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Abstract
The paper deals with the study of the existence result for a Kirchhoff elliptic system
with additive right-hand side and variable parameters by using the
sub-/supersolution method. Our study is a natural extension result of our previous
one in (Boulaaras and Guefaifia in Math. Methods Appl. Sci. 41:5203–5210, 2018),
where we discussed only the simple case when the parameters are constant.
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1 Introduction
Consider the following system:

⎧
⎪⎪⎨

⎪⎪⎩

–A(
∫

Ω
|∇u|2 dx)�u = α(x)f (v) + β(x)g(u) in Ω ,

–B(
∫

Ω
|∇v|2 dx)�v = γ (x)h(u) + η(x)l(v) in Ω ,

u = v = 0 on ∂Ω ,

(1.1)

where Ω ⊂ R
N (N ≥ 3) is a bounded smooth domain with C2 boundary ∂Ω , and A, B :

R
+ → R

+ are continuous functions with further conditions to be given later, α,β ,γ ,η ∈
C(Ω).

This nonlocal problem originates from the stationary version of Kirchhoff’s work [16]
in 1883, namely

ρ
∂2u
∂t2 –

(
P0

h
+

E
2L

∫ L

0

∣
∣
∣
∣
∂u
∂x

∣
∣
∣
∣

2

dx
)

∂2u
∂x2 = 0, (1.2)
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where Kirchhoff extended the classical d’Alembert’s wave equation by considering the ef-
fect of the changes in the length of the string during vibrations. The parameters in (1.2)
have the following meanings: L is the length of the string, h is the area of the cross-section,
E is the Young modulus of the material, ρ is the mass density, and P0 is the initial tension.

Recently, Kirchhoff elliptic equations have been heavily studied, we refer to [1–7, 9, 11–
15, 17–20].

In [2], Alves and Correa proved the validity of sub-/supersolution method for problems
of Kirchhoff class involving a single equation and a boundary condition

⎧
⎨

⎩

–M(‖u‖2)	u = f (x, u) in Ω ,

u = 0 on ∂Ω ,

with f ∈ C(Ω ×R).
By using a comparison principle that requires M to be nonnegative and nonincreasing in

[0, +∞), with H(t) := M(t2)t increasing and H(R) = R, they managed to prove the existence
of positive solutions assuming f was increasing in u for each x ∈ Ω fixed.

For systems involving similar equations, this result cannot be used directly, i.e., the exis-
tence of a subsolution and a supersolution does not guarantee the existence of the solution.
Therefore, a further construction is needed. In [8], we studied the system

⎧
⎪⎪⎨

⎪⎪⎩

–A(
∫

Ω
|∇u|2 dx)�u = λ1f (v) + μ1g(u) in Ω ,

–B(
∫

Ω
|∇v|2 dx)�v = λ2h(u) + μ2(x)l(v) in Ω ,

u = v = 0 on ∂Ω .

(1.3)

Using a weak positive supersolution as the first term of a constructed iterative sequence
(un, vn) in H1

0 (Ω) × H1
0 (Ω), and a comparison principle introduced in [2], the authors es-

tablished the convergence of this sequence to a positive weak solution of the considered
problem.

To complement our above work in [8], where we discussed only the simple case when
the parameters are constant, in this paper we prove an existence result for problem (1.1)
by considering the complicated case when the parameters α, β , γ , and η on the right-
hand side are variable. We also give a better subsolution providing easier computations
compared with the earlier work in [8].

2 Existence result
Definition 1 A pair (u, v) ∈ (H1

0 (Ω)×H1
0 (Ω)) is called a weak solution of (1.1) if it satisfies

A
(∫

Ω

|∇u|2 dx
)∫

Ω

∇u∇φ dx =
∫

Ω

α(x)f (v)φ dx +
∫

Ω

β(x)g(u)φ dx in Ω ,

B
(∫

Ω

|∇v|2 dx
)∫

Ω

∇v∇ψ dx =
∫

Ω

γ (x)h(u)ψ dx +
∫

Ω

η(x)l(v)ψ dx in Ω

for all (φ,ψ) ∈ (H1
0 (Ω) × H1

0 (Ω)).

Definition 2 Let (u, v), (u, v) be pairs of nonnegative functions in (H1
0 (Ω)×H1

0 (Ω)). They
are called a positive weak subsolution and a positive weak supersolution, respectively, of
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(1.1) if they satisfy the following:

A
(∫

Ω

|∇u|2 dx
)∫

Ω

∇u∇φ dx ≤
∫

Ω

α(x)f (v)φ dx +
∫

Ω

β(x)g(u)φ dx,

B
(∫

Ω

|∇v|2 dx
)∫

Ω

∇v∇ψ dx ≤
∫

Ω

γ (x)h(u)ψ dx +
∫

Ω

η(x)l(v)ψ dx,

and

A
(∫

Ω

|∇u|2 dx
)∫

Ω

∇u∇φ dx ≥
∫

Ω

α(x)f (v)φ dx +
∫

Ω

β(x)g(u)φ dx,

B
(∫

Ω

|∇v|2 dx
)∫

Ω

∇v∇ψ dx ≥
∫

Ω

γ (x)h(u)ψ dx +
∫

Ω

η(x)l(v)ψ dx

for all (φ,ψ) ∈ (H1
0 (Ω) × H1

0 (Ω)), with φ ≥ 0 and ψ ≥ 0, and (u, v), (u, v) = (0, 0) on ∂Ω .

Lemma 1 (Comparison principle [2]) Let M : R+ → R
+ be a continuous nonincreasing

function such that

M(s) > m0 > 0, for all s ≥ s0, (2.1)

and H(t) = tM(t2) increasing on R
+.

If u1, u2 are two nonnegative functions verifying

⎧
⎨

⎩

–M(
∫

Ω
|∇u1|2 dx)�u1 ≥ –M(

∫

Ω
|∇u2|2 dx)�u2 in Ω ,

u = v = 0 on ∂Ω ,
(2.2)

then u1 ≥ u2 a.e. in Ω .

Before stating and proving our main result, here are the conditions we need:
(H1) A, B : R+ →R

+ are two continuous and increasing functions that satisfy the
monotonicity conditions of Lemma 1 so that we can use the comparison principle,
and assume further that there exist ai, bi > 0, i = 1, 2,

a1 ≤ A(t) ≤ a2, b1 ≤ B(t) ≤ b2 for all t ∈R
+.

(H2) α,β ,γ ,η ∈ C(Ω) and

α(x) ≥ α0 > 0, β(x) ≥ β0 > 0, γ (x) ≥ γ0 > 0, η(x) ≥ η0 > 0

for all x ∈ Ω .
(H3) f , g , h, and l are continuous on [0, +∞[, C1 on (0, +∞), and increasing functions

of infinite growth

lim
t→+∞ f (t) = +∞, lim

t→+∞ l(t) = +∞, lim
t→+∞ g(t) = +∞, lim

t→+∞ h(t) = +∞.
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(H4) For all K > 0,

lim
t→+∞

f (K(h(t)))
t

= 0.

(H5)

lim
t→+∞

g(t)
t

= lim
t→+∞

l(t)
t

= 0.

Theorem 1 For large values of α0 + β0 and γ0 + η0, system (1.1) admits a large positive
weak solution if conditions (H1)–(H5) are satisfied.

Proof of Theorem 1 Consider σ to be the first eigenvalue of –� with Dirichlet bound-
ary conditions and φ1 the corresponding positive eigenfunction with ‖φ1‖ = 1 and φ1 ∈
C∞(Ω) (see [10]).

Let S = supx∈Ω{σφ2
1 – |∇φ1|2}, then from growth condition (H3)

f (t) ≥ S, g(t) ≥ S, h(t) ≥ S, l(t) ≥ S, for t large enough.

For each α0 + β0 and γ0 + η0 large, let us define

u =
α0 + β0

2a2
φ2

1

and

v =
γ0 + η0

2b2
φ2

1 ,

where a2, b2 are given by condition (H1). Let us show that (u, v) is a subsolution of problem
(1.1) for α0 +β0 and γ0 +η0 large enough. Indeed, let φ ∈ H1

0 (Ω) with φ ≥ 0 in Ω . By (H1)–
(H3), we get

A
(∫

Ω

|∇u|2 dx
)∫

Ω

∇u∇φ dx = A
(∫

Ω

|∇u|2 dx
)

α0 + β0

a2

∫

Ω

φ1∇φ1∇φ dx

=
α0 + β0

a2
A

(∫

Ω

|∇u|2 dx
)

×
{∫

Ω

∇φ1∇(φ1φ) dx –
∫

Ω

|∇φ1|2φ dx
}

=
α0 + β0

a2
A

(∫

Ω

|∇u|2 dx
)∫

Ω

(
σφ2

1 – |∇φ1|2
)
φ dx

≤ (α0 + β0)
∫

Ω

Sφ dx

≤
∫

Ω

α(x)f (v)φ dx +
∫

Ω

β(x)g(u)φ dx

for α0 + β0 > 0 large enough, and all φ ∈ H1
0 (Ω) with φ ≥ 0 in Ω .



Haiour et al. Boundary Value Problems        (2020) 2020:134 Page 5 of 9

Similarly,

B
(∫

Ω

|∇v|2 dx
)∫

Ω

∇v∇ψ dx ≤
∫

Ω

γ (x)h(u)ψ dx +
∫

Ω

η(x)ł(v)ψ dx in Ω

for γ0 + η0 > 0 large enough and all ψ ∈ H1
0 (Ω) with ψ ≥ 0 in Ω .

Also notice that u > 0 and v > 0 in Ω , u → +∞ and v → +∞ as α0 + β0 → +∞ and
γ0 + η0 → +∞.

For the supersolution part, consider e the solution of the following problem:
⎧
⎨

⎩

–�e = 1 in Ω ,

e = 0 on ∂Ω .
(2.3)

We give the supersolution of problem (1.1) by

u = Ce, v =
(‖γ ‖∞ + ‖η‖∞

)
h
(
C‖e‖∞

)
e,

where C > 0 is a large positive real number to be given later.
Indeed, for all φ ∈ H1

0 (Ω) with φ ≥ 0 in Ω , we get from (2.3) and the condition (H1)

A
(∫

Ω

|∇u|2 dx
)∫

Ω

∇u∇φ dx = A
(∫

Ω

|∇u|2 dx
)

C
∫

Ω

∇e∇φ dx

= A
(∫

Ω

|∇u|2 dx
)

C
∫

Ω

φ dx

≥ a1C
∫

Ω

φ dx.

By (H4 ) and (H5), we can choose C large enough so that

a1C ≥ ‖α‖∞f
[(‖γ ‖∞ + ‖η‖∞

)
h
(
C‖e‖∞

)‖e‖∞
]

+ ‖β‖∞g
(
C‖e‖∞

)
.

Therefore,

A
(∫

Ω

|∇u|2 dx
)∫

Ω

∇u.∇φ dx

≥ [‖α‖∞f
[(‖γ ‖∞ + ‖η‖∞

)
h
(
C‖e‖∞

)‖e‖∞
]

+ ‖β‖∞g
(
C‖e‖∞

)]
∫

Ω

φ dx

≥ ‖α‖∞
∫

Ω

f
[(‖γ ‖∞ + ‖η‖∞

)
h
(
C‖e‖∞

)‖e‖∞
]
φ dx + ‖β‖∞

∫

Ω

g
(
C‖e‖∞

)
φ dx

≥
∫

Ω

α(x)f (v)φ dx +
∫

Ω

β(x)g(u)φ dx. (2.4)

Also,

B
(∫

Ω

|∇v|2 dx
)∫

Ω

∇v∇ψ dx =
(‖γ ‖∞ + ‖η‖∞

)
∫

Ω

h
(
C‖e‖∞

)
ψ dx

≥
∫

Ω

γ (x)h(u)ψ dx +
∫

Ω

η(x)h
(
C‖e‖∞

)
ψ dx. (2.5)
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Using (H4) and (H5) again for C large enough, we get

h
(
C‖e‖∞

) ≥ l
[(‖γ ‖∞ + ‖η‖∞

)
h
(
C‖e‖∞

)‖e‖∞
] ≥ l(v). (2.6)

Combining (2.5) and (2.6), we obtain

B
(∫

Ω

|∇v|2 dx
)∫

Ω

∇v∇ψ dx ≥
∫

Ω

γ (x)h(u)ψ dx +
∫

Ω

η(x)l(v)ψ dx. (2.7)

By (2.4) and (2.7), we conclude that (u, v) is a supersolution of problem (1.1).
Furthermore, u ≤ u and v ≤ v for C chosen large enough.
Now, we use a similar argument to that in [8] in order to obtain a weak solution of our

problem. Consider the following sequence {(un, vn)} ⊂ (H1
0 (Ω) × H1

0 (Ω)) where u0 := u,
v0 = v, and (un, vn) is the unique solution of

⎧
⎪⎪⎨

⎪⎪⎩

–A(
∫

Ω
|∇un|2 dx)�un = α(x)f (vn–1) + β(x)g(un–1) in Ω ,

–B(
∫

Ω
|∇vn|2 dx)�vn = γ (x)h(un–1) + η(x)l(vn–1) in Ω ,

un = vn = 0 on ∂Ω .

(2.8)

Since A and B satisfy (H1) and α(x)f (vn–1), β(x)g(un–1), γ (x)h(un–1), and η(x)l(vn–1) ∈
L2(Ω) (in x), we deduce from a result in [2] that system (2.8) has a unique solution (un, vn) ∈
(H1

0 (Ω) × H1
0 (Ω)).

Using (2.8) and the fact that (u0, v0) is a supersolution of (1.1), we get

⎧
⎨

⎩

–A(
∫

Ω
|∇u0|2 dx)�u0 ≥ α(x)f (v0) + β(x)g(u0) = –A(

∫

Ω
|∇u1|2 dx)�u1,

–B(
∫

Ω
|∇v0|2 dx)�v0 ≥ γ (x)h(u0) + η(x)l(v0) = –B(

∫

Ω
|∇v1|dx)�v1.

Then by Lemma 1, u0 ≥ u1 and v0 ≥ v1. Also, since u0 ≥ u, v0 ≥ v and due to the mono-
tonicity of f , g , h, and l, one has

–A
(∫

Ω

|∇u1|2 dx
)

�u1 = α(x)f (v0) + β(x)g(u0)

≥ α(x)f (v) + β(x)g(u) ≥ –A
(∫

Ω

|∇u|2 dx
)

�u,

–B
(∫

Ω

|∇v1|2 dx
)

�v1 = γ (x)h(u0) + η(x)l(v0)

≥ γ (x)h(u) + η(x)l(v) ≥ –B
(∫

Ω

|∇v|2 dx
)

�v.

According to Lemma 1 again, we obtain u1 ≥ u, v1 ≥ v.
Repeating the same argument for u2, v2, observe that

–A
(∫

Ω

|∇u1|2 dx
)

�u1 = α(x)f (v0) + β(x)g(u0)

≥ α(x)f (v1) + β(x)g(u1) = –A
(∫

Ω

|∇u2|2 dx
)

�u2,
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–B
(∫

Ω

|∇v1|dx
)

�v1 = γ (x)h(u0) + η(x)l(v0)

≥ γ (x)h(u1) + η(x)l(v1) = –B
(∫

Ω

|∇v2|2 dx
)

�v2,

and then u1 ≥ u2, v1 ≥ v2. Similarly, we get u2 ≥ u and v2 ≥ v from

–A
(∫

Ω

|∇u2|2 dx
)

�u2 = α(x)f (v1) + β(x)g(u1)

≥ α(x)f (v) + β(x)g(u) ≥ –A
(∫

Ω

|∇u|2 dx
)

�u,

–B
(∫

Ω

|∇v2|2 dx
)

�v2 = γ (x)h(u1) + η(x)l(v1)

≥ γ (x)h(u) + η(x)l(v) ≥ –B
(∫

Ω

|∇v|2 dx
)

�v.

By repeating the same arguments, we construct a bounded decreasing sequence
{(un, vn)} ⊂ (H1

0 (Ω) × H1
0 (Ω)) verifying

u = u0 ≥ u1 ≥ u2 ≥ · · · ≥ un ≥ · · · ≥ u > 0, (2.9)

v = v0 ≥ v1 ≥ v2 ≥ · · · ≥ vn ≥ · · · ≥ v > 0. (2.10)

By continuity of functions f , g , h, and l and the definition of the sequences (un) and (vn),
there exist positive constants Ci > 0, i = 1, . . . , 4 such that

∣
∣f (vn–1)

∣
∣ ≤ C1,

∣
∣g(un–1)

∣
∣ ≤ C2,

∣
∣h(un–1)

∣
∣ ≤ C3 (2.11)

and

∣
∣l(un–1)

∣
∣ ≤ C4 for all n.

From (2.11), multiplying the first equation of (2.8) by un, integrating, using Hölder in-
equality and Sobolev embedding, we check that

a1

∫

Ω

|∇un|2 dx ≤ A
(∫

Ω

|∇un|2 dx
)∫

Ω

|∇un|2 dx

=
∫

Ω

α(x)f (vn–1)un dx +
∫

Ω

β(x)g(un–1)un dx

≤ ‖α‖∞
∫

Ω

∣
∣f (vn–1)

∣
∣|un|dx + ‖β‖∞

∫

Ω

∣
∣g(un–1)

∣
∣|un|dx

≤ C1

∫

Ω

|un|dx + C2

∫

Ω

|un|dx

≤ C5‖un‖H1
0 (Ω)

or

‖un‖H1
0 (Ω) ≤ C5, ∀n, (2.12)
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where C5 > 0 is a constant independent of n. Similarly, there exists C6 > 0 independent of
n such that

‖vn‖H1
0 (Ω) ≤ C6, ∀n. (2.13)

From (2.12) and (2.13), we deduce that {(un, vn)} admits a weakly converging subse-
quence in H1

0 (Ω ,R2) to a limit (u, v) satisfying u ≥ u > 0 and v ≥ v > 0. Being monotone,
by using a standard regularity argument, {(un, vn)} converges itself to (u, v). Now, letting
n → +∞ in (2.8), we conclude that (u, v) is a positive weak solution of system (1.1). �
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