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Abstract
Sun and Ma (J. Differ. Equ. 255:2534–2563, 2013) proved the existence of a nonzero
T -periodic solution for a class of one-dimensional lattice dynamical systems,

q̈i =Φ ′
i–1(qi–1 – qi) –Φ ′

i (qi – qi+1), i ∈ Z,

where qi denotes the co-ordinate of the ith particle and Φi denotes the potential of
the interaction between the ith and the (i + 1)th particle. We extend their results to
the case of the least energy of nonzero T -periodic solution under general conditions.
Of particular interest is a new and quite general approach. To the best of our
knowledge, there is no result for the ground states for one-dimensional lattice
dynamical systems.
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1 Introduction
In this paper, we are concerned with one-dimensional lattices which arises from the
Fermi–Pasta–Ulam (FPU) model [6]; one of the most interesting and physically impor-
tant features of it is that infinite degrees of freedom consist of a one-dimensional lattice
of particles, each interacting with its nearest neighbors by means of a force belonging to a
certain class. We now turn to the mathematical formulation of the problem. Let Φi be the
potential of the interaction between the ith and the (i + 1)th particle (whose displacement
is qi – qi+1), then the equation governing the state of qi(t) can be written as

q̈i = Φ ′
i–1(qi–1 – qi) – Φ ′

i (qi – qi+1), i ∈ Z, (1.1)

where qi(t) denotes the state of the ith particle, the state of lattice at time t is represented
by a sequence q(t) = {qi(t)}, i ∈ Z. Moreover, Φ : R∞ →R is defined by

Φ(q) =
∑

i∈Z
Φi(qi – qi+1).
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Then infinitely many Eqs. (1.1) can be rewritten in a simple form,

q̈ = –Φ ′(q). (1.2)

Much of the interest in these lattice systems of the type (1.2) is motivated by Fermi–
Pasta–Ulam (FPU) [6] who studied finite lattices with nearest-neighbor interaction by nu-
merical simulations. In the past four decades, a great deal of mathematical effort in lattice
system has been made devoted to the study of existence results. Variational methods have
attracted considerable attention in the research of lattice system, one of the first results
in this direction is due to Friesecke and Wattis [7], who obtained a global existence result
for localized travelling waves by means of the technique of concentration-compactness.
Smets and Willem [15] also proved the existence of travelling waves with a prescribed
speed assumption.

An alternative development to derive periodic solution was developed by Ruf and
Srikanth [14], who considered time periodic motions of finite FPU type lattices. Later, Ar-
ioli and Gazzola [2] extended to some extent Ruf–Srikanth’s result to infinite-dimensional
system (1.2). In [4], Arioli and Szulkin firstly extended the result of [3] to the strongly indef-
inite case, they proved that system (1.2) admits a nonzero T-periodic solution of finite en-
ergy for all T in a given range of values and given a bifurcate result under some additional
conditions using variational methods. In recent years, there has been increasing atten-
tion to this problem (1.2) on the existence of nonconstant periodic motions, multibump
periodic motions and ground state travelling waves in infinite lattices; see e.g., [3, 10–
14, 16–18, 26, 27].

Recently, Sun and Ma [16] proved the existence of nonzero T-periodic solution by
means of the abstract critical point theorem for a strongly indefinite functional devel-
oped by Bartsch and Ding [5]. However, to the best of our knowledge, there is no result
for ground states for infinite-dimensional system (1.2) with the strongly indefinite case.
So another question arises: can the result ([16]) on the existence of a ground state solu-
tion, i.e., a nontrivial T-periodic solution for (1.2) with the minimal energy, for (1.2) be
obtained? Answering this question constitutes the goal of this paper.

Motivated by the interest shared by the mathematical community in this topic and
[16, 18, 20, 27], the main goal of this paper is to investigate the question of existence of
ground states for (1.2). Based on the recent work [21–25] and the Non–Nehari manifold
method [20–25] which is different from the previous work and generalizes the results, this
method has been proven successful, for instance, in solving the Schrodinger equation and
the Dirac equation. More precisely, we assume the potentials Φi : R → R to be defined
by

Φi(x) = –
αi

2
x2 + Vi(x), (1.3)

satisfy:
(A0) αi �= 0 for all i ∈ Z and take both signs;
(A1) V ′

i ∈ C(R,R), xV ′
i (x) ≥ 0, ∀x ∈R and lim|x|→∞

V ′
i (x)
|x| = ∞;

(A2) V ′
i (x) = o(x) as |x| → 0;
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(A3) there exists a constant η0 ∈ (0, 1) such that

1 – η2

2
xV ′

i (x) ≥
∫ x

ηx
V ′

i (s) ds, ∀η ∈ [0,η0];

(A4) there exists m ∈N such that Φi+m = Φi.
Now, we are ready to state the main result of this paper.

Theorem 1.1 Assume that (A0)–(A4) hold. Then problem (1.2) has a ground state, i.e. a
nontrivial solution q0 ∈ H such that J(q0) = infM J > 0, where

M =
{

q ∈ H \ {0} : J ′(q) = 0
}

,

H is defined in (2.1), J is defined in (2.6). Moreover, there exists Tmin > 0, where Tmin only
depends on a positive αi and Vi, such that the solution obtained above is nonconstant if
Tmin < π/

√
β and its period T ∈ (Tmin,π/

√
β) where β

.= inf{αi} > 0.

The present paper is organized as follows. The variational structure and some proper-
ties of the associated functional are established in Sect. 2. We establish some instrumental
lemmas involving our main theorem in Sect. 3, finally the proofs of Theorem 1.1 are pre-
sented by the Non–Nehari method.

2 Variational structure and preliminaries
Before approaching problem (1.2), we first pose the problem of finding what the natural
space is in which it lives. Denote S1 = R/(TZ), H1(S1,R) is the usual Hilbert space endowed
with the norm

‖qi‖H1 =
(∫ T

0

(∣∣q̇i(t)
∣∣2 +

∣∣qi(t)
∣∣2)dt

)1/2

.

Let

H =
{

q ∈ H1(S1,R
)Z :

∫ T

0
q0(t) dt = 0,

∑

i

∫ T

0

[
q̇2

i (t) +
(
qi(t) – qi+1(t)

)2]dt < ∞
}

, (2.1)

which is endowed with the inner product

(q, p) =
∑

i

∫ T

0

[
q̇i(t)ṗi(t) +

(
qi(t) – qi+1(t)

)(
pi(t) – pi+1(t)

)]
dt. (2.2)

We note that
∫ T

0 q0(t) dt = 0 in the definition of H is in order to guarantee (2.2) defining
a scalar product. Throughout this paper, let ‖ · ‖H be the norm induced by (2.1) and ‖ · ‖p

the norm of Lp(S1,R) for p ∈ [1, +∞]. Under the assumptions (A0)–(A4), solutions of (1.2)
are critical points of the functional J given by

J(q) =
1
2

∫ T

0

∣∣q̇(t)
∣∣2 dt –

∫ T

0
Φ

(
q(t)

)
dt. (2.3)
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We define a self-adjoint linear operator L : H → H by

(Lq, p)H =
∑

i

∫ T

0

[
q̇i(t)ṗi(t) + αi

(
qi(t) – qi+1(t)

)(
pi(t) – pi+1(t)

)]
dt, (2.4)

and a functional V : H →R

V (q) =
∑

i

∫ T

0
Vi

(
qi(t) – qi+1(t)

)
dt; (2.5)

combining (2.4) and (2.5), we see that

J(q) =
1
2

(Lq, q)H – V (q) (2.6)

and

〈
J ′(q), p

〉
= (Lq, p)H –

∑

i

∫ T

0
V ′

i (qi – qi+1)(pi – pi+1) dt. (2.7)

Lemma 2.1 Suppose that (A1) and (A2) are satisfied. Then V (q) is nonnegative, weakly
sequentially lower semi-continuous, and V ′(q) is weakly sequentially continuous.

It is not difficult to verify the above lemma by means of Sobolev’s embedding theorem,
the proof will be omitted.

Lemma 2.2 Assume that (A2) and (A4) hold. Then J ∈ C1(H ,R).

Proof The proof of the argument is analogous to that in [16], we omit its proof process. �

Next, we study the spectrum of the linear operator L (we denote it by σ (L)) in order to
establish a variational setting for system (1.2). For simplicity, we denote

I = {i ∈ Z|αi > 0}, H– = {q ∈ H|q ≡ const., qi – qi+1 = 0, i ∈ I}, H+ =
(
H–)⊥.

Using Lemma 2.2 in [16], we may define a new scalar product (·, ·) on H with correspond-
ing norm ‖ · ‖ such that (Lq, q)H = –‖q‖2

H for q ∈ H–, and (Lq, q)H = ‖q‖2
H for q ∈ H+.

Indeed

(q, p) =
(
Lq+, p+)

–
(
Lq–, p–)

for q = q– + q+, p = p– + p+ ∈ H– ⊕ H+.

It is easy to verify that the norm ‖ · ‖ is equivalent to the standard norm ‖ · ‖H in H as
σ (L) ⊂ R \ (–λ,λ), then we can derive the decomposition H = H– ⊕ H+ with respect to
(·, ·). Moreover, J(q) can be rewritten as a simple form

J(q) :=
1
2
(∥∥q+∥∥2 –

∥∥q–∥∥2) – V (q) (2.8)

on H , where q = q– + q+ ∈ H– ⊕ H+. Let P– : H → H– and P+ : H → H+ be the orthogonal
projections, then the spaces H– and H+ are Z-invariant because they are L-invariant. In-
deed, spectral theory asserts that the projectors P–, P+ commute with any operator which
commutes with L, especially, they commute with the Z-action.
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Lemma 2.3 ([16]) If {q(n)} is a bounded sequence in H , then passing to a subsequence, there
exists q ∈ H such that q(n) ⇀ q in H . Moreover, we have q(n)

i ⇀ qi in H1 and q(n)
i → qi in

L∞ for all i ∈ Z.

3 Proof of the result
Let W be a real Hilbert space with W = W – ⊕ W + and W – ⊥ W +. For a functional ψ ∈
C1(W ,R), ψ is said to be weakly sequentially lower semi-continuous if for any un ⇀ u in
W one has ψ(u) ≤ lim infn→∞ ψ(un), and ψ ′ is said to be weakly sequentially continuous
if limn→∞〈ψ ′(un), v〉 = 〈ψ ′(un), v〉 for each v ∈ W .

Lemma 3.1 ([8]) Let W be a real Hilbert space, W = W – ⊕ W + and W – ⊥ W +, and ψ ∈
C1(X,R) of the form

ψ(u) =
1
2
(∥∥u+∥∥2 –

∥∥u–∥∥2) – ψ(u), u = u– + u+ ∈ W – ⊕ W +.

Suppose that the following assumptions hold:
(A1) ψ ∈ C1(W ,R) is bounded from below and weakly sequentially lower semi-

continuous;
(A2) ψ ′ is weakly sequentially continuous;
(A3) there exist r > ρ > 0, e ∈ W + with ‖e‖ = 1 such that

κ := infψ
(
S+

ρ

)
> supϕ(∂Q),

where

S+
ρ =

{
u ∈ X+ : ‖u‖ = ρ

}
, Q =

{
v + se : v ∈ X–, s ≥ 0,‖v + se‖ ≤ r

}
.

Then, for some c ∈ [κ , supϕ(Q)], there exists a sequence {un} ⊂ W satisfying

ψ(un) → c,
∥∥ψ ′(un)

∥∥(
1 + ‖un‖

) → 0.

Lemma 3.2 Assume that (A0)–(A4) are satisfied, then, for any q ∈ H ,

J(q) ≥ J
(
μq+)

+
μ2‖q–‖2

2
+

1 – μ2

2
〈
J ′(q), q

〉
+ μ2〈J ′(q), q–〉

– μ2
∑

i

∫

μ|q+
i –q+

i+1|>η0|qi–qi+1|
V ′

i (qi – qi+1)
(
q+

i – q+
i+1

)
dt, ∀μ ≥ 0. (3.1)

Proof Fix x, y ∈R. Let

g(r) =
1 + r2

2
V ′

i (x)x – r2V ′
i (x)y + Vi(ry) – Vi(x).

If xy ≤ 0, using the assumption (A1), we have

g(r) =
1 + r2

2
V ′

i (x)x – r2V ′
i (x)y + Vi(ry) – Vi(x)

≥ 1 + r2

2
V ′

i (x)x – Vi(x), ∀r ≥ 0. (3.2)
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If xy ≥ 0, let η = ry/x, using the assumption (A3), we have

g(r) =
1 + r2

2
V ′

i (x)x – r2V ′
i (x)y + Vi(ry) – Vi(x)

=
1 + r2 – 2ηr

2
V ′

i (x)x –
∫ x

ηx
V ′

i (s) ds

=
(η – r)2

2
V ′

i (x)x +
1 – η2

2
V ′

i (x)x –
∫ x

ηx
V ′

i (s) ds

≥ 1 – η2

2
V ′

i (x)x –
∫ x

ηx
V ′

i (s) ds

≥ 0, r ≥ 0, ry/x ≤ η0. (3.3)

Based on the above two arguments, we obtain

1 + r2

2
V ′

i (x)x – r2V ′
i (x)y + Vi(ry) – Vi(x) ≥ 0, r ≥ 0, |ry| ≤ η0|x|. (3.4)

Taking the assumption (A3) into consideration, we get

J(q) – J
(
rq+)

=
1
2
[
(Lq, q) –

(
L
(
rq+, rq+))]

+
∑

i

∫ T

0

[
Vi

(
r
(
q+

i – q+
i+1

))
– Vi(qi – qi+1)

]
dt

=
1
2
[(

1 – r2)(Lq, q) + r2(Lq, q–)]
+

∑

i

∫ T

0

[
Vi

(
r
(
q+

i – q+
i+1

))
– Vi(qi – qi+1)

]
dt

=
r2

2
∥∥q–∥∥2 +

1 – r2

2
(Lq, q) + r2(Lq, q–)

+
∑

i

∫ T

0

[
Vi

(
r
(
q+

i – q+
i+1

))
– Vi(qi – qi+1)

]
dt

=
r2

2
∥∥q–∥∥2 +

1 – r2

2
(
J ′(q), q

)
+ r2(J ′(q), q–)

+
∑

i

∫ T

0

[
1 – r2

2
V ′

i (qi – qi+1)(qi – qi+1) + r2V ′
i (qi – qi+1)

(
q–

i – q–
i+1

)]
dt

+
∑

i

∫ T

0

[
Vi(r

(
q+

i – q+
i+1

)
– Vi(qi – qi+1)

]
dt

=
r2

2
∥∥q–∥∥2 +

1 – r2

2
(
J ′(q), q

)
+ r2(J ′(q), q–)

+
∑

i

∫ T

0

[
1 + r2

2
V ′

i (qi – qi+1)(qi – qi+1) – r2V ′
i (qi – qi+1)

(
q–

i – q–
i+1

)]
dt

+
∑

i

∫ T

0

[
Vi(r(q+

i – q+
i+1 – Vi(qi – qi+1)

]
dt

=
r2

2
∥∥q–∥∥2 +

1 – r2

2
(
J ′(q), q

)
+ r2(J ′(q), q–)
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+
∑

i

∫

μ|q+
i –q+

i+1|≤η0|qi–qi+1|

[
1 + r2

2
V ′

i (qi – qi+1)(qi – qi+1)

– r2V ′
i (qi – qi+1)

(
q–

i – q–
i+1

)]
dt

+
∑

i

∫

μ|q+
i –q+

i+1|≤η0|qi–qi+1|

[
Vi(r

(
q+

i – q+
i+1

)
– Vi(qi – qi+1)

]
dt

+
∑

i

∫

μ|q+
i –q+

i+1|>η0|qi–qi+1|

[
1 + r2

2
V ′

i (qi – qi+1)(qi – qi+1)

– r2V ′
i (qi – qi+1)

(
q–

i – q–
i+1

)]
dt

+
∑

i

∫

μ|q+
i –q+

i+1|>η0|qi–qi+1|

[
Vi(r

(
q+

i – q+
i+1

)
– Vi(qi – qi+1)

]
dt

≥ r2

2
∥∥q–∥∥2 +

1 – r2

2
(
J ′(q), q

)
+ r2(J ′(q), q–)

– r2
∑

i

∫

μ|q+
i –q+

i+1|>η0|qi–qi+1|
V ′

i (qi – qi+1)
(
q+

i – q+
i+1

)
dt, r ≥ 0. �

Lemma 3.3 Assume that (A0)–(A4) are satisfied. Then there is a constant ρ > 0 such that
κ := inf J(S+

ρ ) > 0, where S+
ρ = ∂Bρ ∩ H+.

Lemma 3.3 can be proved in the same way as [19].

Lemma 3.4 Suppose that (A0)–(A4) are satisfied. Let e ∈ E+ with ‖e‖ = 1. Then there is a
constant r0 > 0 such that sup J(∂Q) ≤ 0, where

Q =
{

q = se + q– : q– ∈ H–, s ≥ 0,‖q‖ ≤ r0
}

.

Proof From (A1) we have Vi(x) ≥ 0 for all x and i, so we get J(q) ≤ 0 for any q ∈ H–. Next, it
remains to show that J(q) → –∞ as q ∈ H– ⊕Re, ‖q‖ → ∞. The proof is by contradiction,
assume that, for some sequence {q(n)} ⊂ H– ⊕Re with ‖q(n)‖ → ∞, there exists M > 0 such
that J(q(n)) ≥ –M for all n ∈ N. Denote h(n) = q(n)/‖q(n)‖ = h(n)– + sne, obviously ‖h(n)‖ = 1.
Passing to a subsequence, we may suppose that h(n) ⇀ h in H , thus h(n) → v a.e. on R,
h(n)–

⇀ h– in H , sn → s̄ and

–
M

‖q(n)‖2 ≤ J(q(n))
‖q(n)‖2 =

s2
n
2

–
1
2
∥∥h(n)–∥∥2 –

∑

i

∫ T

0

Vi(q(n)
i – q(n)

i+1)
‖q(n)‖2 dt. (3.5)

If s̄ = 0, thanks to (3.5), it follows that

0 ≤ 1
2
∥∥h(n)–∥∥2 +

∑

i

∫ T

0

Vi(q(n)
i – q(n)

i+1)
‖q(n)‖2 dt ≤ s2

n
2

+
M

‖q(n)‖2 → 0,

which leads to ‖h(n)–‖ → 0, and so 1 = ‖h(n)‖ → 0, a contradiction.
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If s̄ �= 0, then h �= 0, combining (3.5), (A1) and Fatou’s lemma, we see that

0 ≤ lim
n→∞ sup

[
s2

n
2

–
1
2
∥∥h(n)–∥∥2 –

∑

i

∫ T

0

Vi(q(n)
i – q(n)

i+1)
‖q(n)‖2 dt

]

= lim
n→∞ sup

[
s2

n
2

–
1
2
∥∥h(n)–∥∥2 –

∑

i

∫ T

0

Vi(q(n)
i – q(n)

i+1)
|q(n)

i – q(n)
i+1|2

(
h(n)

i – h(n)
i+1

)2 dt
]

≤ 1
2

lim
n→∞ s2

n – lim
n→∞ inf

∑

i

∫ T

0

Vi(q(n)
i – q(n)

i+1)
|q(n)

i – q(n)
i+1|2

(
h(n)

i – h(n)
i+1

)2 dt

≤ s̄2

2
–

∑

i

∫ T

0
lim

n→∞ inf
Vi(q(n)

i – q(n)
i+1)

|q(n)
i – q(n)

i+1|2
(
h(n)

i – h(n)
i+1

)2 dt

= –∞,

this leads to a contradiction. Hence the Lemma 3.4 are proved. �

Lemma 3.5 Assume that (A0)–(A4) are satisfied. Then there exist a constant c ≥ κ and a
sequence {q(n)} ⊂ H satisfying

J
(
q(n)) → c,

∥∥J ′(q(n))∥∥(
1 +

∥∥q(n)∥∥) → 0. (3.6)

Proof Lemma 3.5 is a direct corollary of Lemmas 2.1, 2.2 and 3.2. �

Lemma 3.6 Suppose that (A0)–(A4) are satisfied. Then any sequence {q(n)} ⊂ H satisfying

J
(
q(n)) → c,

〈
J ′(q(n)),

(
q(n))±〉 → 0 (3.7)

is bounded in H .

Proof We prove boundedness of {q(n)} by negation, suppose that ‖q(n)‖ → ∞. Let h(n) =
q(n)/‖q(n)‖, it is easy to show that ‖h(n)‖ = 1 and there exists a constant C1 such that
‖h(n)‖2 ≤ C1. Passing to a subsequence, we may assume that (h(n)) ⇀ h in H , h(n)

i ⇀ hi

in L∞(S1,R). Based on the concentration-compactness principle of Lions [9] (see also
Lemma 1 in [1]), we will divide our proof into two cases: either ((h(n))+)n is vanishing or it
is nonvanishing.

Now, we assume that ((h(n))+)n is vanishing, that is,

lim
n→∞ sup

i

∥∥(
h(n)

i
)+ –

(
h(n)

i+1
)+∥∥∞ = 0.

Fix R = [2(1 + c)1/2]. It follows from (A1) and (A2) that

∣∣Vi(x)
∣∣ ≤ x2

4(RC1)2 , ∀i ∈ Z, |x| ≤ η. (3.8)

According to the theorem of Lions [9], it follows that ‖(h(n)
i )+ – (h(n)

i+1)+‖∞ ≤ η/R, where n
is sufficiently large. Hence,

lim
n→∞ sup

∑

i

∫ T

0
Vi

(
h(n)

i – h(n)
i+1

) ≤ 1
4C2

1
lim

n→∞
∥∥h(n)∥∥2

2 ≤ 1
4

. (3.9)
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Using (A1) and (A2), for ε > 0, there exists Cε > 0 such that

∣∣V ′
i (x)

∣∣ ≤ ε|x| + Cε|x|p–1 (3.10)

and

∣∣Vi(x)
∣∣ ≤ ε|x|2 + Cε|x|p (3.11)

for any x ∈R and i ∈ Z, where p > 2. Then

lim
n→∞

R2

‖q(n)‖
∑

i

∫

R|h+
i –h+

i+1|>η0|qi–qi+1|
V ′

i (qi – qi+1)
∣∣h+

i – h+
i+1

∣∣dt

≤ lim
n→∞

R2

‖q(n)‖
∑

i

∫

R|h+
i –h+

i+1|>η0|qi–qi+1|

(
ε|qi – qi+1| + Cε|qi – qi+1|p–1)∣∣h+

i – h+
i+1

∣∣dt

≤ lim
n→∞

R2

‖q(n)‖
×

∑

i

∫

R|h+
i –h+

i+1|>η0|qi–qi+1|

(
εRη–1

0
∣∣h+

i – h+
i+1

∣∣2 + CεRp–1η
1–p
0

∣∣h+
i – h+

i+1
∣∣p)dt

≤ lim
n→∞

εR3η–1
0 ‖h(n)‖2

2 + CεRp+1η
1–p
0 ‖h(n)‖p

p

‖q(n)‖ = 0. (3.12)

Let μn = R/‖q(n)‖, it follows from (3.7), (3.9), (3.12) and Lemma 3.2 that

c + o(1)

= J
(
q(n))

≥ J
(
μn

(
q(n))+)

+
μ2

n‖(q(n))–‖2

2
+

1 – μ2
n

2
〈
J ′(q(n)),

(
q(n))〉 + μ2

n
〈
J ′(q(n)),

(
q(n))–〉

– μ2
n

∑

i

∫

μn|h+
i –h+

i+1|>η0|qi–qi+1|
V ′

i (qi – qi+1)
∣∣h+

i – h+
i+1

∣∣dt

= J
(
R
(
h(n))+)

+
R2‖(h(n))–‖

2
+

(
1
2

–
R2

2‖q(n))‖2

)〈
J ′(q(n), q(n))〉

+
R2

‖q(n))‖2

〈
J ′(q(n))),

(
q(n))–)

〉

–
R2

‖q(n))‖
∑

i

∫

R|h+
i –h+

i+1|>η0|qi–qi+1|
V ′

i (qi – qi+1)
∣∣h+

i – h+
i+1

∣∣dt

=
R2

2
(∥∥(

h(n))+∥∥2 +
∥∥(

h(n))–∥∥2)

–
R2

‖q(n))‖
∑

i

∫

R|h+
i –h+

i+1|>η0|qi–qi+1|
V ′

i (qi – qi+1)
∣∣h+

i – h+
i+1

∣∣dt

–
∑

i

∫ T

0
Vi

(
R
(
h+

i – h+
i+1

))
dt +

(
1
2

–
R2

2‖q(n))‖2

)〈
J ′(q(n), q(n))〉

+
R2

‖q(n))‖2

〈
J ′(q(n))),

(
q(n))–)

〉
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≥ R2

2
–

∑

i

∫ T

0
Vi

(
R
(
h+

i – h+
i+1

))
dt

–
R2

‖q(n))‖
∑

i

∫

R|h+
i –h+

i+1|>η0|qi–qi+1|
V ′

i (qi – qi+1)
∣∣h+

i – h+
i+1

∣∣dt + o(1)

≥ R2

2
–

1
4

+ o(1) > c +
3
4

+ o(1),

this leads to a contradiction.
Next, suppose that ((h(n))+)n is nonvanishing, that is, there exist ρ0 > 0 and (in) ⊂ Z such

that

lim
n→∞

∥∥(
h(n)

in

)+ –
(
h(n)

in+1
)+∥∥ ≥ ρ0. (3.13)

Since J and J ′ are Z and S1-translation invariant, up to a subsequence, we may assume
that in = j ∈ {1, 2, . . . , m}. Noticing that (h(n)

in )+ – (h(n)
in+1)+ → h+

i – h+
i+1 in L∞ and (3.13), thus

hj – hj+1 �= 0. Set |lj| = ‖q(n)‖‖l̃j‖ → ∞, where lj := q(n)
j – q(n)

j+1 and l̃j := h(n)
j – h(n)

j+1, from (A1)
and Fatou’s lemma we have

∫ T

0

Vj(lj)
l2
j

l̃2
j → +∞,

which indicates that

0 ≤ J(q(n))
‖q(n)‖2 ≤ 1

2
∥∥h+∥∥2 –

1
2
∥∥h–∥∥2 –

∫ T

0

Vj(lj)
l2
j

l̃2
j → –∞,

as n → ∞, this contradiction implies that {q(n)} is bounded in H . �

Lemma 3.7 The (C)c sequence (q(n)) obtained above is bounded, and up to a translation
of indices, q(n) ⇀ q �= 0 in H and J ′(q) = 0.

Proof Using Lemma 3.6, we can now derive that (q(n)) is bounded. Since c ≥ κ , where κ is
defined in Lemma 3.3, we can proceed in the same way as in the proof of Lemma 4.3 in
[16] to obtain q(n) ⇀ q �= 0 in H up to a translation of indices, and J ′(q) = 0. We omit the
details. �

Proof of Theorem 1.1 Lemma 3.7 shows that M is not an empty set. To obtain the ground
state solution, we denote c0 = infM J . By Lemma 2.3, one has J(u) ≥ J(0) = 0 for all u ∈M.
Thus c0 ≥ 0. Let (q(n)) ∈ M be such that J(q(n)) → c0. Then 〈J ′(q(n)), p〉 = 0 for any p ∈ H .
According to the proof of Lemma 3.6, we can certify that (q(n)) is bounded in H , so it
demonstrates that q0 ∈M such that J(q0) = c0 = infM J by a standard argument.

Finally, we show that the solution obtained above is nonconstant for some suitable T .
One can proceed in the same way as in the proof of Theorem 1.1 in [16] to prove that there
exists Tmin > 0 which depends on αi : αi > 0 and corresponding Vi such that if Tmin < T , then
the solution obtained above is nonconstant, we omit its proof. Since the conditions on Tmin

and π/
√

β are independent of each other, there are potentials for which this inequality
Tmin < π/

√
β is satisfied. Therefore when the coefficients αi take both signs, our method

guarantees the existence of a nonconstant solution for system (1.2) only if Tmin < π/
√

β . �
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