
Zhang et al. Boundary Value Problems        (2020) 2020:142 
https://doi.org/10.1186/s13661-020-01439-9

R E S E A R C H Open Access

Infinitely many positive solutions for a
double phase problem
Bei-Lei Zhang1, Bin Ge1 and Gang-Ling Hou2*

*Correspondence:
hougl@hrbeu.edu.cn
2College of Aerospace and Civil
Engineering, Harbin Engineering
University, Harbin, 150001, P.R. China
Full list of author information is
available at the end of the article

Abstract
This paper is concerned with the existence of infinitely many positive solutions to a
class of double phase problem. By variational methods and the theory of the
Musielak–Orlicz–Sobolev space, we establish the existence of infinitely many positive
solutions whoseW1,H

0 (Ω )-norms and L∞-norms tend to zero under suitable
hypotheses about nonlinearity.
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1 Introduction and main results
The study of differential equations and variational problems with double phase operator
is a new and interesting topic. Such interest is widely justified by many physical examples,
such as elasticity, strongly anisotropic materials and Lavrentiev’s phenomenon (e.g., see
Refs. [1–4]). More precisely, their research is related to the following energy functional:

u �→
∫

Ω

(|∇u|p + a(x)|∇u|q)dx, (1.1)

where the integrand switches two different elliptic behaviors. In [4], energies of the form
(1.1) are used in the context of homogenization and elasticity and a(·) drives the geometry
of a composite of two different materials with hardening powers p and q.

In the past the problem of existence and multiplicity of nontrivial solutions for double
phase problems driven by the double phase operator was studied in the context of Dirichlet
boundary value problems. We mention the work of Perera–Squassina [5], Papageorgiou–
Radulescu–Repovs [6, 7], Cencelj–Radulescu–Repovs [8], Zhang–Radulescu [9], Rad-
ulescu [10], Ge–Wang–Lu[11], Ge–Chen [12], Ge–Lv–Lu [13], Liu–Dai [14, 15],
Colasuonno–Squassina [16] and the references therein. On the regularity for minimizers
of variational problems and solutions of differential equations with double phase operator,
we refer to [17–20], respectively, and the references therein.
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The aim of this paper is to obtain infinitely many distinct positive solutions for the fol-
lowing double phase problem:

⎧⎨
⎩

– div(|∇u|p–2∇u + a(x)|∇u|q–2∇u) = f (x, u), in Ω ,

u = 0, on ∂Ω ,
(P)

where Ω is a smooth bounded domain in R
N (N ≥ 2), 1 < p < q < N ,

q
p

< 1 +
1
N

, a : Ω → [0, +∞) is Lipschitz continuous, (1.2)

and f : Ω × R → R satisfy Carathéodory condition and there exists t0 > 0 such that
supt∈[0,t0] f (·, t) ∈ L∞(Ω).

In the past decade, many authors considered the existence and multiplicity of solutions
of (P). For example, Liu and Dai [14] got one sign-changing ground state solution for prob-
lem (P) using the Nehari manifold method. Additionally, Liu and Dai in [15] also obtained
the existence of at least three ground state solutions of (P) by using the strong maximum
principle. In a recent paper [12], Ge and Chen obtained the same result as in [14] for
problem (P) under more general assumptions on f . In [16], by using the fountain and dual
theorem with Cerami condition, we obtained some existence of infinitely many solutions
for the above problem under some weaker assumptions on f . The aim of the present paper
is to establish the existence of infinitely many distinct positive solutions for problem (P)
under suitable oscillatory assumptions on the nonlinear term f at zero.

In order to state the main result of this paper, let us introduce the following assumptions
for problem (P):

(h1) There are two sequences {ak}∞k=1, {bk}∞k=1 such that 0 < ak < bk , limk→+∞ bk = 0, and

∫ ak

0
f (x, s) ds = sup

t∈[ak ,bk ]

∫ t

0
f (x, s) ds

for almost all x ∈ Ω and k ∈ N .
(h2) There exists a sequence {ck}∞k=1 ⊂ (0, bk] such that

essinf
x∈Ω

∫ ck

0
f (x, s) ds > 0.

We are now in the position to state our main results.

Theorem 1.1 Suppose that f (x, 0) = 0 and (h1)–(h2) hold. Then there exists a sequence
{uk} ⊂ W 1,H

0 (Ω) of positive weak solutions of (P) such that

lim
k→+∞

(∫
Ω

(
1
p
|∇uk|p +

a(x)
q

|∇uk|q
)

dx –
∫

Ω

F
(
x, uk(x)

)
dx

)
= 0 and

lim
k→+∞

‖uk‖ = 0,

(‖ · ‖ is defined in (2.1)).



Zhang et al. Boundary Value Problems        (2020) 2020:142 Page 3 of 10

The rest of this paper is organized as follows. In Sect. 2, we present some necessary pre-
liminary knowledge on space W 1,H

0 (Ω). In Sect. 3, we establish the variational framework
associated with problem (P), and we complete the proofs of Theorem 1.1.

2 Preliminaries
In order to discuss problem (P), we need some facts on space W 1,H

0 (Ω) which are called
Musielak–Orlicz–Sobolev space. For this reason, we will recall some properties involving
the Musielak–Orlicz spaces, which can be found in [16, 21–23] and the references therein.

Denote by N(Ω) the set of all generalized N-function. For 1 < p < q and 0 ≤ a(·) ∈ L1(Ω),
we define

H(x, t) = tp + a(x)tq, ∀(x, t) ∈ Ω × [0, +∞).

It is clear that H ∈ N(Ω) is a locally integrable and

H(x, 2t) ≤ 2qH(x, t), ∀(x, t) ∈ Ω × [0, +∞),

which is called condition (Δ2).
The Musielak–Orlicz space LH (Ω) is defined by

LH (Ω) =
{

u : Ω →R measurable :
∫

Ω

H
(
x, |u|)dx < +∞

}
,

endowed with the Luxemburg norm

|u|H = inf

{
λ > 0 :

∫
Ω

H
(

x,
∣∣∣∣u
λ

∣∣∣∣
)

dx ≤ 1
}

.

The Musielak–Orlicz–Sobolev space W 1,H(Ω) is defined by

W 1,H(Ω) =
{

u ∈ LH (Ω) : |∇u| ∈ LH (Ω)
}

,

and it is equipped with the norm

‖u‖ = |u|H + |∇u|H .

We denote by W 1,H
0 (Ω) the completion of C∞

0 (Ω) in W 1,H(Ω). With these norms, the
spaces W 1,H

0 (Ω) and W 1,H(Ω) are separable reflexive Banach spaces; see [16, Proposi-
tion 2.18] for the details. Moreover, thanks to (1.2) and [16, Proposition 2.18] we can see
that

‖u‖ = |∇u|H , ∀u ∈ W 1,H
0 (Ω)

is an equivalent norm on W 1,H
0 (Ω).

Furthermore, we have the following embedding theorem.
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Proposition 2.1 ([16, Proposition 2.15])
(1) If 1 ≤ s ≤ p, then the embedding from W 1,H

0 (Ω) to W 1,s
0 (Ω) is continuous.

(2) If 1 ≤ s ≤ p∗ = Np
N–p , then the embedding from W 1,H

0 (Ω) to Ls(Ω) is continuous. In
particular, if s ∈ [1, p∗), then the embedding W 1,H

0 (Ω) ↪→ Ls(Ω) is compact.

From Liu–Dai [14, Proposition 2.1]) we directly obtain

‖u‖q ≤
∫

Ω

(|∇u|p + a(x)|∇u|q)dx ≤ ‖u‖p, if ‖u‖ ≤ 1;

‖u‖p ≤
∫

Ω

(|∇u|p + a(x)|∇u|q)dx ≤ ‖u‖q, if ‖u‖ ≥ 1,
(2.1)

for any u ∈ W 1,H
0 (Ω).

From now on, we denote by E the space W 1,H
0 (Ω). In order to discuss the problem (P),

we need to define a functional in E:

J(u) =
∫

Ω

(
1
p
|∇u|p +

a(x)
q

|∇u|q
)

dx.

We know that J ∈ C1(E,R) and double phase operator – div(|∇u|p–2∇u + a(x)|∇u|q–2∇u)
is the derivative operator of J in the weak sense. We denote L = J ′ : E → E∗, then

〈
L(u), v

〉
=

∫
Ω

(|∇u|p–2∇u · ∇v + a(x)|∇u|q–2∇u · ∇v
)

dx

for all u, v ∈ E. Here E∗ denotes the dual space of E and 〈·, ·〉 denotes the pairing between
E and E∗. Then we have the following result.

Proposition 2.2 ([14, Proposition 3.1]) If L is as above, then
(1) L : E → E∗ is a continuous, bounded and strictly monotone operator;
(2) L : E → E∗ is a mapping of type (S)+, i.e., if un ⇀ u in E and

lim supn→+∞〈L(un) – L(u), un – u〉 ≤ 0, implies un → u in E;
(3) L : E → E∗ is a homeomorphism.

3 Variational setting and the proof of Theorem 1.1
To prove our Theorem 1.1, we recall the variational setting corresponding to the problem
(P).

We observe that problem (P) has a variational structure, and as a matter of fact, its so-
lutions can be searched as critical points of the energy functional ϕ : E → R defined as
follows:

ϕ = Φ(u) – Ψ (u), (3.1)

where

Φ(u) =
∫

Ω

(
1
p
|∇u|p +

a(x)
q

|∇u|q
)

dx
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and Ψ (u) =
∫
Ω

F(x, u(x)) dx. Thus, in [14], it is shown that Φ(u) is a Gâteaux differentiable
functional in E whose derivative is given by

〈
Φ ′(u), v

〉
=

∫
Ω

(|∇u|p–2∇u · ∇v + a(x)|∇u|q–2∇u · ∇v
)

dx,

for all v ∈ E. Finally, Φ(u) is weakly lower semi-continuous and coercive. Moreover, stan-
dard arguments show that Ψ is a well defined and continuously Gâteaux differentiable
functional whose Gâteaux derivative

〈
Ψ ′(u), v

〉
=

∫
Ω

f (x, u)v dx,

for all v ∈ E.

Definition 3.1 We say that u ∈ E is a weak solution of (P) if
∫

Ω

(|∇u|p–2∇u · ∇v + a(x)|∇u|q–2∇u · ∇v
)

dx =
∫

Ω

f (x, u)v dx,

for all v ∈ E.

Next, we will prove Theorem 1.1 by virtue of some idea due to Kristaly, Morosanu and
Tersian [24], where the infinitely many homoclinic solutions for a p-Laplace equation was
obtained. Firstly, by our assumptions on f , there exist d0 > 0 and t0 > 0 such that |f (x, t)| ≤
d0, for every t ∈ [0, t0] and a.e. x ∈ Ω . Without loss of generality, we suppose that, for every
k ∈ N , bk ≤ t0, where bk is from (h1). Define

f̃ (x, t) =

⎧⎪⎪⎨
⎪⎪⎩

0, if t ≤ 0,

f (x, u), if 0 < t ≤ t0,

f (x, t0), if t > t0,

(3.2)

Thus, we have

∣∣̃f (x, t)
∣∣ ≤ d0, ∀t ∈R and a.e. x ∈ Ω . (3.3)

Now, we consider the following problem:
⎧⎨
⎩

– div(|∇u|p–2∇u + a(x)|∇u|q–2∇u) = f̃ (x, u), in Ω ,

u = 0, on ∂Ω ,
(3.4)

Hence, the weak solutions of (3.4) are the critical points of the functional

ϕ̃(u) = Φ(u) –
∫

Ω

F̃
(
x, u(x)

)
dx,

where F̃(x, u) =
∫ u

0 f̃ (x, s) ds.
By (3.3), it is easy to see that ϕ̃ is well defined, weakly sequentially lower semi-continuous

and Gâteaux differentiable in E. For every fixed k ∈ N , consider the set Sk = {u ∈ E : u(x) �=
0 and 0 ≤ u(x) ≤ bk a.e. x ∈ Ω}.
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Lemma 3.2 For every k ∈ N , the functional ϕ̃ is bounded from below on Sk and its infimum
mk on Sk is attained at uk ∈ Sk .

Proof For every k ∈ N , we obtain, for any every u ∈ Sk ,

ϕ̃(u) =
∫

Ω

(
1
p
|∇u|p +

a(x)
q

|∇u|q
)

dx –
∫

Ω

F̃(x, u) dx

≥ –
∫

Ω

F̃(x, u) dx

≥ –d0bk|Ω|. (3.5)

This means that ϕ̃ is bounded from below on Sk .
Moreover, it is clear that Sk is convex and closed, thus weakly closed in E. Let mk =

infu∈Sk ϕ̃(u), and {un} be a sequence in Sk such that mk ≤ ϕ̃(un) ≤ mk + 1
n for all n ∈ N .

Then, if ‖un‖ ≤ 1, we have done it, otherwise, we have

1
q
‖un‖p ≤ mk + 1 + d0bk|Ω|, ∀n ∈ N . (3.6)

From this, we deduce that {un} is bounded in E. So, up to a subsequence, {un} weakly
converges to some uk ∈ Sk . At this point, we obtain ϕ̃(uk) = mk in view of the weakly se-
quentially lower semi-continuity of ϕ̃. This completes the proof of the lemma. �

Lemma 3.3 For every k ∈ N , 0 ≤ uk(x) ≤ ak a.e. x ∈ Ω .

Proof Let T = {x ∈ Ω : ak < uk(x) ≤ bk} and assume that meas(T) > 0. Define the function
h(t) = min{t+, ak} and vk = h(uk), where t+ = max{0, t}. It is obvious that h is continuous in
E. Moreover, 0 ≤ vk(x) ≤ ak for a.e. x ∈ Ω . Consequently, vk ∈ Sk and

vk(x) =

⎧⎨
⎩

uk(x), if x ∈ Ω\T ,

ak , if x ∈ T .
(3.7)

Moreover, we have

ϕ̃(vk) – ϕ̃(uk) =
∫

Ω

(
1
p
|∇vk|p +

a(x)
q

|∇vk|q
)

dx –
∫

Ω

F̃(x, vk) dx

–
∫

Ω

(
1
p
|∇uk|p +

a(x)
q

|∇uk|q
)

dx +
∫

Ω

F̃(x, uk) dx

=
∫

T

(
1
p
|∇vk|p +

a(x)
q

|∇vk|q
)

dx –
∫

T
F̃(x, vk) dx

–
∫

T

(
1
p
|∇uk|p +

a(x)
q

|∇uk|q
)

dx +
∫

T
F̃(x, uk) dx

= 0 –
∫

T

(
1
p
|∇uk|p +

a(x)
q

|∇uk|q
)

dx

–
∫

T

(̃
F(x, ak) – F̃(x, uk)

)
dx.
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By (h1), we have
∫

T (̃F(x, ak) – F̃(x, uk)) dx ≥ 0. Consequently, every term of the expres-
sion ϕ̃(vk) – ϕ̃(uk) is non-positive. On the other hand, since vk ∈ Sk , then ϕ̃(vk) ≥ ϕ̃(uk) =
infv∈Sk ϕ̃(v). So, every term in ϕ̃(vk) – ϕ̃(uk) should be zero. In particular,

∫
T

(
1
p
|∇uk|p +

a(x)
q

|∇uk|q
)

dx =
∫

T

(̃
F(x, ak) – F̃(x, uk)

)
dx = 0,

which implies that meas(T) = 0. �

Lemma 3.4 For every k ∈ N , uk is a local minimum point of ϕ̃ in E.

Proof Let T ′ = {x ∈ Ω : u(x) /∈ (0, ak]}. Set v = h(u), then we observe that

∫ u

v
f̃ (x, s) ds = 0, ∀x ∈ Ω\T ′.

Moreover, if x ∈ T ′, then one has the following three cases:
(a) When u(x) < 0, then

∫ u
v f̃ (x, s) ds = 0;

(b) When ak < u(x) ≤ bk , then from (h1), we deduce that
∫ u

v f̃ (x, s) ds ≤ 0;
(c) When u(x) > bk , then

∫ u
v f̃ (x, s) ds =

∫ u
ak

f̃ (x, s) ds ≤ ∫ u
ak

d0 ds = d0(u(x) – ak).
Let p∗ ≥ θ + 1 > q for every x ∈ Ω and fix it, then the constant

C0 = sup
s≥bk

d0(s – ak)
(s – ak)θ+1

is finite, we have, for a.e. x ∈ Ω ,
∫ u

v f̃ (x, s) ds ≤ C0|u(x) – v(x)|θ+1. Then, using Proposi-
tions 2.1, we have

∫
Ω

∫ u

v
f̃ (x, s) ds dx ≤ C0cθ+1‖u – v‖θ+1,

where c is the embedding constant of E ↪→ Lθ+1(Ω). We have

ϕ̃(u) – ϕ̃(v) =
∫

Ω

(
1
p
|∇u|p +

a(x)
q

|∇u|q
)

dx –
∫

Ω

F̃(x, u) dx

–
∫

Ω

(
1
p
|∇v|p +

a(x)
q

|∇v|q
)

dx +
∫

Ω

F̃(x, v) dx

=
∫

T ′

(
1
p
|∇u|p +

a(x)
q

|∇u|q
)

dx –
∫

T ′
F̃(x, u) dx

–
∫

T ′

(
1
p
|∇v|p +

a(x)
q

|∇v|q
)

dx +
∫

T ′
F̃(x, v) dx

=
∫

T ′

(
1
p
|∇u|p +

a(x)
q

|∇u|q
)

dx –
∫

T ′

∫ u

v
f̃ (x, s) ds dx

=
∫

Ω

(
1
p
∣∣∇(u – v)

∣∣p +
a(x)

q
∣∣∇(u – v)

∣∣q
)

dx –
∫

T ′

∫ u

ak

f (x, s) dx

≥
∫

Ω

(
1
p
∣∣∇(u – v)

∣∣p +
a(x)

q
∣∣∇(u – v)

∣∣q
)

dx – C0cθ+1‖u – v‖θ+1. (3.8)
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On the other hand, by v ∈ Sk , we have

ϕ̃(v) ≥ ϕ̃(uk). (3.9)

Using (2.1) and (3.9) in (3.8), we obtain

ϕ̃(u) ≥ ϕ̃(uk) +
∫

Ω

(
1
p
∣∣∇(u – v)

∣∣p +
a(x)

q
∣∣∇(u – v)

∣∣q
)

dx

– C0cθ+1‖u – v‖θ+1

≥ ϕ̃(uk) +
1
q
‖u – v‖τ – C0cθ+1‖u – v‖θ+1

= ϕ̃(uk) + ‖u – v‖τ

(
1
q

– C0cθ+1‖u – v‖θ+1–τ

)
,

where τ = p(q) when ‖u – v‖ ≥ 1(≤ 1).
Since h is continuous, there exists δ > 0 such that, for every u ∈ E with

‖u – uk‖ < δ, ‖u – v‖ ≤ 1
qC0cθ+1 ,

which implies that uk is a local minimum of ϕ̃. �

Remark 3.5 Using Theorem 3.3 of [15], we have uk > 0 on Sk .

Lemma 3.6 For every k ∈ N , mk < 0 and limk→+∞ mk = 0.

Proof In view of (h2), one easily deduces ck ∈ Sk . Hence,

mk ≤ ϕ̃(ck) = –
∫

Ω

F̃(x, ck) dx

= –
∫

Ω

F(x, ck) dx

= –
∫

Ω

∫ ck

0
f (x, ck) dx

< 0. (3.10)

Now we will prove that limk→+∞ mk = 0.
As a result of Lemma 3.2, for every k ∈ N and uk ∈ Sk , we obtain

mk = ϕ̃(uk)

=
∫

Ω

(
1
p
|∇uk|p +

a(x)
q

|∇uk|q
)

dx –
∫

Ω

F̃(x, uk) dx

≥ –d0 meas(Ω)bk .

Since limk→+∞ bk = 0, we have limk→+∞ mk ≥ 0. Note that mk < 0, hence limk→+∞ mk =
0. �
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Now, we are ready to prove Theorem 1.1.

Proof of Theorem 1.1 Since uk are local minima of ϕ̃, they are critical points of ϕ̃, thus
weak solutions of (P). In view of Lemma 3.3, we can deduce that there are infinitely many
distinct uk with limk→+∞ |uk|∞ = 0. Moreover, we have

‖uk‖τ ≤
∫

Ω

(
1
p
|∇uk|p +

a(x)
q

|∇uk|q
)

dx

= mk +
∫

Ω

F̃(x, uk) dx

≤ mk + meas(Ω)d0bk ,

where τ = p(q) when ‖uk‖ ≥ 1(≤ 1). From this we conclude that limk→+∞ ‖uk‖ = 0. This
completes the proof. �

Example A simple example of a potential function satisfying hypotheses (h1)–(h2) is

f (x, t) =

⎧⎨
⎩

(1 + |x|p)[(p + 2)tp+1 sin 1
tp – pt cos 1

tp ], if t > 0,

0, otherwise.

Proof It is easy to compute directly that

F(x, t) =

⎧⎨
⎩

(1 + |x|p)tp+2 sin 1
tp , if t > 0,

0, otherwise.

Let {ak}, {bk} and {ck} be three sequences such that

ak =
(

1
(2k + 2)π

) 1
p

, bk =
(

1
(2k + 1.5)π

) 1
p

, ck =
(

1
(4k + 0.5)π

) 1
p

for every k ∈ N . Then one easily deduces

∫ ak

0
f (x, s) ds = sup

t∈[ak ,bk ]

∫ t

0
f (x, s) ds

and

F(x, ck) ≥ 0.

So conditions (h1)–(h2) have been satisfied. �
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