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Abstract
This article concerns the Cauchy problem for the fractional semilinear
pseudo-parabolic equation. Through the Green’s function method, we prove the
pointwise convergence rate of the solution. Furthermore, using this precise pointwise
structure, we introduce a Sobolev space condition with negative index on the initial
data and give the nonlinear critical index for blowing up.
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1 Introduction
We consider the following Cauchy problem for the fractional semilinear pseudo-parabolic
equation:

⎧
⎨

⎩

ut + k(–�)aut + (–�)au = up, x ∈ Rn, t > 0,

u|t=0 = u0,
(1.1)

where p > 0, k > 0, u0(x) is sufficiently smooth and nonnegative. If k = 0, (1.1) is the classical
heat equation, see [1]. If k > 0, (1.1) is a pseudo-parabolic equation, see [2].

The pseudo-parabolic equation is used in diverse fields such as seepage theory of homo-
geneous liquid through cracked rock [3] (the coefficient of the third-order term represents
the degree of cracks in the rock, and its decrease corresponds to the increase in the de-
gree of cracking), the unidirectional propagation of nonlinear dispersive long waves [4, 5]
(where u is amplitude or curl), and the description of racial migration [6] (where u is the
population density). Because of the wide range of applications of pseudo-parabolic equa-
tions, they attract great attention of mathematicians.

Ting, Showalter, and Gopala Rao proved the existence and uniqueness of the solution
on the initial boundary value problem and the Cauchy problem of linear pseudo-parabolic
equations, see [2, 7, 8]. Since then, many scholars have paid great attention to the study
of nonlinear pseudo-parabolic equations, including about existence, asymptotic behav-
ior, decay of regularity and solutions, etc., see [9–12]. Recently, Yang Cao et al. proved
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the existence and blowing up of the solution of equation (1.1) at a = 1, but the pointwise
estimation of the solution was not discussed, see [13]. Later, Wang Weike et al. used the
Green’s function to improve [13] and p only needs to satisfy p > 1 + 2

n+s instead of p > 1 + 2
n .

More specifically, they proved the pointwise estimation of the solution of equation (1.1) at
a = 1, also obtained the nonlinear critical index of the blowing up at p > 1 + 2

n+s by limiting
the initial condition, see [14].

In the above research, they focused on integer order equations. The fractional dissipa-
tion operator (–�)a can be regarded as the infinitesimal generators of Levy stable diffusion
process. Compared with the integral differential equation, it can describe some physical
phenomena more accurately, see [15–17]. Therefore, more and more scientists are de-
voted to the research of fractional differential equations, see [16–18].

Motivated by the above works, we study the pointwise estimate and exponential decay of
the solution for problem (1.1) in the fractional order case. At present, there is little research
on the pointwise estimate and exponential decay of the solution of this fractional equation,
and the main difficulty stems from its fractional dissipation operator term. The structure
of this article is organized as follows: In Sect. 2, we recall some preliminary results and
show the main results of this paper. In Sect. 3, by Green’s function method, we use the
Green’s function to express the solution of fractional equation (1.1) and get the pointwise
estimate result of the Green’s function. In Sect. 4, we obtain the pointwise estimate of
fractional equation (1.1) with appropriate conditions p, u0. In Sect. 5, we prove that the
exponential decay of equation (1.1) still exists without a = 1.

2 Preliminaries and main results
Let C represent a generic positive constant, which may change from line to line. The norm
of Lp(Ω) is written as ‖ · ‖Lp(Ω) (1 ≤ p ≤ ∞). The notation X is a Banach space with a norm
‖ · ‖X .

Definition 2.1 Suppose f (x, t) ∈ L1(Rn). Then the Fourier transform is as follows:

f̂ (ξ , t) =
∫

Rn
f (x, t)e–

√
–1x·ξ dx, (2.1)

its inverse Fourier transform is

(
F–1̂f

)
(x, t) = (2π )–n

∫

Rn
f̂ (ξ , t)e

√
–1x·ξ dξ . (2.2)

According to [19], we have the following two lemmas.

Lemma 2.1 If f̂ (ξ , t) has a compact support for ξ satisfying

∣
∣Dβ

ξ

(
ξ α̂f (ξ , t)

)∣
∣ ≤ C

(|ξ |(|α|+k–|β|)+ + |ξ |(|α|+k)t
|β|
2

)(
1 + t|ξ |2)me–b|ξ |2t , (2.3)

where b > 0, α, β are any multi-indexes and |β| ≤ 2N , then

∣
∣Dα

x f (x, t)
∣
∣ ≤ CN t–n+|α|+ k

2 BN
(|x|, t

)
, (2.4)
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where k and m are any positive integers, (a)+ = max(0, a), and

BN
(|x|, t

)
=

(

1 +
|x|2
1 + t

)–N

.

Lemma 2.2 Let supp f (ξ ) ⊂ OR =: {ξ , |ξ | > R} and

∣
∣Dβ

ξ f̂ (ξ )
∣
∣ ≤ C|ξ |–1–|β|, (2.5)

then there exist distributions f1(x) and f2(x) satisfying

f (x) = f1(x) + f2(x) + C0δ(x), (2.6)

where C0 is a constant and δ(x) is the Dirac function. Furthermore, choosing ε0 small
enough, we have the estimate

∣
∣Dα

x f1(x)
∣
∣ ≤ C

(
1 + |x|2)–N ,

‖f2‖L1 ≤ C, supp f2(x) ⊂ {
x; |x| < 2ε0

}
,

for positive integer 2N > n + |α|.

We make the following assumptions:
(H1) u0 ∈ Cα+2(Rn) for sufficiently small u0 > 0;
(H2) u0 ∈ W –s,2(Rn) ∩ W –s,∞(Rn) ∩ L∞(Rn) ∩ L2(Rn), 0 ≤ s < n, for sufficiently small

u0 > 0.
Based on the above assumptions, we draw the following conclusions.

Theorem 1 Let p > pc = 1+ 2a
n , (H1) be satisfied. Then Cauchy problem (1.1) has the point-

wise estimate of the solution u, satisfying

|u| ≤ 2C(1 + t)– n
2a

(

1 +
|x|2a

1 + t

)–N

,

∣
∣Dα

x u
∣
∣ ≤ 2C(1 + t)– n

2a – |α|
2a

(

1 +
|x|2a

1 + t

)–N

,

(2.7)

where N > 0 is an arbitrary constant, C depends on the initial value u0 and the parameter p.

Theorem 2 Suppose p > ps = 1 + 2a
n+s , (H2) hold. Then problem (1.1) has solution u satis-

fying

‖u‖Lq(Rn) ≤ C(1 + t)– n
2a (1– 1

q )– s
2a , q ∈ [2, +∞), (2.8)

where C depends on the initial value data and p.



Cheng and Fang Boundary Value Problems        (2020) 2020:137 Page 4 of 16

3 Pointwise estimate of the Green’s function
In this section, we will consider the pointwise estimation of the solution to linear form
of problem (1.1). We study the Green’s function of Cauchy problem (1.1) and obtain the
following:

⎧
⎨

⎩

∂tG + k(–�)aGt + (–�)aG = 0, x ∈ Rn, t > 0,

G|t=0 = δ(x),
(3.1)

where δ(x) = δ(x1) ⊗ δ(x2) ⊗ · · · ⊗ δ(xn) is the Dirac function and ⊗ represents the tensor
product. Considering the Fourier transform of equation (3.1) with respect to x, we get

⎧
⎨

⎩

∂tĜ + k|ξ |2aĜt + |ξ |2aĜ = 0, ξ ∈ Rn,

Ĝ|t=0 = 1.
(3.2)

By solving the above equation directly, we know that

Ĝ(ξ , t) = eμ(ξ )t , (3.3)

where μ(ξ ) = – |ξ |2a

1+k|ξ |2a . Now we use frequency decomposition to obtain an estimate of the
Green’s function G. Let

χ1(ξ ) =

⎧
⎨

⎩

1, |ξ | ≤ ε,

0, |ξ | > 2ε,
∈ C∞, (3.4)

χ3(ξ ) =

⎧
⎨

⎩

1, |ξ | ≥ R,

0, |ξ | < R – 1,
∈ C∞, (3.5)

χ2(ξ ) = 1 – χ1(ξ ) – χ3(ξ ), ∈ C∞, (3.6)

where χ1(ξ ) and χ3(ξ ) are the smooth cut-off functions, ε, R are any positive constants sat-
isfying 2ε < R – 1. Define Ĝi(t, ξ ) = χiĜ(t, ξ ), i = 1, 2, 3. From the literature [20], we know
that the attenuation of the solution of the linear problem is mainly related to the low fre-
quency part of Ĝ(t, ξ ). We use cut-off functions to divide the solution into three parts: low
frequency, intermediate frequency, and high frequency.

Proposition 3.1 Let ε be a sufficiently small constant. Then there exists a constant C > 0
satisfying

∣
∣Dα

x G1(x, t)
∣
∣ ≤ CN (1 + t)– n+|α|

2a BN
(|x|a, t

)
. (3.7)

Proof In the case of low frequency, let 0 < |ξ | < 2R, then Ĝ has compact support. Taking
into account (3.3) and Lemma 2.1, there is

∣
∣Dβ

ξ ξαχ1(ξ )Ĝ(ξ , t)
∣
∣ ≤ C

(|ξ |(|α|–|β|)+ + |ξ ||α|t
|β|
2a

)(
1 + t|ξ |2a)βe–b|ξ |2at (3.8)

for ∀|β| ≤ 2N . Then is (3.7) established. �
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Actually, we can discuss obtaining (3.7) in two cases.
(1) If |β| ≤ |α|, we find

∣
∣xβDα

x χ1(D)G
∣
∣ = C

∣
∣
∣
∣

∫

eixξ Dβ

ξ

(
ξαχ1(ξ )Ĝ(ξ , t)

)
dξ

∣
∣
∣
∣

≤ C
∫

(|ξ |(|α|–|β|)+ + |ξ ||α|t
|β|
2a

)(
1 + t|ξ |2a)β ∣

∣eixξ
∣
∣e–b|ξ |2at dξ

≤ C
∫

|ξ ||α|(|ξ |–|β|+ + t
|β|
2a

)(
1 + t|ξ |2a)βe–b|ξ |2at dξ

≤ Ct– n+|α|–|β|
2a . (3.9)

(2) If |β| > |α|, we obtain

∣
∣xβDα

x χ1(D)G
∣
∣ ≤ C

(
1 + t– |α|–|β|

2a
)
t– n

2a

≤ C(1 + t)– |α|–|β|
2a t– n

2a

≤ C(1 + t)
|β|
2a t– n+|α|

2a . (3.10)

On the other hand, if |x|2a ≤ 1 + t, let |β| = 0, we have

∣
∣Dα

x χ1(D)G
∣
∣ ≤ Ct– n+|α|

2a . (3.11)

If |x|2a > 1 + t, let |β| = 2aN , we see that

∣
∣Dα

x χ1(D)G
∣
∣ ≤ Ct– n+|α|

2a min

(

1,
(1 + t)N

|x|2aN

)

. (3.12)

Because

1 +
|x|2a

1 + t
≤

⎧
⎨

⎩

2, |x|2a ≤ 1 + t,

2 |x|2a

1+t , |x|2a > 1 + t,
(3.13)

we know that

min

(

1,
(1 + t)N

|x|2aN

)

≤ 2N BN
(|x|a, t

)
. (3.14)

Then, with the help of (3.11)–(3.12) and (3.14), we infer (3.7).
Next, we estimate G2(x, t).

Proposition 3.2 Suppose that ε and R are fixed constants. Then

∣
∣Dα

x G2(x, t)
∣
∣ ≤ Ce– t

2m0 BN
(|x|a, t

)
, (3.15)

where m0 is a positive constant.



Cheng and Fang Boundary Value Problems        (2020) 2020:137 Page 6 of 16

Proof Choosing m sufficiently large and m > 1
2 ( 1

|ε|2a + k). If ε ≤ |ξ | ≤ R, it is easy to see that
μ(ξ ) ≤ – 1

2m . This analysis reflects that

|Ĝ2| =
∣
∣χ2(ξ )Ĝ

∣
∣ ≤ Ce– t

2m . (3.16)

From (3.16), there holds

∣
∣Dα

x G2(x, t)
∣
∣ ≤ C

∣
∣
∣
∣

∫

ε≤ξ≤R
eixξ

(
ξαĜ2(ξ , t)

)
dξ

∣
∣
∣
∣

≤ Ce– t
2m

∫

ε≤ξ≤R
|ξ |α dξ

≤ Ce– t
2m . (3.17)

Now, we apply mathematical induction to prove the following inequality:

∣
∣Dβ

ξ Ĝ2(ξ , t)
∣
∣ ≤ C(1 + t)|β|e– t

2m . (3.18)

Obviously, the above formula holds when |β| = 0. Suppose that |β| ≤ l – 1, the above
formula still holds. Then we will prove that the formula of (3.18) also holds for |β| ≤ l.
Taking the Fourier transform of (3.1) with respect to x and multiplying it with χ2(ξ ), we
get

⎧
⎨

⎩

∂tĜ2(ξ , t) – μ(ξ )Ĝ2(ξ , t) = 0,

Ĝ2(ξ , 0) = χ2(ξ ).
(3.19)

Using Dβ

ξ to equation (3.19), we can obtain that

⎧
⎨

⎩

∂tDβ

ξ Ĝ2(ξ , t) – μ(ξ )Dβ

ξ Ĝ2(ξ , t) = F(ξ , t),

Ĝ(ξ , 0) = a0,
(3.20)

where F(ξ , t) =
∑

β1+β2=β ,|β1|
=0
β !

β1!β2! (D
β1
ξ μ(ξ )Dβ2

ξ Ĝ2(ξ , t)) and a0 is a polynomial of |ξ |.
Considering |β| = l, we see that

Dβ

ξ Ĝ2(ξ , t) = a0Ĝ2(ξ , t) +
∫ t

0
Ĝ2(ξ , t – s)F(ξ ) ds. (3.21)

By induction we have

∣
∣Dβ

ξ Ĝ2(ξ , t)
∣
∣ ≤ Ce– t

2m + C
∫ t

0
e– t–s

2m (1 + t)|β|–1e– s
2m ds

≤ C(1 + t)|β|e– t
2m . (3.22)
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Therefore, for each 1 ≤ |β| ≤ l, we find

∣
∣xβDα

x G2(x, t)
∣
∣ ≤ C

∣
∣
∣
∣

∫

Rn
eixξ Dβ

ξ

(
ξαĜ2(ξ , t)

)
ds

∣
∣
∣
∣

≤ Ce– t
2m (1 + t)|β|

∫

ε≤|β|≤R
|ξ ||α| + |ξ |||α|–|β|| dξ

≤ Ce– t
2m (1 + t)|β|

≤ Ce– t
2m0 (1 + t)

|β|
2a , (3.23)

where m0 ∈ (0, m). Taking into account (3.17) and (3.23) (let |β| = 2N ), we deduce

∣
∣Dα

x G2(x, t)
∣
∣ ≤ Ce– t

2m0 min

(

1,
(1 + t)2N

|x|2N

)

. (3.24)

Considering (3.14) and (3.24), we obtain the desired result. �

Now considering the high frequency part G3(x, t).

Proposition 3.3 Let R be a sufficiently small constant. Then

∣
∣Dα

x
(
G3(x, t) – Fl

)∣
∣ ≤ C(1 + t)– n+|α|

2a BN
(|x|a, t

)
, (3.25)

where b is a positive constant and

Fl = χ3(D)

[

e– t
k

(

δ(x) +
l∑

j=1

pj(t)(–�)–aj

)]

, l =
|α| + n

2a
, (3.26)

is the distribution.

Proof Denote

ρ =
1

|ξ |2a , h(ρ) = e– t
|ρ|+k . (3.27)

Expanded in Taylor’s series at |ρ| → 0, we infer

h(ρ) = e– t
k

(

1 +
tρ
k2 +

t2ρ2

2k4 –
tρ2

2k3 + · · ·
)

. (3.28)

Then

e– t|ξ |2a
1+k|ξ |2a = e– t

k

(

1 +
l∑

j=1

pj(t)
(|ξ |2a)–j

)

χ3(ξ ) + R(ξ , t), (3.29)

where pj(t) is a polynomial of degree j.
Let

Fl = χ3(D)

[

e– t
k

(

δ(x) +
l∑

j=1

pj(t)(–�)–aj

)]

, l =
|α| + n

2a
. (3.30)
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With the help of Lemma 2.2 and choosing R big enough, it is easy to see that

∣
∣Dα

x
(
G3(x, t) – Fl

)∣
∣ ≤ C(1 + t)– n+|α|

2a BN
(|x|a, t

)
. (3.31)

�

In conclusion, we use the following lemma to explain the estimate of the regular part
of G.

Lemma 3.1 Let G be the solution of the linear form of Cauchy problem (1.1). Then

∣
∣Dα

x
(
G(x, t) – Fl

)∣
∣ ≤ C(1 + t)– n+|α|

2a BN
(|x|a, t

)
, (3.32)

where Fl is the distribution and

Fl = χ3(D)

[

e– t
k

(

δ(x) +
l∑

j=1

pj(t)(–�)–aj

)]

, l =
|α| + n

2a
. (3.33)

Proof Note that

∣
∣Dα

x
(
G(x, t) – Fl

)
(x, t)

∣
∣ ≤ ∣

∣Dα
x G1(x, t)

∣
∣ +

∣
∣Dα

x G2(x, t)
∣
∣

+
∣
∣Dα

x
(
G3(x, t) – Fl

)
(x, t)

∣
∣. (3.34)

Considering Proposition 3.1, Proposition 3.2, Proposition 3.3, and (3.34), we have (3.32).
Then Lemma 3.1 is proved. �

Lemma 3.2 Assume that t > 0, m > n
2a , then

∫

Rn

(

1 +
|x|2a

1 + t

)–m

dx ≤ C(1 + t)
n

2a . (3.35)

Proof Let w = |x|, we infer

∫

Rn

(

1 +
|x|2a

1 + t

)–m

dx ≤ C
∫ ∞

0

(

1 +
w2a

1 + t

)–m

wn–1 dw

≤ C(1 + t)
n

2a

∫ ∞

0

(

1 +
w

(1 + t) 1
2a

)–2am+n–1

d
w

(1 + t) 1
2a

≤ C(1 + t)
n

2a . (3.36)
�

Using Hausdorff–Young’s inequality, the following lemma of Green’s function is easily
obtained.

Lemma 3.3 If p ∈ [1,∞], then

∥
∥Dα

x (G – Fl)(t, ·)∥∥Lp(Rn) ≤ C(1 + t)– n
2a (1– 1

p )– |α|
2a (3.37)

for any multi-indexes α.
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Proof If p ∈ [1,∞), it follows from (3.25) that

∥
∥Dα

x (G – Fl)(t, ·)∥∥Lp(Rn) =
∣
∣
∣
∣

∫

Rn

∣
∣Dα

x (G – Fl)(t, ·)∣∣p dx
∣
∣
∣
∣

1
p

≤ C(1 + t)– n+|α|
2a

(∫

Rn

∣
∣BN

(|x|a, t
)∣
∣p dx

) 1
p

≤ C(1 + t)– n
2a (1– 1

p )– |α|
2a . (3.38)

If p = ∞, by (3.25), we conclude that

∥
∥Dα

x (G – Fl)(t, ·)∥∥Lp(Rn) = ess sup
∣
∣Dα

x (G – Fl)(t, ·)∣∣

≤ ess sup
{

C(1 + t)– n+|α|
2a BN

(|x|a, t
)}

≤ C(1 + t)– n
2a (1– 1

p )– |α|
2a . (3.39)

�

4 Pointwise estimation of the solution
In this section, we get the pointwise estimate of the solution under appropriate conditions
of u0, p.

Lemma 4.1 Assume that |y| ≤ M, t ≥ 4M2, N > 0, then

(

1 +
|y – x|2a

1 + t

)–N

≤ CN

(

1 +
|x|2a

1 + t

)–N

. (4.1)

Proof (1) If |x|2a ≤ 1 + t, then

|x|2a

1 + t
≤ 1 (4.2)

and

(

1 +
|x|2a

1 + t

)–N

≥ 2–N . (4.3)

On the other hand,

(

1 +
|x – y|2a

1 + t

)–N

≤ 1. (4.4)

It follows from (4.3) and (4.4) that

(

1 +
|x|2a

1 + t

)–N

≤ 2N
(

1 +
|x|2a

1 + t

)–N

. (4.5)

(2) If |x|2a > 1 + t, then

|x – y| ≥ |x| – |y| ≥ √
1 – t – |y| ≥ 0 (4.6)
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and

|x – y|2a ≥ (|x| – |y|)2a =
(|x|2 – 2|x||y| + |y|2)a

=
( |x|2

2
+

(|x| – 2|y|)2

2
– |y|2

)a

≥
( |x|2

4
+

(
t
4

– M2
))a

. (4.7)

From t
4 – M2 ≥ 0, the proof is obtained. �

Proof of Theorem 1 With the help of Lemma 3.3 and considering (1.1), from Green’s func-
tion, we have

u = T̂u = G(t) ∗ u0 +
∫ t

0
H(t – s, ·) ∗ F

(
u(s, ·))ds

= G(t) ∗ u0 +
∫ t

0

∫

Rn
H(x – y, t – s) ∗ F

(
u(y, s)

)
dy ds, (4.8)

where the symbol ∗ represents convolution, F(u) = up, and H satisfies

Ĥ =
1

1 + k|ξ |2a Ĝ. (4.9)

Applying the inverse Fourier transform, we deduce

H = Kk ∗ G, Kk(x) = (4π )– n
2a

∫ ∞

0
e–γ1s– |x|2a

4s s– n
2a ds. (4.10)

Obviously, the estimated value on Ĝ is also correct on Ĥ .
By using Dα

x to equation (4.8), we get

Dα
x u(x, t) = Dα

x G ∗ u0 +
∫ t

0

∫

Rn
H(x – y, t – s)Dα

x F
(
u(y, s)

)
dy ds

= Dα
x G ∗ u0 +

∫ t

0

∫

Rn
Dα

x H(x – y, t – s)F
(
u(y, s)

)
dy ds. (4.11)

Define

φ = (1 + t)– n
2a BN

(|x|a, t
)
,

φα = (1 + t)– n+|α|
2a BN

(|x|a, t
)
,

M(t) = sup
0≤s≤t,x∈R

∣
∣u(x, s)

∣
∣φ–1(x, s).

(4.12)

Then

u ≤ M · φ,

u(x, t) ≤ G ∗ u0 + Mp
∫ t

0

∫

Rn
H(x – y, t – s)φp(y, s) dy ds,

Dα
x u(x, t) ≤ Dα

x G ∗ u0 + Mp
∫ t

0

∫

Rn
Dα

x H(x – y, t – s)φp(y, s) dy ds.

(4.13)
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First of all, we discuss the singular part. By (H2), following [20], we have

∣
∣Dα

x Fl ∗ u0
∣
∣ ≤ Cεe– t

2ak
(
1 + |x|2a)–N

≤ Cε(1 + t)– n+|α|
2a

(

1 +
|x|2a

1 + t

)–N

≤ Cεφα . (4.14)

Secondly, we consider the nonsingular part. Since |u0| ≤ (1 + |y|2a)–N , supp u0 ⊂ {|y| ≤
M}, according to the definition of tight support, we can know u0 has a compact support.
If t is large enough, we find

∣
∣Dα

x (G – Fl) ∗ u0
∣
∣ ≤ C(1 + t)– n+|α|

2a

∫

Rn

(

1 +
|y – x|2a

1 + t

)–N(

1 +
|y|2a

1 + t

)–N

dy

≤ C(1 + t)– n+|α|
2a

(

1 +
|x|2a

1 + t

)–N ∫

Rn

(

1 +
|y|2a

1 + t

)–N

dy

≤ Cεφα . (4.15)

Then

∣
∣Dα

x G ∗ u0
∣
∣ ≤ Cεφα . (4.16)

Here we still divide the nonlinear term into a singular part and a nonsingular part. Define

∫ t

0

∫

Rn
Dα

x H(x – y, t – s)φp(y, s) dy ds ≤
∫ t

0

∫

Rn
Dα

x (G – Fl)φp(y, s) dy ds

+
∫ t

0

∫

Rn
Dα

x Flφ
p(y, s) dy ds

= ψ1,1 + ψ1,2, (4.17)

where ψ1,1 =
∫ t

0
∫

Rn Dα
x (G – Fl)φp(y, s) dy ds, ψ1,2 =

∫ t
0
∫

Rn Dα
x Flφ

p(y, s) dy ds.
Estimating the nonsingular part. Recalling Lemma 3.1, it shows that

ψ1,1 ≤ C
∫ t

0

∫

Rn
(1 + t – s)– n+|α|

2a

(

1 +
|x – y|2a

1 + t – s

)–N

× (1 + s)– np
2a

(

1 +
|y|2a

1 + s

)–Np

dy ds. (4.18)

Denote Ω = [0, t] × Rn, Ω1 = Ω ∩ {s ≥ t
2 }, Ω2 = Ω ∩ {s ≤ t

2 }. We will discuss it in two
cases:

(1) If |x|2a ≤ 1 + t, then

ψ1,1 ≤ C
∫

Ω1
(1 + t – τ )– n+|α|

2a

(

1 +
|x – y|2a

1 + t – τ

)–N

(1 + τ )– np
2a

×
(

1 +
|y|2a

1 + τ

)–Np

dy dτ + C
∫

Ω2
(1 + t – τ )– n

2a

(

1 +
|x – y|2a

1 + t – τ

)–N
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× (1 + τ )– np+|α|
2a

(

1 +
|y|2a

1 + τ

)–Np

dy dτ

≤ C
∫ t

t
2

(1 + t – τ )– n+|α|
2a (1 + τ )– np

2a (1 + τ )
n

2a dτ

+ C
∫ t

2

0
(1 + t – τ )– n

2a (1 + τ )– np+|α|
2a (1 + τ )

n
2a dτ

≤ C(1 + t)– n+np–n
2a +1– |α|

2a

≤ C(1 + t)– np
2a +1– |α|

2a

(

1 +
|x|2a

1 + t

)–n

. (4.19)

(2) If |x|2a > 1 + t, then

ψ1,1 ≤ C
∫

Ω1
(1 + t – τ )– n+|α|

2a

(

1 +
|x – y|2a

1 + t – τ

)–N

(1 + τ )– np
2a

×
(

1 +
|y|2a

1 + τ

)–Np

dy dτ + C
∫

Ω2
(1 + t – τ )– n

2a

(

1 +
|x – y|2a

1 + t – τ

)–N

× (1 + τ )– np+|α|
2a

(

1 +
|y|2a

1 + τ

)–Np

dy dτ

≤ C
∫

Ω1
(1 + t – τ )– n+|α|

2a

(

1 +
|x|2a

1 + t – τ

)–N

(1 + τ )– np
2a

×
(

1 +
|y|2a

1 + τ

)–Np

dy dτ + C
∫

Ω2
(1 + t – τ )– n

2a

(

1 +
|x|2a

1 + t – τ

)–N

× (1 + τ )– np+|α|
2a

(

1 +
|x|2a

1 + τ

)–Np

dy dτ

≤ C
(

1 +
|x|2a

1 + τ

)–n ∫ t

t
2

(1 + t – τ )– n+|α|
2a (1 + τ )– np

2a (1 + τ )
n

2a dτ

+ C
(

1 +
|x|2a

1 + τ

)–n ∫ t
2

0
(1 + t – τ )– n

2a (1 + τ )– np+|α|
2a (1 + τ )

n
2a dτ

≤ C(1 + t)– np
2a +1– |α|

2a

(

1 +
|x|2a

1 + t

)–n

. (4.20)

From (4.19)–(4.20), we can get

ψ1,1 ≤ C(1 + t)– np
2a +1– |α|

2a BN
(|x|a, t

)
. (4.21)

Due to p > 1 + 2a
n , we deduce

(1 + t)– np
2a +1– |α|

2a ≤ (1 + t)– n
2a – |α|

2a . (4.22)

Estimating the singular part. By [19], we know that

ψ1,2 =
∫ t

0

∫

Rn
Dα

x Flφ
p(y, s) dy ds
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≤
∫ t

0
e– t

2ka φp
α ds

≤ Cφα . (4.23)

Coming back to the whole solution, we find

∣
∣u(x, t)

∣
∣ ≤ |G ∗ u0| +

∣
∣
∣
∣

∫ t

0

∫

Rn
H(x – y, t – s)F

(
u(y, s)

)
dy ds

∣
∣
∣
∣

≤ C
(
ε + Mp)φ,

(4.24)∣
∣Dα

x u(x, t)
∣
∣ ≤ C

(
ε + Mp)φα .

Therefore,

M ≤ C
(
ε + Mp). (4.25)

Since M(0) ≤ Cε, applying the continuity method, we get that

M(t) ≤ 2Cε, ∀t ∈ [0, +∞). (4.26)

By the above inequality, we have

∣
∣Dα

x u
∣
∣ ≤ Mφα ≤ 2Cεφα ,

|u| ≤ 2Cε(1 + t)– n
2a

(

1 +
|x|2a

1 + t

)–N

,

∣
∣Dα

x u
∣
∣ ≤ 2Cε(1 + t)– n+|α|

2a

(

1 +
|x|2a

1 + t

)–N

.

(4.27)

�

5 Improvement of the initial data
In this section we consider the Cauchy problem of (1.1). It shows that the limit of the
parameter p can be weaker when the initial conditions become stronger. Since we have
known the proof of the existence and uniqueness of the solution, we will not discuss it.
Only for attenuation of the decay estimate.

Definition 5.1 Suppose that operator Λs, s ∈ Rn, satisfies

Λsf (x) = (2π )–n
∫

Rn
|ξ |ŝf (ξ )e

√
–1x·ξ dξ , (5.1)

and Sobolev space W –s,p indicates

W –s,p =
{

f |∥∥Λ–sf
∥
∥

Lp(Rn) ≤ C
}

. (5.2)

Lemma 5.1 Let 0 < s < n, 1 < p < q < ∞, 1
q + s

n = 1
p , then

∥
∥Λ–sf

∥
∥

Lq(Rn) ≤ Cp,q‖f ‖Lq(Rn), (5.3)

where Cp,q is a constant depending on p, q.
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Through [21, p. 99, Theorem 1], Lemma 5.1 can be proved.

Proof of Theorem 2 We divide it into a singular part and a nonsingular part:

u = G ∗ u0 +
∫ t

0
H ∗ up dτ = uN + uS, (5.4)

where

uN = (G – Fl) ∗ u0 +
∫ t

0

G – Fl

1 + k(–�)a ∗ up dτ ,

uS = Fl ∗ u0 +
∫ t

0

Fl

1 + k(–�)a ∗ up dτ .
(5.5)

Now, let us start from the nonsingular part, we obtain

uN = (G – Fl) ∗ u0 +
∫ t

0

G – Fl

1 + k(–�)a ∗ up dτ

= Λs(G – Fl) ∗ Λ–su0 +
∫ t

0
Λs G – Fl

1 + k(–�)a ∗ Λ–sup dτ . (5.6)

Using Young’s inequality, we have

‖uN‖Lq(Rn) ≤ ∥
∥Λs(G – Fl) ∗ Λ–su0

∥
∥

Lq(Rn)

+
∥
∥
∥
∥

∫ t

0
Λs(G – Fl) ∗ Λ–sup dτ

∥
∥
∥
∥

Lq(Rn)

≤ ∥
∥Λs(G – Fl) ∗ Λ–su0

∥
∥

Lq(Rn)

+
∫ t

0

∥
∥Λs(G – Fl)

∥
∥

L
nq

n+q (Rn)

∥
∥Λ–sup∥∥

L
n

n–1 (Rn)
dτ . (5.7)

Based on the initial condition and estimate of the linear part, we see that

∥
∥Λs(G – Fl)

∥
∥

Lq(Rn) ≤ C(1 + t)– n
2a (1– 1

q )– s
2a (5.8)

and

∥
∥Λs(G – Fl) ∗ Λ–su0

∥
∥

Lq(Rn) ≤ C(1 + t)– n
2a (1– 1

q )– s
2a . (5.9)

Recalling Lemma 5.1, there holds

∥
∥Λ–sup∥∥

L
n

n–1 (Rn)
≤ C‖u‖p

L
np

n+s–1 (Rn)
≤ C

[
(1 + t)– n

2a (1– n+s–1
np )– s

2a
]p. (5.10)
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Taking into account (5.8) and (5.10), we get

∫ t

0

∥
∥Λs(G – Fl)

∥
∥

L
nq

n+q (Rn)

∥
∥Λ–sup∥∥

L
n

n–1 (Rn)
ds

≤ C
∫ t

0
(1 + t – s)– n

2a (1– n+q
nq )– s

2a
[
(1 + t)– n

2a (1– n+s–1
np )– s

2a
]p ds

≤ C(1 + t)– n
2a (1– 1

q )– s
2a . (5.11)

Considering the singular part, we infer

‖Fl ∗ u0‖Lq(Rn) ≤ Ce– t
2ak ‖u0‖Lq(Rn) ≤ Cεe– t

2ak (5.12)

and

∫ t

0

∥
∥
∥
∥

Fl

1 + k(–�)a ∗ up
∥
∥
∥
∥

Lq(Rn)
dτ ≤ C

∫ t

0
e– t–τ

2ak ‖u‖p
Lp,q(Rn) dτ

≤ C
∫ t

0
e– t–τ

2ak (1 + τ )– n
2a (1– 1

pq )p dτ

≤ C(1 + t)– n
2a (1– 1

q )– s
2a . (5.13)

With the help of (5.9) and (5.11)–(5.13), we obtain

‖u‖Lq(Rn) ≤ C(1 + t)– n
2a (1– 1

q )– s
2a . (5.14)�
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