the sufficiently small a). It follows

(–�H)s
puλk

(
ξ k) – (–�H)s

pu
(
ξ k) ≥ 0.

But this contradicts the fact that ξ k is a negative minimum of wλk (see Lemma 3.2). Hence,
{ξ k} is bounded, i.e., the sequence {ξ k} is bounded.

It follows that the subsequence of {ξ k} converges to some point ξ 0. Then (4.8) means
that, for ξ 0 ∈ ∂Σλ0 ,

wλ0

(
ξ 0) ≤ 0, ∇wλ0

(
ξ 0) = 0.

Particularly,

∂wλ0

∂t
(
ξ 0) = lim

δk→0

wλk (ξ k)
δk

= 0.

Applying (4.9), we have

lim
δk→0

1
δk

(
(–�H)s

puλk

(
ξ k) – (–�H)s

pu
(
ξ k)) = lim

δk→0

1
δk

f ′(ςλk

(
ξ k))wλk

(
ξ k) = 0,
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which is a contradiction with Lemma 3.3. Therefore,

wλ0 (ξ ) ≥ 0, ξ ∈ Σλ0 . (4.10)

Similarly, we can move the plane from +∞ to the left to get

wλ0 (ξ ) ≤ 0, ξ ∈ Σλ0 . (4.11)

Then (4.6) follows by combining (4.10) and (4.11). Finally, we see that u must be symmetric
and monotone with respect to t about some point. �

Next, we give the proof of Theorem 1.2.

Proof of Theorem 1.2 By condition (1.8) and f (0) = 0, we claim

u(ξ ) > 0 or u(ξ ) ≡ 0 for any ξ ∈H
n
+.

In fact, suppose that the conclusion u(ξ ) > 0 is not correct, we will verify u(ξ ) ≡ 0. The
lower semicontinuity of u on H

n
+ implies that there exists ξ 0 ∈ H̄

n
+ such that

u
(
ξ 0) = min

H̄
n
+

u = 0,

and then

(–�H)s
pu

(
ξ 0) = CQ,s,pPV

∫
Hn

|u(ξ 0) – u(η)|p–2(u(ξ 0) – u(η))
|η–1 ◦ ξ 0|HQ+sp dη

= CQ,s,pPV
∫
H

n
+

|u(ξ 0) – u(η)|p–2(u(ξ 0) – u(η))
|η–1 ◦ ξ 0|HQ+sp dη

= CQ,s,pPV
∫
H

n
+

–u(η)|u(η)|p–2

|η–1 ◦ ξ 0|HQ+sp dη

= f
(
u
(
ξ 0)) = 0.

Hence
∫
H

n
+

–u(η)|u(η)|p–2

|η–1◦ξ0|HQ+sp dη = 0, and then u(ξ ) ≡ 0, ξ ∈H
n
+.

In the sequel, we only need to treat the case u > 0 on H
n
+. Let us employ the method of

moving planes to u along the t direction and denote

T+
λ =

{
ξ ∈H

n
+ | t = λ,λ ∈R

+}

and

Σ+
λ =

{
ξ ∈H

n
+ | 0 < t < λ

}
.

The H-reflection of ξ = (x, y, t) about T+
λ is ξλ = (y, x, 2λ – t), and let

wλ(ξ ) = uλ(ξ ) – u(ξ ).
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If λ > 0 is sufficiently small, we deduce from Lemma 3.3 with Ω = Σ+
λ and Σλ = Σ+

λ ∪
(Hn \Hn

+) that on the narrow region Σ+
λ ,

wλ(ξ ) ≥ 0. (4.12)

This provides the starting point of moving planes. Now we will explain that the plane T+
λ

can be moved to the infinity so that (4.12) holds. Let

λ0 = sup
{
λ > 0 | wμ(ξ ) ≥ 0,∀ξ ∈ Σ+

λ ,μ ≤ λ
}

,

and we will prove

λ0 = ∞. (4.13)

In fact, if λ0 < ∞, then we claim that T+
λ can be moved further to the right, that is, there

exists σ > 0 such that, for any λ ∈ (λ0,λ0 + σ ),

wλ(ξ ) ≥ 0, ξ ∈ Σ+
λ . (4.14)

This will contradict the definition of λ0, and hence (4.13) holds.
At present, we prove (4.14). If |ξ |H is sufficiently large, then (4.14) is true by using the

similar proof to (4.1) in Theorem 1.1. This implies that there exists some R0 > 0 such that
(4.14) holds true on H

n
+ \ BH(0, R0). Next we point out that (4.14) is also true on BH(0, R0).

Noting λ0 < ∞ and using Lemma 3.2, we find that on ξ ∈ Σ+
λ0

∩ BH(0, R0),

wλ0 (ξ ) > 0 (4.15)

or

wλ0 (ξ ) ≡ 0.

In the case wλ0 (ξ ) ≡ 0, we observe by the boundary conditions of u that u(ξ ) ≡ 0. On the
other hand, (4.15) implies that there exists small δ > 0 such that

wλ0 (ξ ) ≥ c > 0, ξ ∈ Σ+
λ0–δ ∩ BH(0, R0). (4.16)

Since wλ relies continuously on λ, there exists σ > ε > 0 such that

wλ0+ε(ξ ) ≥ 0, ξ ∈ Σ+
λ0–δ ∩ BH(0, R0). (4.17)

Since (Σ+
λ0+ε \ Σ+

λ0–δ) ∩ BH(0, R0) is a narrow region, we have by Lemma 3.3

wλ0+ε(ξ ) ≥ 0, ξ ∈ Σ+
λ0+ε ∩ BH(0, R0),

and therefore (4.14) is proved.
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Using (4.13) and Lemma 3.2 once again, it follows that, for any ξ ∈ Σ+
λ (here 0 ≤ λ ≤ ∞),

wλ(ξ ) > 0, (4.18)

or

wλ(ξ ) ≡ 0. (4.19)

For (4.19), we can use the boundary condition of u to obtain u(ξ ) ≡ 0. In addition, it follows
from (4.18) that u(ξ ) is strictly increasing, which contradicts the boundary condition of u
and (1.8). �
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