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Abstract
It is difficult to exactly and automatically satisfy nonseparable multipoint boundary
conditions by numerical methods. With this in mind, we develop a novel algorithm to
find solution for a second-order nonlinear boundary value problem (BVP), which
automatically satisfies the multipoint boundary conditions prescribed. A novel
concept of boundary shape function (BSF) is introduced, whose existence is proven,
and it can satisfy the multipoint boundary conditions a priori. In the BSF, there exists a
free function, from which we can develop an iterative algorithm by letting the BSF be
the solution of the BVP and the free function be another variable. Hence, the
multipoint nonlinear BVP is properly transformed to an initial value problem for the
new variable, whose initial conditions are given arbitrarily. The BSF method (BSFM)
can find very accurate solution through a few iterations.
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1 Introduction
Many engineering problems can be modeled by ordinary differential equations (ODEs).
When they are subjected to prescribed boundary conditions, we encounter the bound-
ary value problems (BVPs), which manifest themselves in many applications, for instance,
engineering, control theory, and optimization. For the details of the conditions for the
existence and uniqueness of solutions of second-order BVPs, we refer to [1–3].

The multipoint BVPs arise when the states of an ODE system are measured at many
points, which are important in many areas of engineering applications. The multipoint
BVPs have attracted a lot of researchers. For three-point BVP of the second-order ODE,
Ahmad et al. [4] adopted the quasilinearization method to obtain a monotone sequence,
which converged quadratically to a solution. After that, Henderson [5] developed a double
fixed-point theorem, applied to yield the existence of at least two nonnegative solutions
for the second-order three-point BVP. Then, Sun and Liu [6] investigated the existence
of a nontrivial solution for the three-point BVP. Several sufficient conditions for the exis-
tence of nontrivial solution were obtained by using Leray–Schauder nonlinear alternative.
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Yao [7] studied the existence of positive solution for two classes of nonlinear second-order
three-point BVPs by utilizing some monotone iterative schemes; however, this approach
was complex. Then, Luo and Ma [8] extended Anderson’s results to the more general BVP
on time scales. They used Guo–Krasnoselskii’s fixed-point theorem and Leggett–Williams
fixed-point theorem to investigate the existence and multiplicity of positive solutions for
the generalized second-order three-point BVP. Nevertheless, their main results only ex-
tended the main results of the past literature.

Apart from that, Calvert and Gupta [9] forwent the previous approach for the shooting
method, which gave a drastically simpler existence theory with less assumptions, and easy
calculation of solutions; however, they only acquired the uniqueness in the simplest case.
Zhou and Xu [10] studied the three-point BVPs for systems of nonlinear second-order
ODEs and shown the existence and multiplicity of positive solutions of the above problem
by applying the fixed point index theory in cones. After that, the shooting technique was
used by the authors of [11, 12] to study the solution. By using fixed-point theorems in
cones, Yaslan [13, 14] demonstrated the existence of at least one, two, and three positive
solutions of a nonlinear second-order three-point boundary value problem for dynamic
equations on time scales. Then, by using the theory of coincidence degree, Gao and Pei [15]
established the existence results of positive solutions for higher-order multipoint BVPs
at resonance for ODE. They also gave six examples to demonstrate and obtained good
results.

Later, by using the global bifurcation techniques, An and Ma [16] studied the global be-
havior of the components of nodal solutions of the second-order m-point BVPs. Then, by
using Krasnoselskii’s fixed-point theorem in a cone, Sun and Zhang [17] acquired some
existence results of symmetric positive solutions of the second-order m-point BVPs. In ad-
dition, using fixed-point index theory, Jiang and Li [18] obtained several sufficient condi-
tions of the existence of at least one positive solution for third-order m-point BVPs. Later,
Liu [19] has developed a two-stage Lie-group shooting method to solve the three-point
second-order BVP, which fulfilled three properties: accuracy, effectiveness, and stability.
After that, Kwong and Wong [20] were interested in the existence of nontrivial solutions
to the three-point BVP. Fixed-point theorems and degree theory were frequently used to
study such problems.

Recently, the researchers have demonstrated that, in many situations, the shooting
method is an effective approach, often leading to better results with shorter proofs. Then,
an algorithm was presented for solving second-order nonlinear multipoint BVPs by Geng
[21]. The method was based on an iterative technique and the reproducing kernel method.
Besides, he claimed that the present method was reliable and efficient. Later, Lin et al. [22]
constructed a new reproducing kernel space and gave the way to express the reproducing
kernel function, whose numerical algorithm was presented. Through some numerical ex-
periments, they demonstrated the efficiency and superiority of this proposed algorithm.
Besides, Abbasbandy et al. [23] introduced a practical algorithmic method for studying the
existence and multiplicity, and of all branches of solutions for nonlinear BVPs it may be
successful in cases where purely analytic methods have failed. The method is implemented
successfully for four examples (e.g., Bratu problem, steady reaction–diffusion regime in
porous slab) of nonlinear second-order two- and three-point BVPs.

Previously, the most works were focused on the existence and uniqueness of solutions
for the nonlinear multipoint boundary conditions problems. The researches related to the
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numerical approximation of solutions are relatively rare [24–27]. It is desired that the nu-
merical solution of the nonlinear multipoint BVP can exactly satisfy the prescribed bound-
ary conditions, but in the case of nonseparable multipoint boundary conditions, it might
be a difficult task. A common disadvantage of the above-mentioned literature is that it did
not investigate the robustness of proposed schemes. Moreover, they are not guaranteed
to satisfy the multipoint boundary conditions, automatically.

In the paper, a novel method based on the new concept of shape function and boundary
shape function is derived for solving the second-order nonlinear BVP under nonseparable
multipoint boundary conditions. We arrange the paper as follows. In Sect. 2, we introduce
two shape functions and a boundary shape function, which is designed for automatically
satisfying the boundary conditions prescribed at several points, where some main results
are shown. In Sect. 3, an iterative algorithm, namely the boundary shape function method
(BSFM), is developed, and some examples are given in Sect. 4. The conclusions are de-
scribed in the last section.

2 Boundary shape function
For the solution of the following nonlinear second-order boundary value problem (BVP),
endowed with prescribed nonseparable multipoint boundary conditions:

u′′(x) = F
(
x, u(x), u′(x)

)
, x1 < x < xm, (1)

L1
[
u(x1), u′(x1), . . . , u(xm), u′(xm)

]
= b1, (2)

L2
[
u(x1), u′(x1), . . . , u(xm), u′(xm)

]
= b2, (3)

we propose a new iterative method. In above, u(x1), u′(x1), . . . , u(xm), u′(xm) are respec-
tively the values of u(x) and u′(x) at m different points x1 < · · · < xm. Here, [x1, xm] is
an interval of our problem. Since the boundary conditions are specified at m distinct
points, this problem is called an m-point BVP; L1 and L2 are linear operators, acting on
[u(x1), u′(x1), . . . , u(xm), u′(xm)] by

L1
[
u(x1), u′(x1), . . . , u(xm), u′(xm)

]

= c11u(x1) + c12u′(x1) + · · · + c1,2m–1u(xm) + c1,2mu′(xm), (4)

L2
[
u(x1), u′(x1), . . . , u(xm), u′(xm)

]

= c21u(x1) + c22u′(x1) + · · · + c2,2m–1u(xm) + c2,2mu′(xm), (5)

where cij, i = 1, 2, j = 1, . . . , 2m are given constant coefficients, not all being zeros.

Theorem 2.1 There exist two shape functions s1(x), s2(x) ∈ C1[x1, xm], which satisfy

⎧
⎨

⎩
L1[s1(x1), s′

1(x1), . . . , s1(xm), s′
1(xm)] = 1,

L2[s1(x1), s′
1(x1), . . . , s1(xm), s′

1(xm)] = 0,
(6)

⎧
⎨

⎩
L1[s2(x1), s′

2(x1), . . . , s2(xm), s′
2(xm)] = 0,

L2[s2(x1), s′
2(x1), . . . , s2(xm), s′

2(xm)] = 1.
(7)
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Proof Beginning with

s1(x) = a + bx ∈ C1[x1, xm], (8)

we prove the existence of s1(x). From Eqs. (4)–(6) and (8), a and b are determined by

[
c11 + c13 + · · · + c1,2m–1 c11x1 + c12 + · · · + c1,2m–1xm + c1,2m

c21 + c23 + · · · + c2,2m–1 c21x1 + c22 + · · · + c2,2m–1xm + c2,2m

][
a
b

]

=

[
1
0

]

. (9)

Obviously, when the rank of the coefficient matrix is two, there exists a unique solution
for a and b.

In the situation when the rank of the above coefficient matrix is one, we can, instead of
Eq. (8), take

s1(x) = a + bx2, (10)

which results to a consistent system:

[
c11 + c13 + · · · + c1,2m–1 c11x2

1 + 2c12x1 + · · · + c1,2m–1x2
m + 2c1,2mxm

c21 + c23 + · · · + c2,2m–1 c21x2
1 + 2c22x1 + · · · + c2,2m–1x2

m + 2c2,2mxm

][
a
b

]

=

[
1
0

]

,

(11)

such that we have a unique solution for a and b.
Therefore, there exists a solution (a, b), and hence the solution s1(x) in Eq. (8) or Eq. (10)

exists. Similarly, we can do it for s2(x). �

Theorem 2.2 For a given free function f (x) ∈ C1[x1, xm], if s1(x) and s2(x) satisfy Eqs. (6)
and (7), then

B(x) = f (x) + s1(x)
{

b1 – L1
[
f (x1), f ′(x1), . . . , f (xm), f ′(xm)

]}

+ s2(x)
{

b2 – L2
[
f (x1), f ′(x1), . . . , f (xm), f ′(xm)

]}
(12)

can be defined and satisfies

L1
[
B(x1), B′(x1), . . . , B(xm), B′(xm)

]
= b1, (13)

L2
[
B(x1), B′(x1), . . . , B(xm), B′(xm)

]
= b2. (14)

Proof In Theorem 2.1, the existence of s1(x) and s2(x) renders the existence of B(x),
wherein f (x) ∈ C1[x1, xm] is a given free function.

Applying the linear operatorL1 to Eq. (12) on both sides and using the linearity property,
we have

L1
[
B(x1), B′(x1), . . . , B(xm), B′(xm)

]

= L1
[
f (x1), f ′(x1), . . . , f (xm), f ′(xm)

]



Liu and Chang Boundary Value Problems        (2020) 2020:139 Page 5 of 22

+ L1
[
s1(x1), s′

1(x1), . . . , s1(xm), s′
1(xm)

]{
b1 – L1

[
f (x1), f ′(x1), . . . , f (xm), f ′(xm)

]}

+ L1
[
s2(x1), s′

2(x1), . . . , s2(xm), s′
2(xm)

]{
b2 – L2

[
f (x1), f ′(x1), . . . , f (xm), f ′(xm)

]}
,

which, with the help from Eqs. (6) and (7), becomes

L1
[
B(x1), B′(x1), . . . , B(xm), B′(xm)

]

= L1
[
f (x1), f ′(x1), . . . , f (xm), f ′(xm)

]
+ b1 – L1

[
f (x1), f ′(x1), . . . , f (xm), f ′(xm)

]
= b1.

Similarly, applying the linear operator L2 on both sides of Eq. (12) and using the linearity
property, we have

L2
[
B(x1), B′(x1), . . . , B(xm), B′(xm)

]

= L2
[
f (x1), f ′(x1), . . . , f (xm), f ′(xm)

]

+ L2
[
s1(x1), s′

1(x1), . . . , s1(xm), s′
1(xm)

]{
b1 – L1

[
f (x1), f ′(x1), . . . , f (xm), f ′(xm)

]}

+ L2
[
s2(x1), s′

2(x1), . . . , s2(xm), s′
2(xm)

]{
b2 – L2

[
f (x1), f ′(x1), . . . , f (xm), f ′(xm)

]}
,

which, with the help from Eqs. (6) and (7), becomes

L2
[
B(x1), B′(x1), . . . , B(xm), B′(xm)

]

= L2
[
f (x1), f ′(x1), . . . , f (xm), f ′(xm)

]
+ b2 – L2

[
f (x1), f ′(x1), . . . , f (xm), f ′(xm)

]
= b2.

Thus, the proof of Eqs. (13) and (14) is completed. �

Theorem 2.2 is crucial, from which the treatment of very complex nonseparable mul-
tipoint boundary conditions for the nonlinear BVP becomes easy because the boundary
shape function B(x) is guaranteed to satisfy the multipoint boundary conditions exactly
and automatically.

3 The numerical algorithm
Utilizing the boundary shape function (BSF), the developed iterative algorithm to solve
Eqs. (1)–(3) is given below. According to Theorem 2.2, B(x) given in Eq. (12) satisfies the
multipoint boundary conditions in Eqs. (2) and (3). Thus, we may transform u(x) to y(x)
by

u(x) = y(x) + s1(x)
{

b1 – L1
[
y(x1), y′(x1), . . . , y(xm), y′(xm)

]}

+ s2(x)
{

b2 – L2
[
y(x1), y′(x1), . . . , y(xm), y′(xm)

]}
. (15)

For any function y(x) ∈ C2[x1, xm], u(x) automatically satisfies the multipoint boundary
conditions (2) and (3).

Inserting Eq. (15) for u(x) into Eq. (1), we achieve

y′′(x) = H
(
x, y(x), y′(x); z

)
, (16)
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which can be viewed as an initial value problem (IVP), whose initial values are given arbi-
trarily, say, y(x1) = y′(x1) = 0. The function H is given by

H
(
x, y(x), y′(x); z

)
:= G′′(x; z) + F

(
x, y(x) – G(x; z), y′(x) – G′(x; z)

)
, (17)

where

G(x; z) := s1(x)
{
L1

[
y(x1), y′(x1), . . . , y(xm), y′(xm)

]
– b1

}

+ s2(x)
{
L2

[
y(x1), y′(x1), . . . , y(xm), y′(xm)

]
– b2

}
. (18)

There are a number of unknown parameters y(x2), y′(x2), . . . , y(xm), y′(xm), which are col-
lected as z := [y(x2), y′(x2), . . . , y(xm), y′(xm)]T.

Letting

y1(x) := y(x), y2(x) := y′(x), (19)

from Eq. (16) it follows that

y′
1(x) = y2(x),

y′
2(x) = H

(
x, y1(x), y2(x); z

)
,

(20)

which are subjected to the given initial conditions y1(x1) and y2(x1). However, z :=
[y1(x2), y2(x2), . . . , y1(xm), y2(xm)]T is an unknown vector. If z is available, we can apply
the fourth-order Runge–Kutta method (RK4), as shown in the Appendix, to integrate the
ODEs in Eq. (20) to obtain y(x) = y1(x), and then u(x) is obtained from Eq. (15) by inserting
y(x).

We depict the iterative boundary shape function method (BSFM) for finding u(x) in
Eqs. (1)–(3):

(i) Derive s1(x), s2(x), give y1(x1), y2(x1), z0, ε, and �x = (xm – x1)/N with N given.
(ii) For k = 0, 1, 2, . . . , applying RK4 to integrate the following ODEs with N1 steps to

x = x2, N2 steps to x = x3, . . . , and N steps to x = xm, where N1 = (x2 – x1)/�x, N2 = (x3 –
x1)/�x, . . . , N = (xm – x1)/�x:

y′
1(x) = y2(x),

y′
2(x) = H

(
x, y1(x), y2(x); zk

)
.

Taking

zk+1 =
[
y1(x2), y2(x2), . . . , y1(xm), y2(xm)

]T,

if the stopping criterion rk := ‖zk+1 – zk‖ < ε is satisfied, then we stop the iteration; other-
wise, for the next iteration go to step (ii). When y(x) = y1(x) is solved for, u(x) is obtained
from Eq. (15) by inserting y(x).
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For the details of the algorithm, we use the following four-point (x1 = 0 < x2 < x3 < x4 = 1)
boundary conditions as a demonstrative example to find s1(x) and s2(x):

1
6

u(x2) +
1
3

u(x3) – u(x1) = b1,

1
5

u(x2) +
1
2

u(x3) – u(x4) = b2.

Upon letting

s1(x) = a + bx, s2(x) = c + dx,

it follows that

1
6

(a + bx2) +
1
3

(a + bx3) – (a + bx1) = 1,
1
5

(a + bx2) +
1
2

(a + bx3) – (a + bx4) = 0,

1
6

(c + dx2) +
1
3

(c + dx3) – (c + dx1) = 0,
1
5

(c + dx2) +
1
2

(c + dx3) – (c + dx4) = 1,

which can be arranged into

(a + bx2) + 2(a + bx3) – 6(a + bx1) = 6, 2(a + bx2) + 5(a + bx3) – 10(a + bx4) = 0,

(c + dx2) + 2(c + dx3) – 6(c + dx1) = 0, 2(c + dx2) + 5(c + dx3) – 10(c + dx4) = 10,

and further changed to

–3a + b(x2 + 2x3 – 6x1) = 6, –3a + b(2x2 + 5x3 – 10x4) = 0,

–3c + d(x2 + 2x3 – 6x1) = 0, –3c + d(2x2 + 5x3 – 10x4) = 10.

Thus, we can derive

s1(x) =
6(2x2 + 5x3 – 10x4)

3(10x4 – x2 – 3x3 – 6x1)
+

6
10x4 – x2 – 3x3 – 6x1

x,

s2(x) =
10(x2 + 2x3 – 6x1)

3(x2 + 3x3 – 10x4 + 6x1)
+

10
x2 + 3x3 – 10x4 + 6x1

x.

The variable transformation is

u(x) = y(x) – G(x; z),

G(x; z) = s1(x)
[

1
6

y(x2) +
1
3

y(x3) – y(x1) – b1

]
+ s2(x)

[
1
5

y(x2) +
1
2

y(x3) – y(x4) – b2

]
,

where z := [y(x2), y(x3), y(x4)]T are unknown values. If the original ODE in Eq. (1) is

u′′(x) = u2(x),

then the transformed ODE is

y′′(x) =
[
y(x) – G(x; z)

]2.
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Starting from the given initial conditions y(x1) = y′(x1) = 0, we can apply RK4 as shown in
the Appendix to integrate the above ODE. With the initial guesses y(x2) = y(x3) = y(x4) = 0,
integrating with N1 steps to x2, we can obtain the new value y(x2); then N2 steps to x3

gives the new value y(x3), and N steps to x4 provides the new value y(x4), where N1 =
(x2 – x1)/�x, N2 = (x3 – x1)/�x, and N = (x4 – x1)/�x. Substituting the new values y(x2),
y(x3), y(x4) into the ODE through G(x; z), we integrate it again. The process is continued,
until the old values and the new values of y(x2), y(x3), y(x4) are very close to satisfy the
specified convergence criterion.

Remark 1 Liu [28] has pointed out the drawback of the shooting method, which assumes
some unknown initial conditions u(0) and u′(0) for Eq. (1) to convert the BVP into an IVP.
It often requires many iterations to match the targets defined by the multipoint boundary
conditions (2) and (3) through trial and error. In general, it is very difficult to find the exact
values u(0) and u′(0) for the nonlinear BVP with nonseparable and multipoint boundary
conditions. Strictly speaking, the IVP used in the shooting method is not an exact one
because its initial conditions are unknown. The current IVP being obtained exactly by
using the variable transformation from u(x) to y(x) is different from the IVP that appeared
in the shooting method in two aspects: the governing equation is Eq. (16) instead of Eq. (1),
and the initial conditions y(0) and y′(0) are given arbitrarily, not unknown values.

4 Numerical tests
In order to investigate the stability of the BSFM, the data b1 and b2 in Eqs. (2) and (3) are
polluted by noise as

b̂i = bi + sR(i), i = 1, 2, (21)

where s is the intensity of noise and R(i) are random numbers between [–1, 1]. Hence,
sometimes we use b̂i, instead of bi, in the computations.

4.1 Example 1
We consider

u′′(x) +
1
8

u(x)u′(x) = 4 +
x3

4
, 1 < x < 3,

u(1) = 17, u′(2) + u(3) =
43
3

,
(22)

with the exact solution being

u(x) = x2 +
16
x

. (23)

Through some operations, we can obtain s1(x) = 4/3 – x/3 and s2(x) = x/3 – 1/3. There
are two unknown parameters, z := [y′(2), y(3)]T.

For the following parameters y1(1) = y2(1) = 0, z0 = (0, 0)T, N = 200, and ε = 10–10, the
iterative algorithm BSFM converges after 80 iterations as shown in Fig. 1(a). From Fig. 1(b),
the numerical u(x) almost coincides with the exact one, with the maximum error (ME)
being 7.16 × 10–9. Although the nonlinear nonseparable three-point BVP is difficult to be
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Figure 1 For Example 1 of a three-point BVP solved by BSFM: (a) convergence behavior, and (b) a comparison
of numerical and exact solutions, showing numerical error

Table 1 For Example 1, a comparison of the ME and iterations number (IN) for different noise levels

s 0 0.01 0.05 0.1
ME 7.16× 10–9 2.64× 10–3 1.32× 10–2 2.64× 10–2

IN 80 80 81 81

treated by numerical methods, the accuracy of this problem is good, which is much better
than that computed in [29] by about five orders.

In order to test the influence of the noise on the numerical solution, in Table 1 we com-
pare the the ME and iterations number (IN) for different noise levels. Upon comparing
with the maximum value 17 of u(x), these MEs are acceptable.

We can observe in Table 1 that the IN is not sensitive to the noise level s.
Instead of RK4, we have employed the fourth-order group preserving scheme [30] to

integrate the resulting IVP with nonzero initial conditions y1(1) = 1, y2(1) = 0. With the
same initial conditions, the BSFM converges with 81 iterations and the ME is 7.15 × 10–9.
For the same parameter values, the fourth-order group preserving scheme converges with
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Figure 2 For Example 1 with a more complex three-point BVP solved by BSFM: (a) convergence behavior,
and (b) a comparison of numerical and exact solutions, showing numerical error

81 iterations; however, the ME increases to 5.24 × 10–4. Due to the serious loss of the
accuracy of about five orders, below we will merely use RK4 to integrate the ODEs.

Next, we consider more complex boundary conditions:

u(1) + u(2) = 29, u(2) + u(3) + u′(3) =
275

9
. (24)

Similarly, we can derive s1(x) = 1 – x/3 and s2(x) = x/3 – 1/2, and there are three un-
known parameters, z := [y(2), y(3), y′(3)]T. For the following parameters y1(1) = y2(1) = 0,
z0 = (0, 0, 0)T, N = 400, and ε = 10–10, the BSFM converges after 133 iterations as shown
in Fig. 2(a). As observed in Fig. 2(b), the solution u(x) obtained almost coincides with the
exact one, with the ME being 3.04 × 10–10. Although the nonseparable three-point BVP
is more complex, the accuracy is much better than that computed in [29] by about eight
orders.
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Figure 3 For Example 1 with a larger spatial range and with complex three-point BVP solved by BSFM:
(a) convergence behavior, and (b) a comparison of numerical and exact solutions, showing numerical error

Then, we consider a larger interval x ∈ [1, 5] with complex boundary conditions:

u(1) + u(3) = 26 +
16
3

, u(3) + u(5) + u′(5) = 44 +
592
75

. (25)

The exact solution u(x) is still given in Eq. (23).
We can derive s1(x) = 9/10 – x/5 and s2(x) = x/5 – 2/5. For the following parameters

y1(1) = y2(1) = 0, z0 = (0, 0, 0)T, N = 400, and ε = 10–10, the BSFM converges after 373
iterations as shown in Fig. 3(a). The numerical solution u(x) as shown in Fig. 3(b), almost
coincides with the exact one, with the ME being 5.82 × 10–9.

In order to test the influence of the noise on the numerical solution and the effect of
large spatial range, in Table 2 we compare the ME and iterations number (IN) for different
noise levels.
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Table 2 For Example 1 with a larger spatial range, a comparison of the ME and iterations number (IN)
for different noise levels

s 0 0.01 0.02 0.05
ME 5.82× 10–9 2.03× 10–3 4.06× 10–3 1.02× 10–2

IN 373 373 373 373

4.2 Example 2
We adopt an example from Kwong and Wong [12]:

u′′(x) +
u2(x)

1 + u(x)
= 0, 0 < x < 1, (26)

under the following boundary conditions:

u(0) – u′(0) = 0, u(1) –
1
3

u(1/2) = 1. (27)

For this problem, we can derive s1(x) = 5/9 – 4x/9 and s2(x) = 2/3 + 2x/3, and z :=
[y(1/2), y(1)]T are unknown parameters. For the following parameters y1(0) = 1, y2(0) = 0,
z0 = (0, 0)T, N = 200, and ε = 10–10, the BSFM converges after 20 iterations as shown in
Fig. 4(a).

The fictitious time integration method (FTIM) was first developed by Liu and Atluri
[31] to solve the following nonlinear algebraic equations:

Fi(u1, . . . , un) = 0, i = 1, . . . , n, (28)

where u1, . . . , un are unknown variables, and Fi are given functions. After introducing the
fictitious time τ , Eq. (28) is recast by Liu and Atluri [31] as a system of ODEs:

u′
i(τ ) = –

νi

1 + τ
Fi(u1, . . . , un), i = 1, . . . , n. (29)

They employed the forward Euler scheme to integrate the above ODEs, until the steady
solution of u1, . . . , un was obtained:

uN+1
i = uN

i –
�τνi

1 + τ
Fi

(
uN

1 , . . . , uN
n
)
, i = 1, . . . , n. (30)

According to Liu [29], FTIM for Eqs. (26) and (27) is given by

u′
i = –

ν1

1 + τ

[
ui+1 – 2ui + ui–1

(�τ )2 +
u2

i
1 + ui

]
, 2 ≤ i ≤ n – 1,

u′
1 = –

ν2

1 + τ

[
u1 –

u2 – u1

�τ

]
,

u′
n = –

ν3

1 + τ

[
un –

uk

3
– 1

]
,

(31)

where ui are the nodal values of u at the points xi = (i – 1)/(n – 1), and k = 1/(2�τ ) + 1.
In Fig. 4(b), we compare the numerical solution u(x) with that computed by Liu [29]

using FTIM, which are very close. In FTIM, we must choose some suitable values of νi, �τ ,
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Figure 4 For Example 2 solved by BSFM: (a) convergence behavior, and (b) a comparison of numerical
solutions

the terminal fictitious time, and guess the initial values of u1, . . . , un at τ = 0. In contrast,
BSFM merely solves much lower-dimensional ODEs with n = 2, and no parameter values
need to be guessed.

Liu [19] also applied the two-stage Lie-group shooting method (TSLGSM) to solve this
problem, whose result is close to that obtained from FTIM and BSFM, and we do not plot
it in Fig. 4(b). As shown in [19], one needs to solve four nonlinear algebraic equations
derived from the Lie-group shooting equations to determine six unknown variables. The
process of the TSLGSM is complex and is hard to be extended to an m-point BVP with
m > 3.
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4.3 Example 3
Let us consider the following BVP [27]:

u′′(x) + u′(x)2 – 64u(x) = 32, 0 < x < 1,

u(0) + u(1/4) = 1,

4u(1/2) – u(1) = 0,

(32)

whose exact solution is

u(x) = 16x2. (33)

For this problem, we can derive s1(x) = 4/5 – 12x/5 and s2(x) = 8x/5 – 1/5, and there are
three unknown parameters, z = [y(1/4), y(1/2), y(1)]T.

For the following parameters y1(0) = –1, y2(0) = –1, z0 = (0, 0, 0)T, N = 400, and ε =
10–10, the BSFM converges after 16 iterations as shown in Fig. 5(a). In Fig. 5(b), we com-

Figure 5 For Example 3 of a four-point nonlinear BVP solved by BSFM: (a) convergence behavior, and (b) a
comparison of numerical solutions
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Table 3 For Example 3, a comparison of the ME and iterations number (IN) for different noise levels

s 0 0.01 0.05 0.1
ME 2.63× 10–9 2.65× 10–3 1.33× 10–2 2.65× 10–2

IN 16 16 16 16

pare the numerical solution u(x) with the exact one in Eq. (33), whose ME is 2.63 × 10–9.
The accuracy is very good, although the presented problem is nonlinear and is subjected
to the nonseparable four-point boundary conditions.

In order to test the influence of the noise on the numerical solution, in Table 3 we com-
pare the the ME and iterations number (IN) for different noise levels. Upon comparing
with the maximum value 16 of u(x), these MEs are acceptable.

4.4 Example 4
Let us consider the following BVP [32]:

u′′ =
3
2

u2, 0 < x < 1,

u(0) = 4, u(1) = 1.
(34)

The exact solution is

u(x) =
4

(1 + x)2 . (35)

We recast the above problem as a four-point BVP, which is subjected to the following
nonseparable four-point boundary conditions:

u(0) + u(1/2) = b1, (36)

u(1/4) + u′(1/2) + u(1) = b2, (37)

where b1 and b2 can be computed by inserting u(x) of Eq. (35) into the above two equations.
For this problem, we can derive s1(x) = 9/14 – 4x/7 and s2(x) = 4x/7 – 1/7, and there are

four unknown parameters, z = [y(1/4), y(1/2), y′(1/2), y(1)]T.
For the following parameters y1(0) = –1, y2(0) = 0, z0 = (0, 0, 0, 0)T, N = 200, and ε =

10–10, BSFM converges after 40 iterations as shown in Fig. 6(a). In Fig. 6(b), we compare
the numerical solution u(x) with the exact one in Eq. (35), whose ME is 3.26 × 10–10. The
accuracy is very good, although the presented problem is nonlinear and is subjected to the
nonseparable four-point boundary conditions.

4.5 Example 5
Let us consider the following BVP [26, 27]:

u′′(x) +
(
1 + x + x3)u2(x) = h(x), 0 < x < 1,

1
6

u(2/9) +
1
3

u(7/9) – u(0) = b1,

1
5

u(2/9) +
1
2

u(7/9) – u(1) = b2,

(38)
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Figure 6 For Example 4 of a four-point nonlinear BVP solved by BSFM: (a) convergence behavior, and (b) a
comparison of numerical solutions

whose exact solution is

u(x) =
1
3

sin
(
x – x2). (39)

The above h(x), b1, and b2 can be computed by inserting u(x) of Eq. (39) into Eq. (38).
For this problem, we can derive s1(x) = 54x/67 – 102/67 and s2(x) = –160/201 – 90x/67,

and there are three unknown parameters, z = [y(2/9), y(7/9), y(1)]T.
For the following parameters y1(0) = 0, y2(0) = 0, z0 = (0, 0, 0)T, N = 180, and ε = 10–10,

the BSFM converges after 10 iterations as shown in Fig. 7(a). In Fig. 7(b), we compare
the numerical solution u(x) with the exact one in Eq. (39), whose ME is 1.15 × 10–9. The
accuracy is very good, which is better than that computed in [26] and competitive with
that in [26, 27], as shown in Table 4.
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Figure 7 For Example 5 of a four-point nonlinear BVP solved by BSFM: (a) convergence behavior, and (b) a
comparison of numerical solutions

Table 4 For Example 5, a comparison of the MEs with former literature

[26] 3CWCM in [27] 4CWCM in [27] Present

8.00× 10–6 3.01× 10–8 2.35× 10–9 1.15× 10–9

4.6 Example 6
We consider the following three-point BVP [19]:

u′′(x) = u2(x) +
u′(x)2

(απ )2 – 1 – (απ )2 sin(απx), 0 < x < 1,

u(0) + u(1/2) + u′(1/2) = b1,

u(1/2) + u(1) + u′(1) = b2,

(40)

where b1 and b2 can be computed from the exact solution u(x) = sin(απx).
For this problem, we can derive s1(x) = 5/4 – x and s2(x) = x – 3/4, and there are four

unknown parameters, z = [y(1/2), y′(1/2), y(1), y′(1)]T.
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Figure 8 For Example 6 of a three-point nonlinear BVP solved by BSFM: (a) convergence behavior, and (b) a
comparison of numerical solutions

For the following parameters y1(0) = 0, y2(0) = 0, z0 = (0, 0, 0, 0)T, N = 200, and ε = 10–10,
BSFM converges after 27 iterations as shown in Fig. 8(a). In Fig. 8(b), we compare the
numerical solution with the exact one u(x) = sin(απx) with α = 1, whose ME is 3.15 ×
10–10. The accuracy is very good, which is much better than that computed in [19].

4.7 Example 7
Let us consider the following BVP in a large spatial range:

u′′(x) + u2(x) = h(x), 0 < x < 3,

1
6

u(1) +
1
3

u(2) – u(0) = b1,

1
5

u(1) +
1
2

u(2) – u(3) = b2,

(41)

whose exact solution is still given by Eq. (39). The above h(x), b1, and b2 can be computed
by inserting u(x) of Eq. (39) into Eq. (41).
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Figure 9 For Example 7 of a four-point nonlinear BVP with large spatial region solved by BSFM: (a)
convergence behavior, and (b) a comparison of numerical solutions

Letting x1 = 0, x2 = 1, x3 = 2, and x4 = 3, we can derive

s1(x) =
6(2x2 + 5x3 – 10x4)
3(10x4 – x2 – 3x3)

+
6x

10x4 – x2 – 3x3
,

s2(x) =
6(x2 + 2x3)

3(x2 + 3x3 – 10x4)
+

10x
x2 + 3x3 – 10x4

.

There are three unknown parameters, z = [y(x2), y(x3), y(x4)]T. For the following param-
eters y1(0) = 0, y2(0) = 0, z0 = (0, 0, 0)T, N = 300, and ε = 10–10, BSFM converges after 29
iterations as shown in Fig. 9(a). In Fig. 9(b), we compare the numerical solution with the
exact one in Eq. (39), whose ME is 2.86 × 10–9. The accuracy is very good.

In Table 5, we compare the ME and iterations number (IN) for different noise levels.

Remark 2 As shown in Examples 1, 3–7, where exact solutions are available, the accuracy
obtained by BSFM is quite well, on the order of 10–9 and 10–10. Because we have exactly
transformed the multipoint BVP to the corresponding IVP, and integrated it by using RK4,
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Table 5 For Example 7, a comparison of the ME and iterations number (IN) for different noise levels

s 0 0.01 0.02 0.05
ME 2.86× 10–9 5.88× 10–3 1.17× 10–2 2.89× 10–2

IN 29 31 37 55

the accuracy is on the order of (�x)4. For example, with �x = 0.01, we have the error bound
of 10–8. Therefore, we can estimate the ME by

ME ≤ M0 max
{

(�x)4, ε
}

, (42)

where M0 is some positive constant. If the input data are noised by s, from Tables 1–3 and
5, we can observe that

ME ≤ s. (43)

We also compare Examples 3 and 5 with that obtained from Abd-Elhameed et al. [27].
For Example 3, Abd-Elhameed et al. [27] can obtain the exact solution with the ME being
zero. On the other hand, BSFM led to the ME being 9.38 × 10–8. For Example 5, the accu-
racies obtained from BSFM and Abd-Elhameed et al. [27] are competitive. The wavelets
collocation method with Chebyshev polynomials as the bases [27] led to residual algebraic
equations to be solved to determine the coefficients. For some cases, the accuracy is very
high. As shown by Example 3 in [27], the wavelets collocation method can also be applied
to solve the singular nonlinear BVP as

x(1 – x)u′′ = 6 cosh x +
(
2 + x – x2 + sinh x

)
sinh x – 6u′ – 2u – u2, 0 < x < 1,

and with high accuracy as shown in Table 5 there. However, BSFM cannot treat this prob-
lem due to the left-hand side being zero at x = 0 and x = 1 when we apply RK4 to integrate
the resultant IVP. The BSFM without needing to solve algebraic equations is an alternative
candidate to solve the multipoint BVP efficiently.

5 Conclusions
In the paper, the boundary shape function was derived, which exactly and automatically
satisfies the prescribed multipoint boundary conditions. It is of utmost importance that
we can design the numerical method to exactly match the given multipoint boundary
conditions. According to the new idea of boundary shape function, we have developed
an iterative numerical algorithm used in solutions of the second-order nonlinear multi-
point BVPs. The main contributions are introducing the boundary shape function, de-
riving a variable transformation, and then transforming the nonlinear BVP to the initial
value problem (IVP). The resulting iterative algorithm resorting on the boundary shape
function method (BSFM) is convergent very fast to a solution, and automatically satis-
fies the prescribed multipoint boundary conditions. Numerical examples confirmed that
the BSFM is highly accurate and efficient. Even for some problems with large interval and
subjected to the noise imposed on the boundary data, the presented new method is still
workable to provide quite accurate solutions. The current idea of boundary shape func-
tion has been extended to multidimensional boundary value problems, for example, 2D
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problem [33, 34] and 3D problem [35]. There, the higher-dimensional homogenization
functions are constructed in a similar manner as the construction of BSF from the free
function and with simple shape functions.

Appendix
In the appendix we list the fourth-order Runge–Kutta method (RK4) to integrate the fol-
lowing n-dimensional ODEs:

ẋ = f(t, x), x ∈R
n, (A1)

where the initial condition is given by x(0) = x0. From the N th time step to the (N + 1)th
time step, the RK4 reads as

xN+1 = xN +
�t
6

[f1 + 2f2 + 2f3 + f4], N = 0, 1, 2, . . . , (A2)

where �t = tN+1 – tN , and

f1 = f(tN , xN ), (A3)

f2 = f(tN + τ , xN + τ f1), (A4)

f3 = f(tN + τ , xN + τ f2), (A5)

f4 = f(tN + �t, xN + �tf3). (A6)

in which τ = �t/2.
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