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Abstract
This paper deals with a class of Petrovsky system with nonlinear damping

wtt +�2
B
w – k2�Bwt + awt|wt|m–2 = bw|w|p–2

on a manifold with conical singularity, where �B is a Fuchsian-type Laplace operator
with totally characteristic degeneracy on the boundary x1 = 0. We first prove the
global existence of solutions under conditions without relation betweenm and p,
and establish an exponential decay rate. Furthermore, we obtain a finite time blow-up
result for local solutions with low initial energy E(0) < d.
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1 Introduction
Due to the frequent occurrence of high order nonlinear wave equations in many branches
of engineering, physics, chemistry, material science, and other sciences, the study of wave
equations plays a key role in mathematical analysis. For more details, see [1, 2]. In [3] and
[4], the original Petrovsky model has the following form:

wtt + �2w – �wt + wt|wt|m–2 = w|w|p–2, x ∈ Ω , t > 0, (1.1)

w = 0,
∂w
∂ν

= 0, x ∈ ∂Ω , t ≥ 0, (1.2)

w(x, 0) = w0(x), wt(x, 0) = w1(x), x ∈ Ω̄ , (1.3)

where Ω ∈R
n is a bounded domain with a smooth boundary ∂Ω .

Equation (1.1) is an important physical model that appears in many applications to math-
ematical physics as well as in the theory of vibrating plates, geophysics, and ocean acous-
tics [5, 6]. Some further physical interpretations are given in [7, 8].
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For Equation (1.1), many results for global existence, nonexistence, and asymptotic be-
havior of solutions have been obtained [3–11]. Li et al. [3] studied problem (1.1)–(1.3) and
derived that the solution is global without the relation between m and p. Moreover, the
decay estimates of the energy function and the estimates of the lifespan of solution were
given. Later, under suitable conditions decay estimates of the solutions for Equation (1.1)
have been established by using Nakao’s inequality in [4]. Messaoudi [9] proved the solu-
tion for problem (1.1)–(1.3) without �wt blows up in finite time if p > m and the energy is
negative. Wu [10] proved the blow-up result for problem (1.1)–(1.3) without �wt if p > m
and the energy is nonnegative. Recently, Chen et al. [11] proved that the solution of prob-
lem (1.1)–(1.3) without �wt blows up with positive initial energy and claimed that the
solution blows up in finite time for even vanishing initial energy for m = 2. More recently,
Philippin et al. [12] used a differential inequality technique to obtain a lower bound on
blow-up time for Equation (1.1) without �wt . In recent years, lower bounds for the blow-
up time in a superlinear hyperbolic equation with damping term have been derived [13].
For other related works, we refer the readers to [14–18] and the references therein.

In 2011 to 2012, Chen et al. established the corresponding Sobolev inequality on the
cone Sobolev spaces in [19, 20]. And on this basis, they studied the initial boundary value
problem of a semilinear parabolic equation on a manifold with conical singularity [21] and
obtained the existence and nonexistence results by introducing a family of potential wells.
Li et al. [22] proved the global existence, exponential decay, and finite time blow-up of
solution for a class of semilinear pseudo-parabolic equations with conical degeneration.
Recently, Alimohammady et al. [23] studied a class of semilinear degenerate hyperbolic
equations on the cone Sobolev spaces

wtt – �Bw + V (x)w + γ wt = gt(x)w|w|p–1, x ∈ intB, t > 0, (1.4)

w(t, x) = 0, x ∈ ∂B, t ≥ 0, (1.5)

w(x, 0) = w0(x), wt(x, 0) = w1(x), x ∈ intB, (1.6)

where B = [0, 1) × X, X is an (n – 1)-dimensional closed compact manifold, which is re-
garded as the local model near the conical points and ∂B = {0} × X. �B = (x1∂x1 )2 + ∂2

x2 +
· · · + ∂2

xn .
They discussed the invariance of some sets, global existence, nonexistence, and asymp-

totic behavior of solutions with initial energy J(w0) < d by introducing a family of potential
wells which was first proposed by Sattinger [24]. More works on equations with conical
degeneration can be seen in the literature [25–28] and the references therein.

If we consider Equation (1.1) on a manifold with conical singularity, that is, when the
standard Laplace operator � of Equation (1.1) is replaced by Fuchsian-type Laplace op-
erator �B, what will happened for the initial boundary value problem? For this kind of
Petrovsky equation with conical degeneration, the existence and nonexistence of global
solutions to both the initial boundary value problem and the initial value problem remain
open.

Inspired by the ideas of [3, 4, 23] and [29–31], we study the initial boundary value prob-
lem for the following Petrovsky equation:

wtt + �2
B

w – k2�Bwt + awt|wt|m–2 = bw|w|p–2, x ∈ intB, t > 0, (1.7)
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w = 0, ∇Bw · ν = 0, x ∈ ∂B, t ≥ 0, (1.8)

w(x, 0) = w0(x), wt(x, 0) = w1(x), x ∈ intB, (1.9)

where w0(x), w1(x) are suitable initial data and k2, a, b, m, p are constants such that k2 and
b are positive, a is nonnegative, and m ≥ 2, 2 < p < 2n

n–2 = p∗, where p∗ is the critical Sobolev
exponents. Here B is defined as above, and ν is the unit normal vector pointing toward the
exterior ofB. Moreover, the operator �B in (1.7) is defined by (x1∂x1 )2 +∂2

x2 + · · ·+∂2
xn , which

is an elliptic operator with conical degeneration on the boundary x1 = 0 (we also called it
Fuchsian-type Laplace operator), and the divergence operator divB is defined by x1∂x1 +
∂x2 + · · · + ∂xn , the corresponding gradient operator is denoted by ∇B = (x1∂x1 , ∂x2 , . . . , ∂xn ).
In the neighborhood of ∂B we will use coordinates (x1, x′) = (x1, x2, . . . , xn) for 0 ≤ x1 < 1,
x′ ∈ X.

Our main aim in this paper is to find the existence and nonexistence of solutions for
problem (1.7)–(1.9) with cone degeneration by introducing a family of potential wells.
Firstly, under the condition of low initial energy, we establish the existence of global so-
lution in the cone Sobolev space by a combination of Galerkin method and potential well
theory. Then, using the energy perturbation technique, we obtain the exponential decay
result of the global solution. Finally, we show that the solution of the problem blows up
in a finite time and give the estimates for lower and upper bounds of blow-up time. It is
worth mentioning that two types of lower bounds of the blow-up time Tmax for the weak
solution of (1.7)–(1.9) are given, respectively.

The rest of this article is organized as follows. In Sect. 2, we recall the cone Sobolev
spaces and the corresponding properties. In Sect. 3, we establish a global existence result
and show the decay rates. In Sect. 4, we prove the blow-up properties of local solution.

2 Preliminaries
In this section, we recall the manifold with conical singularities and the cone Sobolev
spaces which were introduced in [19, 20] and introduce some lemmas and notations.

We assume that the manifold B has only one conical point on the boundary. Thus, near
the conical point, we have a stretched manifold B associated with B. Here B = [0, 1) ×
X, ∂B = {0} × X and X is a closed compact manifold of dimension n – 1. Also, in the
neighborhood of the conical point, we use coordinates (x1, x′) = (x1, x2, . . . , xn) for 0 ≤ x1 <
1, x′ ∈ X.

Definition 2.1 Let B = [0, 1) × X be a stretched manifold of the manifold B with conical
singularity. Then the cone Sobolev space Hm,γ

p (B) for m ∈ N, γ ∈ R, and 1 < p < ∞ is
defined as

Hm,γ
p (B) =

{
u ∈ W m,p

loc (intB)|ωu ∈Hm,γ
p

(
XΛ

)}

for any cut-off function ω supported by a collar neighborhood of (0, 1) × ∂B. Moreover,
the subspace Hm,γ

p,0 (B) of Hm,γ
p (B) is defined by

Hm,γ
p,0 (B) = [ω]Hm,γ

p,0
(
XΛ

)
+ [1 – ω]W m,p

0 (intB),



Yu et al. Boundary Value Problems        (2020) 2020:141 Page 4 of 26

where XΛ = R+ ×X as the corresponding open stretched cone with the base X, W m,p
0 (intB)

denotes the closure of C∞
0 (intB) in Sobolev spaces W m,p(X̄) when X̄ is a closed compact

C∞ manifold of dimension n that contains B as a submanifold with boundary.

Remark 2.1 ([32]) We have the following properties:
(1) Hm,γ

p (B) is a Banach space for 1 ≤ p < ∞ and is a Hilbert space for p = 2.
(2) Lγ

p (B) := H0,γ
p (B).

(3) Lp(B) := H0,0
p (B).

(4) The embedding Hm,γ
p (B) ↪→Hm′ ,γ ′

p (B) is continuous if m ≥ m′, γ ≥ γ ′; and is
compact embedding if m > m′, γ > γ ′.

Definition 2.2 Let B = [0, 1) × X. Then u(x) ∈ Lγ
p (B) with 1 < p < ∞ and γ ∈R if

∥∥u(x)
∥∥p

Lγ
p (B) =

∫

B

xn
1
∣∣x–γ

1 u(x)
∣∣p dx1

x1
dx′ < +∞.

Observe that if u(x) ∈ L
n
p
p (B), v(x) ∈ L

n
q
q (B) with p, q ∈ (1, +∞) and 1

p + 1
q = 1, then we

have the following Hölder inequality:

∫

B

∣∣u(x)v(x)
∣∣dx1

x1
dx′ ≤

(∫

B

∣∣u(x)
∣∣p dx1

x1
dx′

) 1
p
(∫

B

∣∣v(x)
∣∣q dx1

x1
dx′

) 1
q

. (2.1)

In the sequel, for convenience we denote

(u, v)2 =
∫

B

u(x)v(x)
dx1

x1
dx′, ‖u‖p

L
n
p
p (B)

=
∫

B

∣∣u(x)
∣∣p dx1

x1
dx′.

H̃1, n
2

2,0 (B) :=
{

u(x) ∈H1, n
2

2 (B)|u = 0 on ∂B
}

,

H̃2, n
2

2,0 (B) :=
{

u(x) ∈H2, n
2

2 (B)|u = ∇Bu · ν = 0 on ∂B
}

,

‖u‖2

H̃
1, n

2
2,0 (B)

= ‖u‖2

L
n
2
2 (B)

+ ‖∇Bu‖2

L
n
2
2 (B)

,

‖u‖2

H̃
2, n

2
2,0 (B)

= ‖u‖2

L
n
2
2 (B)

+ ‖∇Bu‖2

L
n
2
2 (B)

+ ‖�Bu‖2

L
n
2
2 (B)

.

The spaces H̃1, n
2

2,0 (B), H̃2, n
2

2,0 (B) with norms ‖u‖
H̃

1, n
2

2,0 (B)
, ‖u‖

H̃
2, n

2
2,0 (B)

are Banach spaces, where

the norms ‖u‖
H̃

1, n
2

2,0 (B)
, ‖u‖

H̃
2, n

2
2,0 (B)

are equivalent to the norms ‖∇Bu‖
L

n
2
2 (B)

, ‖�Bu‖
L

n
2
2 (B)

,
respectively.

Lemma 2.1 Let u(x), v(x) ∈ H̃1, n
2

2,0 (B). Then

∫

B

v�Bu
dx1

x1
dx′ = –

∫

B

∇Bu · ∇Bv
dx1

x1
dx′. (2.2)
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Proof Here we first suppose u(x), v(x) ∈ C∞
0 (B). From the definition of �B, it follows that

∫

B

v�Bu
dx1

x1
dx′

=
∫

B

x1∂x1 (x1∂x1 u) · v
dx1

x1
dx′ +

∫

B

(
∂2

x2 u + · · · + ∂2
xn u

) · v
dx1

x1
dx′

=
∫

B

∂x1 (x1∂x1 u) · v dx +
∫

B

(
∂2

x2 u + · · · + ∂2
xn u

) · v
dx1

x1
dx′

=
∫

B

div

(
x1∂x1 u,

∂x2 u
x1

, . . . ,
∂xn u
x1

)
· v dx

= –
∫

B

(
x1∂x1 u,

∂x2 u
x1

, . . . ,
∂xn u
x1

)
· ∇v dx

= –
∫

B

(
x2

1∂x1 u, ∂x2 u, . . . , ∂xn u
) · ∇v

dx1

x1
dx′

= –
∫

B

(x1∂x1 u, ∂x2 u, . . . , ∂xn u) · (x1∂x1 v, ∂x2 v, . . . , ∂xn v)
dx1

x1
dx′

= –
∫

B

∇Bu · ∇Bv
dx1

x1
dx′. (2.3)

Finally, since C∞
0 (B) is dense in H̃1, n

2
2,0 (B), the equation above holds in the case of u(x), v(x) ∈

H̃1, n
2

2,0 (B). �

Lemma 2.2 ([21], Poincaré inequality) Let B = [0, 1) × X be a bounded subspace in R
n
+

with X ⊂R
n–1, and 1 < p < +∞, γ ∈R. If u(x) ∈ H̃1,γ

p,0 (B), then

∥∥u(x)
∥∥

Lγ
p (B) ≤ c


∥∥∇Bu(x)
∥∥

Lγ
p (B), (2.4)

where ∇B = (x1∂x1 , ∂x2 , . . . , ∂xn ) and the constant c
 depends only on B.

Lemma 2.3 ([21]) For 1 < p < 2n
n–2 , the embedding H̃1, n

2
2,0 (B) ↪→ H̃

0, n
p

p,0 (B) is continuous.

From Lemma 2.2 and Lemma 2.3, we obtain the following lemma.

Lemma 2.4 For 1 < p < p∗, we have

‖u‖
L

n
p
p (B)

≤ C0‖�Bu‖
L

n
2
2 (B)

(2.5)

for u ∈ H̃2, n
2

2,0 (B) holds, where constant C0 depends only on B and p.

3 Global existence and energy decay
In this section, we discuss the global existence and decay of the solution for problem (1.7)–
(1.9).

Similar to the classical case, we introduce the following functionals on cone Sobolev
space H̃2, n

2
2,0 (B):

J(w) =
1
2

∫

B

|�Bw|2 dx1

x1
dx′ –

b
p

∫

B

|w|p dx1

x1
dx′, (3.1)
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I(w) =
∫

B

|�Bw|2 dx1

x1
dx′ – b

∫

B

|w|p dx1

x1
dx′. (3.2)

We also define the energy function as follows:

E(t) =
1
2

∫

B

|wt|2 dx1

x1
dx′ +

1
2

∫

B

|�Bw|2 dx1

x1
dx′ –

b
p

∫

B

|w|p dx1

x1
dx′. (3.3)

Finally, we introduce the potential well

W =
{

w ∈ H̃2, n
2

2,0 (B))|I(w) > 0
} ∪ {0} (3.4)

and the outside sets of the corresponding potential well

V =
{

w ∈ H̃2, n
2

2,0 (B))|I(w) < 0
}

. (3.5)

Remark 3.1 By (3.3) and Lemma 2.4, we know that

E(t) ≥ 1
2

∫

B

|�Bw|2 dx1

x1
dx′ –

b
p

∫

B

|w|p dx1

x1
dx′ ≥ g

(‖�Bw‖
L

n
2
2 (B)

)
, (3.6)

where g(λ) = 1
2λ2 – bCp

0
p λp and C0 is given in Lemma 2.4. A direct calculation shows that

g(λ) has the maximum value at

λ1 =
(

1
bCp

0

) 1
p–2

and the maximum value is

d = g(λ1) =
p – 2

2p

(
1

bCp
0

) 2
p–2

=
p – 2

2p
λ2

1 > 0. (3.7)

By the definition of g(λ) and J(w), we can give another definition of d as follows:

d = inf

{
sup
λ≥0

J(λw), w ∈ H̃2, n
2

2,0 (B),
∫

B

|�Bw|2 dx1

x1
dx′ = 0

}
> 0, (3.8)

and the Nehari manifold

N =
{

w ∈ H̃2, n
2

2,0 (B)
∣∣∣I(w) = 0,

∫

B

|�Bw|2 dx1

x1
dx′ = 0

}
. (3.9)

Similar to the results in [29], one has 0 < d = infw∈N J(w).
The next lemma shows that our energy functional E(t) is a nonincreasing function along

the solution of (1.7)–(1.9).

Lemma 3.1 E(t) is a nonincreasing function for t ≥ 0 and

d
dt

E(t) = –k2

∫

B

|∇Bwt|2 dx1

x1
dx′ – a

∫

B

|wt|m dx1

x1
dx′ ≤ 0. (3.10)



Yu et al. Boundary Value Problems        (2020) 2020:141 Page 7 of 26

Proof Multiplying (1.7) by wt and integrating it over B× [0, t), we obtain

E(t) – E(0) = –
∫ t

0

(
k2

∫

B

|∇Bwτ |2 dx1

x1
dx′ + a

∫

B

|wτ |m dx1

x1
dx′

)
dτ (3.11)

for t ≥ 0. Thus, the proof is completed. �

Lemma 3.2 Assume that E(0) < d. Then:
(i) If ‖�Bw0‖

L
n
2
2 (B)

< λ1, then ‖�Bw(t)‖
L

n
2
2 (B)

< λ1 for t ≥ 0.

(ii) If ‖�Bw0‖
L

n
2
2 (B)

> λ1, then there exists λ2 > λ1 such that ‖�Bw(t)‖
L

n
2
2 (B)

≥ λ2 for t ≥ 0.

Proof From the definition of g(λ), we see that g(λ) is increasing in (0,λ1), decreasing in
(λ1,∞), and g(λ) → –∞ as λ → ∞. Since E(0) < d, so there exist λ2 and λ′

2 such that
λ′

2 < λ1 < λ2 and g(λ′
2) = g(λ2) = E(0).

(i) When ‖�Bw0‖
L

n
2
2 (B)

< λ1, by (3.6), we have

g
(‖�Bw0‖

L
n
2
2 (B)

) ≤ E(0) = g
(
λ′

2
)
.

It implies ‖�Bw0‖
L

n
2
2 (B)

< λ′
2. We claim that ‖�Bw(t)‖

L
n
2
2 (B)

< λ′
2 for t > 0. If not, then

there exists t0 > 0 such that ‖�Bw(t0)‖
L

n
2
2 (B)

> λ′
2. If λ′

2 < ‖�Bw(t0)‖
L

n
2
2 (B)

< λ2, then

g(‖�Bw(t0)‖
L

n
2
2 (B)

) > E(0) ≥ E(t0). It contradicts (3.6). If ‖�Bw(t0)‖
L

n
2
2 (B)

≥ λ2, then by the

continuity of ‖�Bw(t)‖
L

n
2
2 (B)

, there exists 0 < t1 < t0 such that λ′
2 < ‖�Bw(t1)‖

L
n
2
2 (B)

< λ2,

then g(‖�Bw(t1)‖
L

n
2
2 (B)

) > E(0) ≥ E(t1). This is a contradiction.

(ii) When ‖�Bw0‖
L

n
2
2 (B)

> λ1, as in case (i) we also deduce that ‖�Bw0‖
L

n
2
2 (B)

> λ1 implies

‖�Bw(t)‖
L

n
2
2 (B)

≥ λ2 for t ≥ 0. �

Lemma 3.3 Suppose that 2 < p < p∗, w1 ∈ L
n
2
2 (B), and E(0) < d. Let w0 ∈ W such that

β = bCp
0

(
2p

p – 2
E(0)

) p–2
2

< 1. (3.12)

Then w ∈ W for each t ≥ 0.

Proof When w = 0, we get w ∈ W easily, so we just need to prove the case w = 0. Since
I(w0) > 0, it follows from the continuity of w that

I(w) ≥ 0 (3.13)

for some interval near t = 0. Let Tm > 0 be a maximal time (possibly Tm = T ) when (3.13)
holds on [0, Tm).

From (3.1)–(3.2), it follows that

J(w) =
p – 2

2p

∫

B

|�Bw|2 dx1

x1
dx′ +

1
p

I(w)

≥ p – 2
2p

∫

B

|�Bw|2 dx1

x1
dx′, on t ∈ [0, Tm). (3.14)
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By using (3.14), (3.3), and Lemma 3.1, we get
∫

B

|�Bw|2 dx1

x1
dx′ ≤ 2p

p – 2
J(w)

≤ 2p
p – 2

E(t)

≤ 2p
p – 2

E(0). (3.15)

Then, by Lemma 2.4 and (3.15), we obtain

b‖w‖p

L
n
p
p (B)

≤ bCp
0‖�Bw‖p

L
n
2
2 (B)

≤ bCp
0

(
2p

p – 2
E(0)

) p–2
2 ‖�Bw‖2

L
n
2
2 (B)

= β‖�Bw‖2

L
n
2
2 (B)

< ‖�Bw‖2

L
n
2
2 (B)

(3.16)

on t ∈ [0, Tm). Therefore, by using (3.2), we conclude that I(w) > 0 for all t ∈ [0, Tm). By
repeating the procedure, Tm is extended to T . The proof is completed. �

Remark 3.2 From Lemma 3.3, we can deduce that

‖�Bw‖2

L
n
2
2 (B)

≤ 1
1 – β

I(w). (3.17)

Theorem 3.1 Suppose that 2 < p < p
, w1 ∈ L
n
2
2 (B), and E(0) < d, let w0 ∈ W and w sat-

isfy the assumption of Lemma 3.3. Then problem (1.7)–(1.9) admits a global weak solu-
tion w(x, t) ∈ L∞([0, T]; H̃2, n

2
2,0 (B)) with wt(x, t) ∈ L2([0, T]; H̃1, n

2
2,0 (B)) ∩ Lm([0, T]; L

n
m
m (B)) ∩

L∞([0, T]; L
n
2
2 (B)). Moreover, w(t) ∈ W for 0 ≤ t < ∞.

Proof Let {ωj(x)} be a system of base functions in H̃2, n
2

2,0 (B). Now we construct the following
approximate solution ws(x, t) of problem (1.7)–(1.9):

ws(x, t) =
s∑

j=1

gjs(t)ωj(x), s = 1, 2, . . . ,

which satisfies

(wstt ,ωj)2 + (�Bws,�Bωj)2 + k2(∇Bwst ,∇Bωj)2 + a
(
wst|ust|m–2,ωj

)
2

= b
(
ws|us|p–2,ωj

)
2, s = 1, 2, . . . , (3.18)

ws(x, 0) =
s∑

j=1

gjs(0)ωj(x) → w0(x) in H̃2, n
2

2,0 (B), (3.19)

wst(x, 0) =
s∑

j=1

g ′
js(0)ωj(x) → w1(x) in L

n
2
2 (B). (3.20)
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Multiplying (3.18) by g ′
js(t), summing for j (j = 1, 2, . . . , s), and integrating from 0 to t, we

obtain

k2

∫ t

0
‖∇Bwsτ‖2

L
n
2
2 (B)

dτ + a
∫ t

0
‖wsτ‖m

L
n
m
m (B)

dτ + E
(
ws(t)

)

= E
(
ws(0)

)
, 0 ≤ t < ∞. (3.21)

By (3.19) we can get E(ws(0)) → E(w0), then for sufficiently large m, we have

k2

∫ t

0
‖∇Bwsτ‖2

L
n
2
2 (B)

dτ + a
∫ t

0
‖wsτ‖m

L
n
m
m (B)

dτ + E
(
ws(t)

)
< d,

0 ≤ t < ∞. (3.22)

From (3.22) and the proof of Lemma 3.3, we can get ws(t) ∈ W for 0 ≤ t < ∞ and suffi-
ciently large s. Hence, by (3.22) and

E(ws) =
1
2
‖wst‖2

L
n
2
2 (B)

+
p – 2

2p
‖�Bws‖2

L
n
2
2 (B)

+
1
p

I(ws), (3.23)

we obtain

k2

∫ t

0
‖∇Bwsτ‖2

L
n
2
2 (B)

dτ + a
∫ t

0
‖wsτ‖m

L
n
m
m (B)

dτ +
1
2
‖wst‖2

L
n
2
2 (B)

+
p – 2

2p
‖�Bws‖2

L
n
2
2 (B)

< d, 0 ≤ t < ∞, (3.24)

for sufficiently large s, which yields

‖�Bws‖2

L
n
2
2 (B)

<
2p

p – 2
d, 0 ≤ t < ∞, (3.25)

∫ t

0
‖∇Bwsτ‖2

L
n
2
2 (B)

dτ <
d
k2

, 0 ≤ t < ∞, (3.26)

∫ t

0
‖wsτ‖m

L
n
m
m (B)

dτ <
d
a

, 0 ≤ t < ∞, (3.27)

‖wst‖2

L
n
2
2 (B)

< 2d, 0 ≤ t < ∞, (3.28)

∫

B

∣∣|ws|p–2ws
∣∣

p
p–1 dx1

x1
dx′ =

∫

B

|ws|p dx1

x1
dx′ = ‖ws‖p

L
n
p
p (B)

≤ Cp
0‖�Bws‖p

L
n
2
2 (B)

≤ Cp
0

(
2p

p – 2
d
) p

2
, (3.29)

∫ t

0

∫

B

∣∣|wsτ |m–2wsτ
∣∣

m
m–1 dx1

x1
dx′ dτ

=
∫ t

0

∫

B

|wsτ |m dx1

x1
dx′ dτ =

∫ t

0
‖wsτ‖m

L
n
m
m (B)

dτ <
d
a

. (3.30)
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Therefore, there exist w and a subsequence still denoted by {ws} for which, as s → ∞,

ws → w in L∞(
0,∞; H̃2, n

2
2,0 (B)

)
weakly star and a.e. in intB× [0,∞),

wst → wt in L2(0,∞; H̃1, n
2

2,0 (B)
)

weakly,

wst → wt in Lm(
0,∞; L

n
m
m (B)

)
weakly,

wst → wt in L∞(
0,∞; L

n
2
2 (B)

)
weakly star,

wp–1
s → wp–1 in L∞(

0,∞; L
n(p–1)

p
p

p–1
(B)

)
weakly star,

wm–1
st → wm–1

t in L
m

m–1
(
0,∞; L

n(m–1)
m

m
m–1

(B)
)

weakly.

In (3.18), we fix j, letting s → ∞ and integrating from 0 to t. Then we have

(wt ,ωj)2 +
∫ t

0
(�Bw,�Bωj)2 dτ + k2

∫ t

0
(∇Bwτ ,∇Bωj)2 dτ

+ a
∫ t

0

(
wτ |uτ |m–2,ωj

)
2 dτ = b

∫ t

0

(
w|w|p–2,ωj

)
2 dτ + (w1,ωj)2 (3.31)

and

(wt , v)2 +
∫ t

0
(�Bw,�Bv)2 dτ + k2

∫ t

0
(∇Bwτ ,∇Bv)2 dτ

+ a
∫ t

0

(
wτ |uτ |m–2, v

)
2 dτ = b

∫ t

0

(
w|w|p–2, v

)
2 dτ + (w1, v)2,

∀v ∈ H̃2, n
2

2,0 (B). (3.32)

From (3.19) we obtain w(x, 0) = w0(x) in H̃2, n
2

2,0 (B) and wt(x, 0) = w1(x) in L
n
2
2 (B), t ∈

(0, T). By density we obtain w ∈ L∞([0, T]; H̃2, n
2

2,0 (B)) with wt ∈ L2([0, T]; H̃1, n
2

2,0 (B)) ∩
Lm([0, T]; L

n
m
m (B)) ∩ L∞([0, T]; L

n
2
2 (B)) is a global weak solution of problem (1.7)–(1.9). It is

obvious that w(t) ∈ W for 0 ≤ t < ∞. �

Now, we use the following “modified” functional:

G(t) = E(t) + ε

(∫

B

wwt
dx1

x1
dx′ +

k2

2
‖∇Bw‖2

L
n
2
2 (B)

)
.

Lemma 3.4 Let w satisfy the assumption of Theorem 3.1. For ε small enough, we have

α1G(t) ≤ E(t) ≤ α2G(t) (3.33)

holds for two positive constants α1 and α2.
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Proof Making use of (3.23), straightforward computations lead to

G(t) = E(t) + ε

(∫

B

wwt
dx1

x1
dx′ +

k2

2

∫

B

|∇Bw|2 dx1

x1
dx′

)

≤ E(t) +
ε

2

∫

B

|w|2 dx1

x1
dx′ +

ε

2

∫

B

|wt|2 dx1

x1
dx′

+
εk2

2

∫

B

|∇Bw|2 dx1

x1
dx′

≤ E(t) +
ε

2
(
k2 + c2




)∫

B

|∇Bw|2 dx1

x1
dx′ +

ε

2

∫

B

|wt|2 dx1

x1
dx′

≤ E(t) +
ε

2
C1

∫

B

|�Bw|2 dx1

x1
dx′ +

ε

2

∫

B

|wt|2 dx1

x1
dx′

≤ E(t) +
ε

2
2pC1

p – 2
E(t) + εE(t)

≤ 1
α1

E(t), (3.34)

and in the same way, we get

G(t) ≥ E(t) –
ε

2
C1

∫

B

|�Bw|2 dx1

x1
dx′ –

ε

2

∫

B

|wt|2 dx1

x1
dx′

≥ E(t) –
ε

2
2pC1

p – 2
E(t) – εE(t)

≥ 1
α2

E(t) (3.35)

for ε small enough. �

Theorem 3.2 Suppose that 2 ≤ m < m∗ = n–2
2n . Let w(x, t) satisfy the assumption of Theo-

rem 3.1. Then we have the following decay estimates:

E(t) ≤ Ke–kt , t ≥ 0, (3.36)

where K and k are positive constants which will be defined later.

Proof From the definition of G(t), we get

G′(t) = –k2

∫

B

|∇Bwt|2 dx1

x1
dx′ – a

∫

B

|wt|m dx1

x1
dx′ + ε

∫

B

|wt|2 dx1

x1
dx′

+ ε

∫

B

w(wtt – k2�Bwt)
dx1

x1
dx′

= –k2

∫

B

|∇Bwt|2 dx1

x1
dx′ – a

∫

B

|wt|m dx1

x1
dx′ + ε

∫

B

|wt|2 dx1

x1
dx′

+ ε

∫

B

b|w|p dx1

x1
dx′ – ε

∫

B

awwt|ut|m–2 dx1

x1
dx′

– ε

∫

B

w�2
B

w
dx1

x1
dx′
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= –k2‖∇Bwt‖2

L
n
2
2 (B)

– a‖wt‖m

L
n
m
m (B)

+ ε‖wt‖2

L
n
2
2 (B)

+ ε

(
p
2
‖wt‖2

L
n
2
2 (B)

+
p
2
‖�Bw‖2

L
n
2
2 (B)

– pE(t)
)

– ε

∫

B

awwt|wt|m–2 dx1

x1
dx′

– ε‖�Bw‖2

L
n
2
2 (B)

= –k2‖∇Bwt‖2

L
n
2
2 (B)

– a‖wt‖m

L
n
m
m (B)

+ ε

(
p
2

+ 1
)

‖wt‖2

L
n
2
2 (B)

+ ε

(
p
2

– 1
)

‖�Bw‖2

L
n
2
2 (B)

– εpE(t)

– ε

∫

B

awwt|wt|m–2 dx1

x1
dx′. (3.37)

Using Lemma 2.2, we obtain

G′(t) ≤
[
ε

(
p
2

+ 1
)

c2

 – k2

]
‖∇Bwt‖2

L
n
2
2 (B)

– a‖wt‖m

L
n
m
m (B)

+
(

p
2

– 1
)

ε‖�Bw‖2

L
n
2
2 (B)

– εpE(t)

– εa
∫

B

wwt|ut|m–2 dx1

x1
dx′. (3.38)

Then, we will show that from the estimate of the last term in (3.38), by Young’s inequality
and the proof of Lemma 3.3, we obtain

∣∣∣∣

∫

B

wwt|ut|m–2 dx1

x1
dx′

∣∣∣∣ ≤ θ‖wt‖m

L
n
m
m (B)

+ c(θ )‖w‖m

L
n
m
m (B)

, (3.39)

‖w‖m

L
n
m
m (B)

≤ Cm
0

(
2p

p – 2
E(0)

) m–2
2 ‖�Bw‖2

L
n
2
2 (B)

. (3.40)

Then by exploiting (3.38)–(3.40), we arrive at

G′(t) ≤
[
ε

(
p
2

+ 1
)

c2

 – k2

]
‖∇Bwt‖2

L
n
2
2 (B)

+ (εθ – 1)a‖wt‖m

L
n
m
m (B)

+ ε

[
ac(θ )Cm

0

(
2p

p – 2
E(0)

) m–2
2

+
(

p
2

– 1
)]

‖�Bw‖2

L
n
2
2 (B)

– εpE(t)

≤
[
ε

(
p
2

+ 1
)

c2

 – k2

]
‖∇Bwt‖2

L
n
2
2 (B)

+ (εθ – 1)a‖wt‖m

L
n
m
m (B)

+ ε

[
ac(θ )Cm

0

(
2p

p – 2
E(0)

) m–2
2

+
(

p
2

– 1
)]

E(t) – εpE(t)

=
[
ε

(
p
2

+ 1
)

c2

 – k2

]
‖∇Bwt‖2

L
n
2
2 (B)

+ (εθ – 1)a‖wt‖m

L
n
m
m (B)

– ε

{
p –

[
ac(θ )Cm

0

(
2p

p – 2
E(0)

) m–2
2

+
(

p
2

– 1
)]}

E(t). (3.41)
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Choose ε so small that ε( p
2 + 1)c2


 – k2 ≤ 0, εθ – 1 ≤ 0. And choose suitable θ such that
p – [ac(θ )Cm

0 ( 2p
p–2 E(0)) m–2

2 + ( p
2 – 1)] > 0. Then from the above inequality, we obtain

G′(t) ≤ –ε

{
p –

[
ac(θ )Cm

0

(
2p

p – 2
E(0)

) m–2
2

+
(

p
2

– 1
)]}

E(t). (3.42)

Then, by the relation between E(t) and G(t), we get

G′(t) ≤ –εα1

{
p –

[
ac(θ )Cm

0

(
2p

p – 2
E(0)

) m–2
2

+
(

p
2

– 1
)]}

G(t). (3.43)

We take ε small enough such that

G(0) = E(0) + ε

(∫

B

w0w1
dx1

x1
dx′ +

k2

2
‖∇Bw0‖2

L
n
2
2 (B)

)
> 0.

Integrating (3.43), we obtain

G(t) ≤ G(0)e–kt , t ≥ 0,

where

k = εα1

{
p –

[
ac(θ )Cm

0

(
2p

p – 2
E(0)

) m–2
2

+
(

p
2

– 1
)]}

> 0.

By using (3.33) again, we get

E(t) ≤ Ke–kt , t ≥ 0,

where K = α2G(0). This completes the proof. �

4 Finite time blow-up of solution
In this section, we show that the solution of problem (1.7)–(1.9) blows up in finite time if
p > m and E(0) < d. For this purpose, we first give the following lemma which will be used
later.

Lemma 4.1 Suppose that 2 < p < p
, E(0) < d, w1 ∈ L
n
2
2 (B). Let w0 ∈ V , then we have

w(t) ∈ V , ∀t ∈ [0, T), (4.1)

d <
p – 2

2p
‖�Bw‖2

L
n
2
2 (B)

, ∀t ∈ [0, T). (4.2)

Proof Let w0 ∈ V , we have to prove that w(t) ∈ V for all t ∈ [0, T). We argue by contradic-
tion. Assume that there exists t0 ∈ [0, T) such that w(t0) /∈ V . This implies that

∥∥�Bw(t0)
∥∥2

L
n
2
2 (B)

≥ b
∥∥w(t0)

∥∥p

L
n
p
p (B)

.
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By the continuity of w(t), there exists at least one t̄ ∈ (0, t0] such that

∥∥�Bw(t̄)
∥∥2

L
n
2
2 (B)

= b
∥∥w(t̄)

∥∥p

L
n
p
p (B)

.

Let

t̃ = inf
{

t̄ ∈ (0, t0] :
∥∥�Bw(t̄)

∥∥2

L
n
2
2 (B)

= b
∥∥w(t̄)

∥∥p

L
n
p
p (B)

}
.

In particular, the regularity of w(t) implies that t̃ ∈ (0, t0]. Thus, we know

∥∥�Bw(t̃)
∥∥2

L
n
2
2 (B)

= b
∥∥w(t̃)

∥∥p

L
n
p
p (B)

and w(t) ∈ V for all t ∈ [0, t̃). We have two cases to consider.
First case: ‖�Bw(t̃)‖2

L
n
2
2 (B)

= 0.

In this case, by the continuity of w(t), we have

lim
t→t̃–

∥∥�Bw(t)
∥∥2

L
n
2
2 (B)

= 0. (4.3)

On the other hand, the fact that w(t) ∈ V for all t ∈ [0, t̃) implies that ‖�Bw(t)‖2

L
n
2
2 (B)

= 0
and

∥∥�Bw(t)
∥∥2

L
n
2
2 (B)

< b
∥∥w(t)

∥∥p

L
n
p
p (B)

, t ∈ [0, t̃). (4.4)

By Lemma 2.4, we get

‖w‖p

L
n
p
p (B)

≤ Cp
0‖�Bw‖p

L
n
2
2 (B)

, t ∈ [0, t̃). (4.5)

Then, by (4.4), (4.5), we have

lim
t→t̃–

∥∥�Bw(t)
∥∥

L
n
2
2 (B)

>
(

1
bCp

0

) 1
p–2

.

This contradicts (4.3).
Second case: ‖�Bw(t̃)‖2

L
n
2
2 (B)

= 0.

In this case, by recalling (3.8), we know that J(w(t̃)) ≥ d. Thus, E(t̃) ≥ d, which contra-
dicts the fact that E(t) ≤ E(0) < d. Hence, in either case we conclude that w(t) ∈ V for all
t ∈ [0, T). Since

J(λw) =
1
2
λ2‖�Bw‖2

L
n
2
2 (B)

–
b
p
λp‖w‖p

L
n
p
p (B)

,

we obtain

d
dλ

J(λw) = λ‖�Bw‖2

L
n
2
2 (B)

– bλp–1‖w‖p

L
n
p
p (B)
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and

d2

dλ2 J(λw) = ‖�Bw‖2

L
n
2
2 (B)

– b(p – 1)λp–2‖w‖p

L
n
p
p (B)

.

Let d
dλ

J(λw) = 0, which implies

λ̄1 = 0, λ̄2 =
(‖�Bw‖2

L
n
2
2 (B)

b‖w‖p

L
n
p
p (B)

) 1
p–2

.

An elementary calculation shows

d2

dλ2 J(λ̄1w) > 0,
d2

dλ2 J(λ̄2w) < 0.

So we have

sup
λ≥0

J(λw) = J(λ̄2w) =
p – 2

2p

(‖�Bw‖2

L
n
2
2 (B)

)
p

p–2

(b‖w‖p

L
n
p
p (B)

)
2

p–2
.

By I(u) < 0, we have

d ≤ sup
λ≥0

J(λw) = J(λ̄2w) =
p – 2

2p

(‖�Bw‖2

L
n
2
2 (B)

)
p

p–2

(b‖w‖p

L
n
p
p (B)

)
2

p–2

<
p – 2

2p
‖�Bw‖2

L
n
2
2 (B)

. (4.6)
�

Lemma 4.2 Let 2 < p < p
. Then there exists a positive constant C depending only on B

such that

‖w‖s

L
n
p
p (B)

≤ C
(∥∥�Bw(t)

∥∥2

L
n
2
2 (B)

+ ‖w‖p

L
n
p
p (B)

)
, with 2 ≤ s ≤ p, (4.7)

for any w ∈ H̃2, n
2

2,0 (B).

Proof If ‖w‖
L

n
p
p (B)

≤ 1, then ‖w‖s

L
n
p
p (B)

≤ ‖w‖2

L
n
p
p (B)

≤ C2
0‖�Bw(t)‖2

L
n
2
2 (B)

by Lemma 2.4. If

‖w‖
L

n
p
p (B)

> 1, then ‖w‖s

L
n
p
p (B)

≤ ‖w‖p

L
n
p
p (B)

. Therefore (4.7) follows. �

Now we introduce the following auxiliary function:

H(t) = d1 – E(t), t ≥ 0, (4.8)

where d1 = E(0)+d
2 > 0.

From Lemma 4.1 and Lemma 4.2, we obtain the following corollary.
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Corollary 4.1 Let the assumption of Lemma 4.2 hold. Then we have

‖w‖s

L
n
p
p (B)

≤ C
(∣∣H(t)

∣∣ + ‖wt‖2

L
n
2
2 (B)

+ ‖w‖p

L
n
p
p (B)

)
, with 2 ≤ s ≤ p, (4.9)

for any w ∈ H̃2, n
2

2,0 (B).

Theorem 4.1 Suppose that 2 < p < p
 and p > m ≥ 2, w1 ∈ L
n
2
2 (B), w0 ∈ V . If one of the

following is satisfied:
(1) 0 ≤ E(0) < d and ‖�Bw0‖

L
n
2
2 (B)

> λ1;

(2) E(0) < 0,
then the local solution w of problem (1.7)–(1.9) blows up in finite time; that is, the maximum
existence time Tmax of w is finite and

lim
T→T–

max

[‖�Bw‖2

L
n
2
2 (B)

+ ‖w‖p

L
n
p
p (B)

+ ‖wt‖2

L
n
2
2 (B)

]
= +∞.

Moreover, the lifespan Tmax is estimated by 0 < Tmax ≤ 1–α

Γ α[L(0)]α/(1–α) , here L(0) and Γ are
given in (4.30) and (4.36) respectively. α is a constant given in (4.26).

Proof (1) For 0 ≤ E(0) < d, from (4.8), it follows that

H ′(t) = –E′(t) = k2

∫

B

|∇Bwt|2 dx1

x1
dx′ + a

∫

B

|wt|m dx1

x1
dx′ ≥ 0. (4.10)

Thus, we have

H(t) ≥ H(0) = d1 – E(0) > 0, t ≥ 0. (4.11)

Let

A(t) =
∫

B

w(t)wt(t)
dx1

x1
dx′. (4.12)

By differentiating (4.12) and using (1.7), (4.8), we obtain

A′(t)

=
∫

B

|wt|2 dx1

x1
dx′ +

∫

B

wwtt
dx1

x1
dx′

=
∫

B

|wt|2 dx1

x1
dx′ +

∫

B

w
[
–�2

B
w + k2�Bwt – awt|wt|m–2

+ bw|w|p–2]dx1

x1
dx′

= ‖wt‖2

L
n
2
2 (B)

– ‖�Bw‖2

L
n
2
2 (B)

– k2

∫

B

∇Bw · ∇Bwt
dx1

x1
dx′

+ b‖w‖p

L
n
p
p (B)

– a
∫

B

wwt|ut|m–2 dx1

x1
dx′
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=
(

1 +
p
2

)
‖wt‖2

L
n
2
2 (B)

+
(

p
2

– 1
)

‖�Bw‖2

L
n
2
2 (B)

– a
∫

B

wwt|wt|m–2 dx1

x1
dx′ – k2

∫

B

∇Bw · ∇Bwt
dx1

x1
dx′

+ pH(t) – pd1. (4.13)

Moreover,

(
p
2

– 1
)

‖�Bw‖2

L
n
2
2 (B)

– pd1

=
(

p
2

– 1
)

λ2
2 – λ2

1
λ2

2
‖�Bw‖2

L
n
2
2 (B)

+
(

p
2

– 1
)

λ2
1

‖�Bw‖2

L
n
2
2 (B)

λ2
2

– pd1

≥ c1‖�Bw‖2

L
n
2
2 (B)

+ c2, (4.14)

where λ2 is given in Lemma 3.2, c1 = ( p
2 –1) λ2

2–λ2
1

λ2
2

and c2 = ( p
2 –1)λ2

1 –pd1. By Lemma 3.2(ii),
we have c1 > 0, and by (3.7), we see that

c2 =
(

p
2

– 1
)

λ2
1 – pd1

=
(

p
2

– 1
)

λ2
1 –

p(d + E(0))
2

= pd –
p(d + E(0))

2

=
p(d – E(0))

2
> 0. (4.15)

Thus, by (4.13)–(4.15), we arrive at

A′(t) >
(

1 +
p
2

)
‖wt‖2

L
n
2
2 (B)

+ c1‖�Bw‖2

L
n
2
2 (B)

– a
∫

B

wwt|wt|m–2 dx1

x1
dx′

– k2

∫

B

∇Bw · ∇Bwt
dx1

x1
dx′ + pH(t). (4.16)

We estimate the right-hand side of the above equation. By Hölder’s inequality and the
inequality ‖w‖

L
n
m
m (B)

≤ C‖w‖
L

n
p
p (B)

, we obtain

∣∣∣∣

∫

B

wwt|wt|m–2 dx1

x1
dx′

∣∣∣∣ ≤ ‖w‖
L

n
m
m (B)

‖wt‖m–1

L
n
m
m (B)

≤ C‖w‖
L

n
p
p (B)

‖wt‖m–1

L
n
m
m (B)

= C‖w‖1– p
m

L
n
p
p (B)

‖w‖
p
m

L
n
p
p (B)

‖wt‖m–1

L
n
m
m (B)

. (4.17)
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Note that from (4.8) and (4.2) we get

H(t) = d1 – E(t)

< d –
1
2
‖wt‖2

L
n
2
2 (B)

–
1
2
‖�Bw‖2

L
n
2
2 (B)

+
b
p
‖w‖p

L
n
p
p (B)

<
p – 2

2p
‖�Bw‖2

L
n
2
2 (B)

–
1
2
‖wt‖2

L
n
2
2 (B)

–
1
2
‖�Bw‖2

L
n
2
2 (B)

+
b
p
‖w‖p

L
n
p
p (B)

≤ b
p
‖w‖p

L
n
p
p (B)

. (4.18)

Thus, by (4.11) and (4.18), we see that

0 < H(0) ≤ H(t) <
b
p
‖w‖p

L
n
p
p (B)

, t ≥ 0. (4.19)

Then, using (4.19), we have from (4.17) that

∣∣∣∣

∫

B

wwt|ut|m–2 dx1

x1
dx′

∣∣∣∣ ≤ C
(

p
b

H(t)
) 1

p (1– p
m )

‖w‖
p
m

L
n
p
p (B)

‖wt‖m–1

L
n
m
m (B)

. (4.20)

Hence, by Young’s inequality and (4.10), we obtain

a
∣∣∣∣

∫

B

wwt|wt|m–2 dx1

x1
dx′

∣∣∣∣

≤ c3H(t)–α∗
(

aθm

m
‖w‖p

L
n
p
p (B)

+
a(m – 1)

m
θ–m/(m–1)‖wt‖m

L
n
m
m (B)

)

≤ c4H(t)–α∗(
θm‖w‖p

L
n
p
p (B)

+ aθ–m/(m–1)‖wt‖m

L
n
m
m (B)

)
, (4.21)

where c3 = C( p
b )

1
p – 1

m , α∗ = 1
m – 1

p > 0, θ > 0, and c4 = c3 max{ a
m , m–1

m }.
Letting 0 < α < α∗ and by (4.19), we see that

a
∣∣∣∣

∫

B

wwt|wt|m–2 dx1

x1
dx′

∣∣∣∣

≤ c4
[
θmH(0)–α∗‖w‖p

L
n
p
p (B)

+ θ–m/(m–1)H(t)–α∗
H ′(t)

]

≤ c4
[
θmH(0)–α∗‖w‖p

L
n
p
p (B)

+ θ–m/(m–1)H(0)α–α∗
H(t)–αH ′(t)

]
. (4.22)

Using Young’s inequality again, we obtain

∫

B

∇Bw · ∇Bwt
dx1

x1
dx′

= –
∫

B

�Bw · wt
dx1

x1
dx′
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≤
∣∣∣∣

∫

B

�Bw · wt
dx1

x1
dx′

∣∣∣∣

≤ 1
2
(‖�Bw‖2

L
n
2
2 (B)

+ ‖wt‖2

L
n
2
2 (B)

)
. (4.23)

Then (4.16) becomes

A′(t)

>
(

1 +
p
2

)
‖wt‖2

L
n
2
2 (B)

+ c1‖�Bw‖2

L
n
2
2 (B)

– c4θ
mH(0)–α∗‖w‖p

L
n
p
p (B)

– c4θ
–m/(m–1)H(0)α–α∗

H(t)–αH ′(t) –
k2

2
‖�Bw‖2

L
n
2
2 (B)

–
k2

2
‖wt‖2

L
n
2
2 (B)

+ pH(t). (4.24)

Now, we define

L(t) = H1–α(t) + εA(t), t ≥ 0, (4.25)

where ε is small to be specified later and

0 < α ≤ p – 2
2p

. (4.26)

By differentiating (4.25), by Lemma 2.2 and (4.24), we see that

L′(t) = (1 – α)H–α(t)H ′(t) + εA′(t)

> (1 – α)H–α(t)H ′(t) + ε

[(
1 +

p
2

–
k2

2

)
‖wt‖2

L
n
2
2 (B)

+
(

c1 –
k2

2

)
‖�Bw‖2

L
n
2
2 (B)

– c4θ
mH(0)–α∗‖w‖p

L
n
p
p (B)

– c4θ
–m/(m–1)H(0)α–α∗

H(t)–αH ′(t) + pH(t)
]

. (4.27)

Letting

a1 = min

{
p
2

, c1 –
k2

2
, 1 +

p
2

–
k2

2

}
> 0

and decomposing εpH(t) in (4.27) by

εpH(t) = 2a1εH(t) + (p – 2a1)εH(t).
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Thus, by (4.8) and (3.3), we obtain

L′(t) >
(
1 – α – c4εθ

–m/(m–1)H(0)α–α∗)
H–α(t)H ′(t)

+ ε

(
1 +

p
2

–
k2

2

)
‖wt‖2

L
n
2
2 (B)

+ ε

(
c1 –

k2

2

)
‖�Bw‖2

L
n
2
2 (B)

– c4εθ
mH(0)–α∗‖w‖p

L
n
p
p (B)

+ 2a1ε

(
–

1
2
‖wt‖2

L
n
2
2 (B)

–
1
2
‖�Bw‖2

L
n
2
2 (B)

+
b
p
‖w‖p

L
n
p
p (B)

)
+ (p – 2a1)εH(t)

=
(
1 – α – c4εθ

–m/(m–1)H(0)α–α∗)
H–α(t)H ′(t)

+ ε

(
1 +

p
2

–
k2

2
– a1

)
‖wt‖2

L
n
2
2 (B)

+ ε

(
c1 –

k2

2
– a1

)
‖�Bw‖2

L
n
2
2 (B)

+ ε

[
2a1b

p
– c4θ

mH(0)–α∗
]
‖w‖p

L
n
p
p (B)

+ (p – 2a1)εH(t). (4.28)

Now, we choose θ > 0 small such that

2a1b
p

– c4θ
mH(0)–α∗ ≥ a1b

2p
,

and we pick ε small enough so that

1 – α – c4εθ
–m/(m–1)H(0)α–α∗ ≥ 0.

Then (4.28) becomes

L′(t) > c5ε
(‖wt‖2

L
n
2
2 (B)

+ ‖�Bw‖2

L
n
2
2 (B)

+ ‖w‖p

L
n
p
p (B)

+ H(t)
)
, (4.29)

here c5 = min{ a1b
2p , c1 – k2

2 –a1, 1+ p
2 – k2

2 –a1, p–2a1}. Thus L(t) is a nondecreasing function
on t ≥ 0, and we take ε small enough such that

L(0) = H1–α(0) + ε

∫

B

w0w1
dx1

x1
dx′ > 0. (4.30)

Hence, we have

L(t) > 0, ∀t ≥ 0. (4.31)

Next we estimate the second term in (4.25) as follows:

∣∣∣∣

∫

B

wwt
dx1

x1
dx′

∣∣∣∣ ≤ ‖w‖
L

n
2
2 (B)

‖wt‖
L

n
2
2 (B)

≤ C‖w‖
L

n
p
p (B)

‖wt‖
L

n
2
2 (B)

.
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So we have

∣∣∣∣

∫

B

wwt
dx1

x1
dx′

∣∣∣∣

1/(1–α)

≤ C‖w‖1/(1–α)

L
n
p
p (B)

‖wt‖1/(1–α)

L
n
2
2 (B)

.

Again Young’s inequality gives

∣∣∣∣

∫

B

wwt
dx1

x1
dx′

∣∣∣∣

1/(1–α)

≤ C
[‖w‖μ1/(1–α)

L
n
p
p (B)

+ ‖wt‖μ2/(1–α)

L
n
2
2 (B)

]
. (4.32)

We take μ1 = 2(1–α)
1–2α

, μ2 = 2(1 – α) to get μ1/(1 – α) = 2/(1 – 2α) ≤ p by condition (4.26).
Therefore (4.32) becomes

∣∣∣∣

∫

B

wwt
dx1

x1
dx′

∣∣∣∣

1/(1–α)

≤ C
[‖w‖s

L
n
p
p (B)

+ ‖wt‖2

L
n
2
2 (B)

]
, (4.33)

where s = 2/(1 – 2α) ≤ p. By using Corollary 4.1, we obtain

∣∣∣∣

∫

B

wwt
dx1

x1
dx′

∣∣∣∣

1/(1–α)

≤ C
[
H(t) + ‖w‖p

L
n
p
p (B)

+ ‖wt‖2

L
n
2
2 (B)

]
, ∀t ≥ 0. (4.34)

Consequently, we have

L1/(1–α)(t) =
(

H1–α(t) + ε

∫

B

wwt
dx1

x1
dx′

)1/(1–α)

≤ 2α/(1–α)
(

H(t) +
∣∣∣∣

∫

B

wwt
dx1

x1
dx′

∣∣∣∣

1/(1–α))

≤ C
[
H(t) + ‖�Bw‖2

L
n
2
2 (B)

+ ‖w‖p

L
n
p
p (B)

+ ‖wt‖2

L
n
2
2 (B)

]
. (4.35)

We then combine (4.29) and (4.35) to arrive at

L′(t) ≥ Γ L1/(1–α)(t), (4.36)

where Γ is a constant dependent on C, c3 and ε only (and hence is independent of the
solution w). A simple integration of (4.36) over (0, t) then yields

Lα/(1–α)(t) ≥ 1
L–α/(1–α)(0) – Γ tα/(1 – α)

. (4.37)

Since L(0) > 0, (4.37) shows that L(t) becomes infinite in a finite time Tmax ≤ T∗ =
1–α

Γ α[L(0)]α/(1–α) .
(2) For E(0) < 0, we set

H(t) = –E(t),

instead of (4.8). Then, applying the same arguments as in part (1), we have the result. �
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Theorem 4.2 Under the assumption of Theorem 4.1, let w(x, t) be a blow-up solution of
problem (1.7)–(1.9). Then a lower bound T for the lifespan t
 of w is given by

T :=
∫ +∞

φ(0)

ds

c̄2s
α(p–1)
p(α–1) + c̄3

≤ t
, (4.38)

with

φ(0) =
1
2

∫

B

|w1|2 dx1

x1
dx′ +

1
2

∫

B

|�Bw0|2 dx1

x1
dx′ +

b
p

∫

B

|w0|p dx1

x1
dx′,

where 1 < α < 2 and c̄2, c̄3 are positive constants to be determined later.

Proof Now we want to derive a lower bound for the lifespan t
 of the blow-up solution.
To this end, we introduce the auxiliary function

φ(t) =
1
2

∫

B

|wt|2 dx1

x1
dx′ +

1
2

∫

B

|�Bw|2 dx1

x1
dx′ +

b
p

∫

B

|w|p dx1

x1
dx′ (4.39)

and compute a value T > 0 such that φ(t) remains bounded for t ∈ [0, T]. Clearly, T is a
lower bound for t
. Differentiating (4.39) and making use of the second Green’s formula,
we obtain in view of (1.7)

φ′(t) =
∫

B

wtwtt
dx1

x1
dx′ +

∫

B

�Bw · �Bwt
dx1

x1
dx′

+ b
∫

B

|w|p–2wwt
dx1

x1
dx′

=
∫

B

wt
[
2b|w|p–2w – awt|ut|m–2 + k2�Bwt

]dx1

x1
dx′

= 2b
∫

B

|w|p–2wwt
dx1

x1
dx′ – a

∫

B

|wt|m dx1

x1
dx′

– k2

∫

B

|∇Bwt|2 dx1

x1
dx′

≤ 2b
∫

B

|wt||w|p–1 dx1

x1
dx′ – k2

∫

B

|∇Bwt|2 dx1

x1
dx′. (4.40)

Now we make use of Hölder’s inequality to the first term on the right-hand side of (4.40)
to obtain

∫

B

|wt||w|p–1 dx1

x1
dx′ ≤

(∫

B

|w|p dx1

x1
dx′

) p–1
p

(∫

B

|wt|p dx1

x1
dx′

) 1
p

= ‖w‖p–1

L
n
p
p

‖wt‖
L

n
p
p

. (4.41)

Then

φ′(t) ≤ 2b‖w‖p–1

L
n
p
p

‖wt‖
L

n
p
p

– k2

∫

B

|∇Bwt|2 dx1

x1
dx′. (4.42)
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In the rest of the proof, we apply Young’s inequality to the first term on the right-hand side
of (4.42) with exponents α and α

α–1 , where 1 < α < 2 is a constant. Thus we obtain

2b‖w‖p–1

L
n
p
p

‖wt‖
L

n
p
p

≤ c̄1‖w‖
α(p–1)
α–1

L
n
p
p

+ ‖wt‖α

L
n
p
p

≤ c̄2φ(t)
α(p–1)
p(α–1) + cα


 ‖∇Bwt‖α

L
n
2
2

(4.43)

with c̄1 = (2b) α
α–1 α– 1

α–1 α–1
α

and c̄2 = c̄1( p
b )

α(p–1)
p(α–1) . Because of α < 2, we can use Young’s in-

equality with exponents 2
α

and 2
2–α

to have

cα

 ‖∇Bwt‖α

L
n
2
2

≤ k2‖∇Bwt‖2

L
n
2
2

+ c̄3

with c̄3 = c
2α

2–α

 ( α

2k2
) α

2–α
2–α

2 . Inserting this in (4.43) yields

2b‖w‖p–1

L
n
p
p

‖wt‖
L

n
p
p

≤ c̄2φ(t)
α(p–1)
p(α–1) + k2‖∇Bwt‖2

L
n
2
2

+ c̄3. (4.44)

Inequality (4.44) along with (4.42) implies that

φ′(t) ≤ c̄2φ(t)
α(p–1)
p(α–1) + c̄3. (4.45)

Then

dφ

c̄2φ(t)
α(p–1)
p(α–1) + c̄3

≤ dt. (4.46)

Integrating (4.46) from 0 to t
, we obtain

∫ φ(t)

φ(0)

ds

c̄2s
α(p–1)
p(α–1) + c̄3

≤ t
. (4.47)

Thus, we obtain the desired result. �

In the following theorem, by means of a first order differential inequality technique, we
obtain a lower bound for the blow-up time which is different from (4.38).

Theorem 4.3 Suppose that the conditions of Theorem 4.1 hold. Let w(x, t) be a blow-up
solution of problem (1.7)–(1.9). Then a lower bound T̃ for the lifespan t
 of w is given by

T̃ :=
{

(p – 2)bκ
1
2
(
ψ(0)

) p–2
2

}–1 < t
, (4.48)

with

ψ(0) =
∫

B

|w1|2 dx1

x1
dx′ +

∫

B

|�Bw0|2 dx1

x1
dx′,

where κ = C2(p–1)
0 .
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Proof We introduce the auxiliary function

ψ(t) =
∫

B

|wt|2 dx1

x1
dx′ +

∫

B

|�Bw|2 dx1

x1
dx′ (4.49)

and compute a value T̃ > 0 such that ψ(t) remains bounded for t ∈ [0, T̃]. Clearly T̃ is a
lower bound for t
. Differentiating (4.49) and making use of the second Green’s formula,
we obtain in view of (1.7)

ψ ′(t) = 2
∫

B

wtwtt
dx1

x1
dx′ + 2

∫

B

�Bw · �Bwt
dx1

x1
dx′

= 2
∫

B

wt
[
wtt + �2

B
w

]dx1

x1
dx′

= 2b
∫

B

|w|p–2wwt
dx1

x1
dx′ – 2a

∫

B

|wt|m dx1

x1
dx′

– 2k2

∫

B

|∇Bwt|2 dx1

x1
dx′

≤ 2b
∫

B

|wt||w|p–1 dx1

x1
dx′. (4.50)

Making use of the Schwarz inequality leads to

ψ ′(t) ≤ 2b
(∫

B

|wt|2 dx1

x1
dx′

∫

B

|w|2(p–1) dx1

x1
dx′

) 1
2

. (4.51)

Applying the Poincaré inequality, we obtain

∫

B

|w|2(p–1) dx1

x1
dx′ = ‖w‖2(p–1)

L
n

2(p–1)
2(p–1)

≤ C2(p–1)
0 ‖�Bw‖2(p–1)

L
n
2
2

≤ C2(p–1)
0

(
ψ(t)

)p–1. (4.52)

Moreover, we have
∫

B

|wt|2 dx1

x1
dx′ < ψ(t). (4.53)

From (4.51)–(4.53), we obtain the differential inequality

ψ ′(t) < 2bκ
1
2 ψ(t)

p
2 , (4.54)

where κ = C2(p–1)
0 , then (4.54) can be rewritten as

(
ψ

2–p
2 (t)

)′ > –(p – 2)bκ
1
2 . (4.55)

Integrating (4.55) from 0 to t, we obtain

(
ψ

2–p
2 (t)

)
> ψ

2–p
2 (0) – (p – 2)bκ

1
2 t. (4.56)
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Inequality (4.56) shows that ψ(t) remains bounded for

t < T̃ :=
(ψ(0))

2–p
2

(p – 2)bκ
1
2

. (4.57)

From the discussion above in Theorem 3.1 and Theorem 4.1, we immediately obtain a
specifying result of the global existence and nonexistence of solutions for problem (1.7)–
(1.9) as follows. �

Remark 4.1 Suppose that 2 < p < p
, w1 ∈ L
n
2
2 (B), and 0 < E(0) < d, then problem (1.7)–(1.9)

admits a global weak solution without relation between m and p provided I(w0) > 0 and
w satisfies the assumption of Lemma 3.3; problem (1.7)–(1.9) does not admit any global
solution provided p > m ≥ 2, I(w0) < 0, and ‖�Bw0‖

L
n
2
2 (B)

> λ1.

From the discussion above in Theorem 4.1 and Theorem 4.2, we give the bounds for
blow-up time for problem (1.7)–(1.9) under the initial condition I(w0) < 0.

Remark 4.2 Suppose that 2 < p < p
, p > m ≥ 2 and E(0) < d, w1 ∈ L
n
2
2 (B), then problem

(1.7)–(1.9) does not admit any global solution provided I(w0) < 0. Furthermore, the corre-
sponding upper and lower bounds of blow-up time Tmax are given by the following form:

∫ +∞

φ(0)

ds

c̄2s
α(p–1)
p(α–1) + c̄3

≤ Tmax ≤ 1 – α

Γ α[L(0)]α/(1–α) . (4.58)
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