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Abstract
This paper is concerned with the following nonlocal fourth-order elliptic problem:

{
�2u –m(

∫
Ω |∇u|2 dx)�u = a(x)|u|s–2u + f (x,u), x ∈ Ω ,

u =�u = 0, x ∈ ∂Ω ,

by using the mountain pass theorem, the least action principle, and the Ekeland
variational principle, the existence and multiplicity results are obtained.

Keywords: Fourth-order elliptic equation; Nonlocal; Asymptotically linear; Mountain
pass theorem; Critical point

1 Introduction
In this paper, we consider the following nonlocal fourth-order elliptic problem:

⎧⎨
⎩�2u – m(

∫
Ω

|∇u|2 dx)�u = a(x)|u|s–2u + f (x, u), x ∈ Ω ,

u = �u = 0, x ∈ ∂Ω ,
(1.1)

where Ω ⊂ RN (N > 4) is a bounded smooth domain, m(·) ∈ C(R+, R+), a(·) ∈ C(Ω , R+),
s ∈ (1, 2), and f ∈ C(Ω × R, R).

Problem (1.1) is related to the stationary problems associated with

∂2u
∂t2 + �2u +

(
Q +

∫
Ω

|∇u|2 dx
)

�u = f (x, u, ut).

This plate model was proposed by Berger [1] in 1955, as a simplification of the von Karman
plate equation which describes large defection of a plate, where the parameter Q describes
in-plane forces applied to the plate and the function f represents transverse loads which
may depend on the displacement u and the velocity ut .
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Because of the important background, several researchers have considered problem
(1.1) by using variational methods when a(x) ≡ 0,

⎧⎨
⎩�2u – m(

∫
Ω

|∇u|2 dx)�u = f (x, u), x ∈ Ω ,

u = �u = 0, x ∈ ∂Ω ,

with the function m being bounded or unbounded and f having superlinear growth. We
refer the readers to [2–11] and the references therein.

Recently, in [12], Ru et al. considered problem (1.1) with m(t) = a+bt and a more general
f such as

⎧⎨
⎩�2u – (a + b

∫
Ω

|∇u|2 dx)�u = f (x, u,∇u,�u), x ∈ Ω ,

u = �u = 0, x ∈ ∂Ω .

By using an iterative method based on the mountain pass lemma and truncation method
developed by De Figueiredo et al. [13], they proved that the above problem has at least one
nontrivial solution.

One of the important conditions in their work is that f (x, t) satisfies the famous
Ambrosetti–Rabinowitz type condition, for short, which is called the (AR) condition:

(AR condition) there exist Θ > 2 and t1 > 0, such that

0 < ΘF(x, t, ξ1, ξ2) ≤ tf (x, t, ξ1, ξ2), ∀|t| ≥ t1, x ∈ Ω , (ξ1, ξ2) ∈ RN+1,

where F(x, t, ξ1, ξ2) =
∫ t

0 f (x, s, ξ1, ξ2) ds.
It is well known that (AR) is a important technical condition to apply the mountain pass

theorem. This condition implies that

lim
u→∞

F(x, u)
u2 = ∞.

If f (x, u) is asymptotically linear at u = 0 or u = +∞. then f (x, u) does not satisfy the (AR)
condition. In [14], A. Bensedik and M. Bouchekif considered second-order elliptic equa-
tions of Kirchhoff type with an asymptotically linear potential

⎧⎨
⎩–m(

∫
Ω

|∇u|2 dx)�u = f (x, u), x ∈ Ω ,

u = 0, x ∈ ∂Ω .

On the other hand, the classical equation involving a biharmonic operator

⎧⎨
⎩�2u + c�u = a(x)|u|s–2u + f (x, u), x ∈ Ω ,

u(x) = �u(x) = 0, x ∈ ∂Ω ,
(1.2)

has been extensively studied using the mountain pass theorem when a(x) ≡ 0 and f (x, u)
is asymptotically linear at u = 0 or u = +∞. We refer the reader to [15, 16]. In particular,
in [17], Pu et al. considered problem (1.2) when a(x) �= 0.
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Until now, there are few works on problem (1.1) when a(x) �= 0 and f (x, u) does not sat-
isfy the (AR) condition. Inspired by these references, in this paper, we discuss the exis-
tence and multiplicity of solutions of problem (1.1) when a(x) �= 0 and the nonlinearity f
is asymptotically linear at u = 0 or u = +∞.

2 Preliminaries
Assume that the function m(t) satisfies the following conditions:

(M) m : R+ → R+ is continuous, nondecreasing, and there exists m1 ≥ m0 > 0 such that

m0 = min
t∈R+

m(t) = m(0), m1 = sup
t∈R+

m(t).

Remark In [14] and [18], the function m(t) is assumed that satisfy (M) and there exits
t0 > 0 such that m(t) = m1, ∀t > t0.

First, we study the nonlinear eigenvalue problem

⎧⎨
⎩�2u – m(

∫
Ω

|∇u|2 dx)�u = Λu, x ∈ Ω ,

u = 0, �u = 0, x ∈ ∂Ω .

Let (λk ,φk) be the eigenvalue and the corresponding eigenfunction of (–�, H1
0 (Ω)), namely

⎧⎨
⎩–�φk = λkφk , x ∈ Ω ,

φk(x) = 0, x ∈ ∂Ω .

Set

Lu = �2u – m
(∫

Ω

|∇u|2 dx
)

�u.

Via some simple computations, we get

Lφk = �2φk – m
(∫

Ω

|∇φk|2 dx
)

�φk

=
[
λ2

k + λkm
(∫

Ω

|∇φk|2 dx
)]

φk

=
[
λ2

k + λkm
(

λk

∫
Ω

|φk|2 dx
)]

φk .

Set

Λk =

⎧⎨
⎩λ2

k + λkm(
∫
Ω

|∇φk|2 dx), or

λ2
k + λkm(λk

∫
Ω

|φk|2 dx)
(2.1)

and so Λk (k = 1, 2, . . .) are the eigenvalues of the operator L associated to the eigenfunction
φk .
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Assume that the eigenfunctions φk are suitably normalized with respect to the L2(Ω)
inner product, namely

(φi,φj)L2(Ω) =

⎧⎨
⎩0, i �= j;

1, i = j.

Expression (2.1) can be rewritten as

Λk = λ2
k + λkm

(
λk

∫
Ω

|φk|2 dx
)

= λ2
k + λkm(λk).

For each eigenvalue λk being repeated as often as multiplicity, recall that

0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · ≤ λk → +∞,

and if (M) holds, then

0 < Λ1 ≤ Λ2 ≤ Λ3 ≤ · · · ≤ Λk → +∞.

Denote

Λ̄k = λ2
k + m1λk , k = 1, 2, . . . ,

then we know that

Λk ≤ Λ̄k , k = 1, 2, . . . .

It is well known that

λ1 = inf

{∫
Ω

|∇u|2 dx : u ∈ H1
0(Ω),

∫
Ω

|u|2 dx = 1
}

.

Similarly, we have

Lemma 2.1 Assume that (M) holds, then

Λ1 = inf

{∫
Ω

|�u|2 dx + m
(∫

Ω

|∇u|2 dx
)∫

Ω

|∇u|2 dx :

u ∈ H2(Ω) ∩ H1
0(Ω),

∫
Ω

|u|2 dx = 1
}

.

Proof Denote

inf

{∫
Ω

|�u|2 dx + m
(∫

Ω

|∇u|2 dx
)∫

Ω

|∇u|2 dx :

u ∈ H2(Ω) ∩ H1
0(Ω),

∫
Ω

|u|2 dx = 1
}

= Λ0,
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then it is clear that

Λ1 = λ2
1 + λ1m(λ1) ≥ Λ0.

Let u0 ∈ H2(Ω) ∩ H1
0(Ω) achieve Λ0, then

∫
Ω

|u0|2 dx = 1,
∫
Ω

|∇u0|2 dx ≥ λ1 and u0 = 0 on
∂Ω , therefore∫

Ω

|∇u0|2 dx = –
∫

Ω

u0�u0 dx,

which implies that
(∫

Ω

|∇u0|2 dx
)2

=
(

–
∫

Ω

u0�u0

)2

dx ≤
∫

Ω

|u0|2 dx
∫

Ω

|�u0|2 dx =
∫

Ω

|�u0|2 dx,

then

Λ0 =
∫

Ω

|�u0|2 dx + m
(∫

Ω

|∇u0|2 dx
)∫

Ω

|∇u0|2 dx

≥
(∫

Ω

|∇u0|2 dx
)2

+ m
(∫

Ω

|∇u0|2 dx
)∫

Ω

|∇u0|2 dx

≥ λ2
1 + λ1m(λ1) = Λ1.

So Λ0 = Λ1.
Let H = H2(Ω) ∩ H1

0(Ω) be the Hilbert space equipped with the standard inner product

(u, v)H =
∫

Ω

(�u�v + ∇u∇v) dx

and the deduced norm

‖u‖2
H =

∫
Ω

|�u|2 dx +
∫

Ω

|∇u|2 dx.

It is well know that ‖u‖H is equivalent to (
∫
Ω

|�u|2 dx) 1
2 . And there exists τ > 0 such that∫

Ω

|�u|2 dx ≤ ‖u‖2
H ≤ τ

∫
Ω

|�u|2 dx.

Denote

‖u‖2 =
∫

Ω

|�u|2 dx + m1

∫
Ω

|∇u|2 dx

and

‖u‖2
m0 =

∫
Ω

|�u|2 dx + m0

∫
Ω

|∇u|2 dx.

It is obvious that the norms ‖u‖ and ‖u‖m0 are equivalent to the norm ‖u‖H in H. And
since m0 < m1, we have

‖u‖2 ≥ ‖u‖2
m0 ≥ θ‖u‖2,

where θ = m0
m1

∈ (0.1).
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Throughout this paper, we denote by C universal positive constants, unless otherwise
specified, and

‖u‖∞ = ‖u‖L∞ for u ∈ L∞(Ω) or u ∈ C(Ω),

‖u‖q =
(∫

Ω

|∇u|q dx
) 1

q
for u ∈ Lq, 1 ≤ q < +∞.

By the Sobolev embedding theorem, there is a positive Kq such that

‖u‖q ≤ Kq‖u‖ for u ∈ H and 1 ≤ q <
2N

N – 4
. (2.2)

Specially, when condition (M) holds and q = 2, by Lemma 2.1, then

‖u‖2
2 ≤ 1

Λ1
‖u‖2. (2.3)

The mountain pass theorem and the Ekeland variational principle are our main tools,
which can be found in [19]. �

Lemma 2.2 Let E be a real Banach space, and I ∈ C1(E, R) satisfy (PS) condition. Suppose
1 There exist ρ > 0, α > 0 such that

I|∂Bρ ≥ I(0) + α,

where Bρ = {u ∈ E|‖u‖ ≤ ρ}.
2 There is an e ∈ E with ‖e‖ > ρ such that

I(e) ≤ I(0).

Then I(u) has a critical value c which can be characterized as

c = inf
γ∈Γ

max
u∈γ ([0,1])

I(u),

where Γ = {γ ∈ C([0, 1], E)|γ (0) = 0,γ (1) = e}.

Lemma 2.3 Let V be a complete metric space and I : V → R ∪ {+∞} be lower semicontin-
uous, bounded from below. Let ε > 0 be given and v ∈ V be such that

I(v) ≤ inf
V

I + ε.

Then there exists u ∈ V such that

I(u) ≤ I(v), d(v, u) ≤ 1

and for all w �= u in V ,

I(w) > F(u) – εd(v, w).
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3 Main results
A function u ∈ H is called a weak solution of (1.1) if

∫
Ω

�u�v dx + m
(∫

Ω

|∇u|2 dx
)∫

Ω

∇u∇v dx –
∫

Ω

a(x)|u|s–2uv dx =
∫

Ω

f (x, u)v dx

holds for any v ∈ H. Let J : H → R be the functional defined by

J(u) =
1
2

∫
Ω

|�u|2 dx +
1
2

M
(∫

Ω

|∇u|2 dx
)

–
1
s

∫
Ω

a(x)|u|s dx –
∫

Ω

F(x, u) dx,

where

M(t) =
∫ t

0
m(s) ds, F(t) =

∫ t

0
f (x, s) ds.

It is easy to see that J ∈ C1(H, R) and the critical points of J in H correspond to the weak
solutions of problem (1.1).

We make the following assumptions.
(A) a(x) ∈ C(Ω), a(x) ≥ 0, ∀x ∈ Ω and ‖a(x)‖∞ = ā > 0;

(F0) tf (x, t) ≥ 0 for x ∈ Ω , t ∈ R;
(F1) lim|t|→0

f (x,t)
t = p(x) uniformly a.e. x ∈ Ω , where 0 < p(x) ∈ L∞(Ω), and ‖p(x)‖∞ <

θΛ1;
(F2) lim|t|→+∞ f (x,t)

t = l (–∞ < l < +∞) uniformly a.e. x ∈ Ω .
Our first main result is concluded as the following theorem:

Theorem 3.1 Assume the function m(t) satisfies (M), a(x) satisfies (A), and the nonlinear-
ity f (x, t) satisfies (F1) and (F2), then problem (1.1) has at least one solution if l < Λ1.

Proof It is easy to see, from condition (F1), that f (x, 0) = 0 for x ∈ Ω . So u = 0 is the trivial
solution of (1.1). From condition (F2), we can take ε = 1

2 (Λ1 – l) > 0, and there exists T > 0
such that

f (x, t)t ≤ (l + ε)t2

for all |t| ≥ T and a.e. x ∈ Ω . By the continuity of F , there exists C > 0 such that

∣∣F(x, t)
∣∣ ≤ l+ε

2 t2 + C

for all (x, t) ∈ Ω × R. On the other hand, from (M) it follows that

m0t ≤ M(t) =
∫ t

0
m(s) ds ≤ m1t, for t > 0. (3.1)

Then we have

J(u) =
1
2

∫
Ω

|�u|2 dx +
1
2

M
(∫

Ω

|∇u|2 dx
)

–
1
s

∫ t

0
a(x)|u|s dx –

∫
Ω

F(x, u) dx

≥ 1
2

∫
Ω

|�u|2 dx +
1
2

m0

∫
Ω

|∇u|2 dx –
1
s

ā
∫

Ω

|u|s dx
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–
l + ε

2

∫
Ω

|u|2 dx – C|Ω|

≥ 1
2
‖u‖2 –

1
s

Ksā‖u‖s –
l + ε

2Λ1
‖u‖2 – C|Ω|

=
Λ1 – l – ε

2Λ1
‖u‖2 –

1
s

Ksā‖u‖s – C|Ω|,

which shows that J is coercive. Moreover, conditions (F1) and (F2) imply that J is weakly
lower semicontinuous in H. Therefore we get a global minimum u1 of J .

Next, we prove u1 �= 0, so it is a nontrivial solution of (1.1). From condition (F1), there
exists C > 0 such that

∣∣f (x, t)
∣∣ ≤ C|t|,

for all |t| small enough and x ∈ Ω . It follows that

∣∣F(x, t)
∣∣ ≤ C

2
t2,

for all |t| small enough and x ∈ Ω . From condition (A), we can chose v ∈ H such that

∫
Ω

a(x)|v|s dx > 0.

Then we have

lim sup
t→0

J(tv)
ts

= lim sup
t→0

1
2
∫
Ω

|�(tv)|2 dx + 1
2 M(

∫
Ω

|∇(tv)|2 dx) – 1
s
∫
Ω

a(x)|tv|s dx –
∫
Ω

F(x, tv) dx
ts

≤ lim sup
t→0

1
2
∫
Ω

|�(tv)|2 dx + 1
2 m1(

∫
Ω

|∇(tv)|2 dx) – 1
s
∫
Ω

a(x)|tv|s dx –
∫
Ω

F(x, tv) dx
ts

≤ lim sup
t→0

(
t2–s

2
‖v‖2 –

1
s

∫
Ω

a(x)|v|s dx +
Ct2–s

2

∫
Ω

v2 dx
)

< 0.

Therefore, we get that J(u1) < 0. It is clear that J(0) = 0. Thus, u1 is a nontrivial solution of
(1.1). �

Our second result is the following theorem:

Theorem 3.2 Assume the function m(t) satisfies (M), a(x) satisfies (A), and the nonlin-
earity f (x, t) satisfies (F0), (F1), and (F2), then there exists a positive constant a0 such that
problem (1.1) has at least three nontrivial solutions if ā < a0 and Λ̄1 < l < +∞.

Before proving Theorem 3.2, we give two lemmas.

Lemma 3.1 Suppose the conditions of Theorem 3.2 hold, then there exists a positive con-
stant a0 such that J satisfies the following conditions for ā < a0 and Λ̄1 < l < +∞:
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1. There exist constants ρ > 0, α > 0 such that J|∂Bρ ≥ α with Bρ = {u ∈ H : ‖u‖ ≤ ρ};
2. J(tϕ1) → –∞ as t → +∞.

Proof (Claim 1) By (F1) and (F2), there exists C > 0 such that for all (x, t) ∈ Ω × R and
p ∈ (1, N+4

N–4 ), we have

F(x, t) ≤ 1
4
(∥∥p(x)

∥∥∞ + θΛ1
)
t2 + C|t|p+1.

From inequalities (2.2), (2.3) and (3.1), we have

J(u) =
1
2

∫
Ω

|�u|2 dx +
1
2

m
(∫

Ω

|∇u|2 dx
)

–
1
s

∫ t

0
a(x)|u|s dx –

∫
Ω

F(x, u) dx

≥ 1
2

∫
Ω

|�u|2 dx +
1
2

m0

∫
Ω

|∇u|2 dx –
1
s

ā
∫

Ω

|u|s dx

–
1
4
(∥∥p(x)

∥∥∞ + θΛ1
)‖u‖2

2 – C‖u‖p+1
p+1

≥ θ

2
‖u‖2 –

1
s

āKs‖u‖s –
1
4

(‖p(x)‖∞ + θΛ1)
Λ1

‖u‖2 – CKp+1‖u‖p+1

=
(

θΛ1 – ‖p(x)‖∞
4Λ1

–
1
s

āKs‖u‖s–2 – CKp+1‖u‖p–1
)

‖u‖2.

Setting

a0 =
s

2KsK
2–s
p–1

p+1

(
θΛ1 – ‖p(x)‖∞

8Λ1

) p–s+1
p–1

, ρ =
(

θΛ1 – ‖p(x)‖∞
8Λ1CKp+1

) 1
p–1

,

when ā ≤ a0 and ‖u‖ = ρ , it follows that

J(u) ≥
(

θΛ1 – ‖p(x)‖∞
16Λ1

)
‖ρ‖2 = α > 0.

So, Claim 1 is proved.
(Claim 2) By (F2) and for l > Λ̄1, there exists C > 0 such that

F(x, t) ≥ 1
4

(l + Λ̄1)t2 – C

for all (x, t) ∈ Ω ×R. Let λ1 and φ1 be the first eigenvalue and eigenfunction of (–�, H1
0 (Ω))

with
∫
Ω

|φ1|2 dx = 1. We know that

Λ̄1 =
∫

Ω

|�φ1|2 dx + m1

∫
Ω

|∇φ1|2 dx = λ2
1 + m1λ1.

Then, we have

J(tφ1) =
1
2

∫
Ω

∣∣�(tφ1)
∣∣2 dx +

1
2

m
(∫

Ω

∣∣∇(tφ1)
∣∣2 dx

)

–
1
s

∫
Ω

a(x)|tφ1|s dx –
∫

Ω

F(x, tφ1) dx
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≤ t2

2

∫
Ω

|�φ1|2 dx +
t2

2
m1

∫
Ω

|∇φ1|2 dx

–
ts

s

∫
Ω

a(x)|φ1|s dx –
t2

4
(l + Λ̄1)

∫
Ω

|φ1|2 dx + C|Ω|

=
t2

4
(Λ̄1 – l) –

ts

s

∫
Ω

a(x)|φ1|s dx + C|Ω|.

Hence, J(tψ1) → –∞, t → +∞.
The proof of Lemma 3.1 is completed. �

Let

f +(x, t) =

⎧⎨
⎩f (x, t), t ≥ 0,

0, t < 0,

and

f –(x, t) =

⎧⎨
⎩f (x, t), t ≤ 0,

0, t > 0.

Define functionals J± : H → R as follows:

J±(u) =
1
2

∫
Ω

|�u|2 dx +
1
2

m
(∫

Ω

|∇u|2 dx
)

–
1
s

∫
Ω

a(x)|u|s dx –
∫

Ω

F±(x, u) dx,

where F±(t) =
∫ t

0 f ±(x, s) ds.

Lemma 3.2 Assume that (M), (A) and (F0)–(F2) hold, and Λ̄1 < l < +∞, then J±(u) satisfies
the (PS) condition.

Proof We just prove that J+(u) satisfies the (PS) condition. The proof for J–(u) is similar.
Let {un} ∈ H be a (PS) sequence, namely

J+(un) → c, (3.2)

∇J+(un) → 0. (3.3)

Firstly, we claim that {un} is bounded in H. If not, we may assume that ‖un‖ → +∞ as
n → +∞. Let wn = un

‖un‖ , then ‖wn‖ = 1. Passing to a subsequence, we may assume that
there exists w ∈ H such that

⎧⎪⎪⎨
⎪⎪⎩

wn ⇀ w in H,

wn → w in Lr(Ω), 1 ≤ r ≤ 2N
N–4 ,

wn → w a.e. in Ω .

(3.4)

By (F1) and (F2), we see that there exist C1 and C2 such that

∣∣∣∣ f (x, t)
t

∣∣∣∣ ≤ C1,
∣∣∣∣F(x, t)

t2

∣∣∣∣ ≤ C2 (3.5)
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for all (x, t) ∈ Ω × R and define

f (x, t)
t

∣∣∣∣
t=0

= lim
t→0

f (x, t)
t

,
F(x, t)

t2

∣∣∣∣
t=0

= lim
t→0

F(x, t)
t2 .

Then we claim that w �= 0. Otherwise, if w ≡ 0, we know that wn → 0 strongly in Lr(Ω).
Dividing (3.2) by ‖un‖2, we have

J+(un)
‖un‖2 =

1
2‖un‖2

(∫
Ω

|�un|2 dx + m
(∫

Ω

|∇un|2 dx
))

–
1

s‖un‖2–s

∫
Ω

a(x)
∣∣wn(x)

∣∣s dx –
∫

Ω

F+(x, un)
‖un‖2 dx

= o(1).

It follows from (3.1) and (3.5) that

θ

2
≤ 1

2‖un‖2

(∫
Ω

|�un|2 dx + m0

∫
Ω

|∇un|2 dx
)

≤ 1
2‖un‖2

(∫
Ω

|�un|2 dx + m
(∫

Ω

|∇un|2 dx
))

=
1

s‖un‖2–s

∫
Ω

a(x)
∣∣wn(x)

∣∣s dx +
∫

Ω

F+(x, un)
‖un‖2 dx + o(1)

≤ ā
s‖un‖2–s

∫
Ω

∣∣wn(x)
∣∣s dx + C2

∫
Ω

∣∣wn(x)
∣∣2 dx + o(1) → 0,

which is impossible, so w �= 0.
Let us define

Ω0 =
{

x ∈ Ω|w(x) = 0
}

, Ω1 =
{

x ∈ Ω|w(x) �= 0
}

.

Then, for all v ∈ H, we have

∣∣∣∣
∫

Ω0

f +(x, un)
un

wnv dx
∣∣∣∣ ≤ C1

∫
Ω0

|wn||v|dx

≤ C1

(∫
Ω0

|wn|2 dx
) 1

2
(∫

Ω0

|v|2 dx
) 1

2
.

So,

lim
n→+∞

∫
Ω0

f +(x, un)
un

wnv dx = 0 =
∫

Ω0

lw+v dx, (3.6)

where w+(x) = max {w(x), 0}. On the other hand, since ‖un‖ → +∞, we have |un(x)| =
‖un‖|wn(x)| → +∞ for x ∈ Ω1. Therefore, by (F2) and the dominated convergence the-
orem, we get

lim
n→+∞

∫
Ω1

f +(x, un)
un

wnv dx =
∫

Ω1

lim
n→+∞

f +(x, un)
un

wnv dx =
∫

Ω1

lw+v dx. (3.7)
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Combining (3.6) and (3.7), we obtain

lim
n→+∞

∫
Ω

f +(x, un)
un

wnv dx =
∫

Ω

lw+v dx. (3.8)

Now, (3.3) implies that, for all v ∈ H, we have

(∇J+(un), v
)

=
∫

Ω

�un�v dx + m
(∫

Ω

|∇un|2 dx
)∫

Ω

∇un∇v dx

–
∫

Ω

a(x)
∣∣un(x)

∣∣s–1v dx –
∫

Ω

f +(x, un)v dx → 0.

Dividing by ‖un‖, we get

∫
Ω

�wn�v dx + m
(∫

Ω

|∇un|2 dx
)∫

Ω

∇wn∇v dx

–
1

‖un‖2–s

∫
Ω

a(x)
∣∣wn(x)

∣∣s–1v dx –
∫

Ω

f +(x, un)
un

wnv dx → 0. (3.9)

Since

‖un‖2 =
∫

Ω

|�un|2 dx + m1

∫
Ω

|∇un|2 dx → +∞

as n → +∞, we can suppose that there exists a subsequence, still denoted {∫
Ω

|∇un|2 dx},
such that

∫
Ω

|∇un|2 dx → +∞, n → +∞, (3.10)

otherwise, there exists K > 0 such that

∫
Ω

|∇un|2 dx ≤ K ,

and furthermore, there exist a subsequence, still denoted {∫
Ω

|∇un|2 dx}, and a constant
t′ ≥ 0 such that

∫
Ω

|∇un|2 dx → t′, n → +∞. (3.11)

In case (3.10) holds, by (M), we have

lim
n→+∞ m

(∫
Ω

|∇un|2 dx
)

= m1. (3.12)

Combining (3.4), (3.8), (3.9) and (3.10), as n → +∞, we obtain

∫
Ω

�w�v dx + m1

∫
Ω

∇w∇v dx =
∫

Ω

lw+v dx, ∀v ∈ H. (3.13)
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Taking v = φ1 in (3.13), we have
∫

Ω

�w�φ1 dx + m1

∫
Ω

∇w∇φ1 dx =
∫

Ω

lw+φ1 dx. (3.14)

Noticing that φ1 is the positive solution of
⎧⎨
⎩�2u + m1�u = Λ̄1u, in Ω ,

u = 0, �u = 0, on ∂Ω ,

we have∫
Ω

�w�φ1 dx + m1

∫
Ω

∇w∇φ1 dx =
∫

Ω

Λ̄1wφ1 dx. (3.15)

Thus, from (3.14) and (3.15), we get
∫

Ω

lw+φ1 dx =
∫

Ω

Λ̄1wφ1 dx. (3.16)

If w(x) ≥ 0 a.e. in Ω , since w(x) �= 0, we have
∫
Ω

wφ1 dx > 0. Then (3.15) implies that

∫
Ω

lwφ1 dx =
∫

Ω

lw+φ1 dx =
∫

Ω

Λ̄1wφ1 dx,

which contradicts l > Λ̄1. Otherwise, let Ω– = {x ∈ Ω|w(x) < 0} and suppose |Ω–| > 0. Then∫
Ω–

–wφ1 dx > 0 and
∫
Ω

w+φ1 dx >
∫
Ω

wφ1 dx > 0. It follows from (3.15) again that

∫
Ω

lw+φ1 dx =
∫

Ω

Λ̄1wφ1 dx <
∫

Ω

Λ̄1w+φ1 dx,

which contradicts l > Λ̄1.
So {un} is bounded in X.
In case (3.11) holds, by (M), we have

lim
n→+∞ m

(∫
Ω

|∇un|2 dx
)

= m
(
t′) = m′ ≤ m1. (3.17)

Combining (3.4), (3.8), (3.9) and (3.17), as n → +∞, we obtain
∫

Ω

�w�v dx + m′
∫

Ω

∇w∇v dx =
∫

Ω

lw+v dx, ∀v ∈ H. (3.18)

Taking v = φ1 in (3.18), we have
∫

Ω

�w�φ1 dx + m′
∫

Ω

∇w∇φ1 dx =
∫

Ω

lw+φ1 dx. (3.19)

Notice that φ1 is also the positive solution of
⎧⎨
⎩�2u + m′�u = Λ′

1u, in Ω ,

u = 0, �u = 0, on ∂Ω ,
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where Λ′
1 = λ2

1 + m′λ1. Then we have

∫
Ω

�w�φ1 dx + m′
∫

Ω

∇w∇φ1 dx =
∫

Ω

Λ′
1wφ1 dx. (3.20)

From (3.19) and (3.20), we get

∫
Ω

lw+φ1 dx =
∫

Ω

Λ′
1wφ1 dx. (3.21)

Notice that for Λ′
1 ≤ Λ̄1, similar to the discussions in case (3.10) holds, (3.21) implies a

contradiction to l > Λ̄1.
So {un} is bounded in X.
Now, since Ω is bounded and (F1), (F2) hold, by using the Sobolev embedding theorem

and the standard procedures, we can easily prove that {un} has a convergent subsequence.
The proof of the lemma is completed. �

Proof of Theorem 3.2. From the proof of Lemma 3.1, it is easy to see that J+(u) and J–(u)
satisfy the conditions of Lemma 3.1. So there exist ρ > 0, α > 0, and e ∈ H with ‖e‖ > ρ

such that

J±(u)
∣∣
∂Bρ

≥ α > 0, J±(e) < 0.

It is clear that J±(0) = 0. Moreover, by Lemma 3.2, the functionals J± satisfy the (PS) con-
dition. By Lemma 2.2, we know that J± has the critical value c±, respectively, which can
be characterized as

c± = inf
γ∈Γ

max
u∈γ ([0,1])

J±(u),

where Γ = {γ ∈ C([0, 1], H)|γ (0) = 0,γ (1) = e}. So there exist critical points u1, u2 ∈ H
such that

J+(u1) = c+ > 0, J–(u2) = c– > 0.

Since f +(x, t) ≥ 0 and f –(x, t) ≤ 0, by the comparison principles for some fourth order
elliptic problems [20], u1 is a positive solution of (1.1) and u2 is a negative solution of
(1.1).

Next, we prove that problem (1.1) has another solution u3 ∈ H such that J(u3) < 0. For
ρ > 0 given by Lemma 3.1, define Bρ = {u ∈ E : ‖u‖ ≤ ρ} and then Bρ is a complete metric
space with the distance dist(u, v) = ‖u – v‖ for u, v ∈ Bρ . By Lemma 3.1, we know that

J(u)|∂Bρ ≥ α > 0. (3.22)

Clearly, J ∈ C1(Bρ , R), so J is bounded from below on Bρ . And we know that J is lower
semicontinuous.

Similar to the proof of Theorem 3.1, there exists v ∈ H such that

lim
t→0

J(tv)
tp < 0.
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Then letting c1 = inf{J(u) : u ∈ Bρ}, we get that c1 < 0. By Lemma 2.3, for any k > 0, there is
a {uk} such that

c1 ≤ J(uk) ≤ c1 +
1
k

.

Now we claim that ‖uk‖ < ρ for k large enough. Otherwise, if ‖uk‖ = ρ for infinitely many
k, and, without loss of generality, we may suppose that ‖uk‖ = ρ for all k > 1. It follows
from (3.22) that J(uk) ≥ α > 0. Letting k → ∞, we see that 0 > c1 ≥ α > 0, which is a con-
tradiction.

For any u ∈ E with ‖u‖ = 1, let

wk = uk + tu

for any fixed k ≥ 1. We get

‖wk‖ ≤ ‖uk‖ + t,

so wk ∈ Bρ for t > 0 small enough. It follows from Lemma 2.3 that

J(wk) = J(uk + tu) ≥ J(uk) –
t
k
‖u‖.

Thus, we have

J ′(uk) = lim
t→0+

J(uk + tu) – J(uk)
t

≥ –
1
k

and

J ′(uk) = lim
t→0+

J(uk – tu) – J(uk)
t

≤ 1
k

.

Then |J ′(uk)| ≤ 1
k → 0 and J(uk) → c1 as k → ∞. Therefore {uk} is a (PS) sequence at level

c1. From Lemma 3.2, {uk} has a convergent subsequence. Hence, we see that there exists
u3 ∈ H such that J ′(u3) = 0 and J(u3) = c1 < 0. Thus, u3 is a nontrivial weak solution of (1.1)
and u3 �= u1, u3 �= u2. �
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