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In 1987, Lazer and Solimini [1] investigated the following second-order di�erential
equation with singularity of repulsive type:

x′′ =
1
xα + h(t),

and obtained the result that if the external forceh(t) was continuous andω-periodic, then
for all α > 0 a positive periodic solution existed if and only if the external forceh(t) has a
positive mean value. We say the equation to obey the strong force condition ifα ≥ 1 and
the weak force condition if 0 <α < 1.

Lazer and Solimini•s work has attracted the attention of many scholars in singular equa-
tions. More recently, the Poincaré…Birkho� twist theorem [2…4], Schauder•s “xed point
theorem [5…8], the Leray…Schauder alternative principle [9…11], coincidence degree the-
ory [12…15],the Krasnoselskii “xed point theorem in cones [16, 17] and Leray…Schauder
degree theory [18, 19] have been employed to discuss the existence of a positive periodic
solution of singular equations.

Among these papers, there have been published some results on Eq. (1.2) (see [5, 6, 8,
10, 17]). Chu et al. [10] in 2007 discussed the existence of a positive periodic solution
for Eq. (1.2) if the external forcee(t) ≥ 0 and ‖a‖ := maxt∈[0,ω] |a(t)| < π2

ω2 . Their results
were based on a nonlinear alternative principle of Leray…Schauder and are applicable to
the case of a strong singularity and the case of a weak singularity. Afterwards, Torres [8]
proved Eq. (1.2) in the cases of weak and strong singularities had at least one positive
periodic solution if the external forcee(t) > 0 and‖a‖ < π2

ω2 . Moreover, the author obtained
the result that there was one positive periodic solution for Eq. (1.2) in the case of a weak
singularity if one of the following conditions holds:

(i) e(t) ≡ 0 and‖a‖ < π2

ω2 ; or (ii) e(t) < 0 and‖a‖ < π2

ω2 .
Wang [17] in 2010 improved the above result and presented a new assumption, which

is weaker than the singular condition in [8]. The author obtained the result that Eq. (1.2)
in the cases that weak and strong singularities have at least one positive periodic solution
if and only if one of the following conditions holds:

(i) e(t) ≥ 0 and‖a‖ < π2

ω2 ; or (ii) e(t) < 0 and‖a‖ < π2

ω2 .
The proof of their results was based on the Krasnoselskii “xed point theorem in a cone.
All the aforementioned results are related to Eq. (1.2) with the external forcee(t) not

changing sign. Naturally, a new question arises: how may Eq. (1.1) with weak and strong
singularities work on the external forcee(t) changing sign? In this paper, we “ll the gap and
provide su�cient conditions for the existence of a positive periodic solution for Eq. (1.1)
with weak and strong singularities, where the external forcee(t) may change sign,α is
a constant andα > 0. By applications of the Manásevich…Mawhin continuation theorem
[20, Theorem 3.1], we obtain the following conclusion.

Theorem 1.1 Assume that the following conditions are satis“ed:
(H1)

� ω
0 e(t)dt = 0;

(H2) ‖a‖ < π2

ω2 ;
(H3)

σ∗ >
�

ω
1
2

2

�
π2ω(‖a‖(σ ∗)

2
1+α + ‖e‖(σ ∗)

1
1+α )

π2 …‖a‖ω2

� 1
2

+
πω2(2‖a‖(σ ∗)

1
1+α + ‖e‖)

2(π2 …‖a‖ω2)

� 1+α

,

where σ ∗ := b∗
a∗ , σ∗ := b∗

a∗ , b∗ := maxt∈[0,ω] b(t), b∗ := mint∈[0,ω] b(t).
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Then Eq. (1.1) has at least one positive periodic solution x with

x ∈
�

(σ∗)
1

1+α …
ω

1
2

2

�
π2ω(‖a‖(σ ∗)

2
1+α + ‖e‖(σ ∗)

1
1+α )

π2 …‖a‖ω2

� 1
2

…
πω2(2‖a‖(σ ∗)

1
1+α + ‖e‖)

2(π2 …‖a‖ω2)
,

�
σ ∗� 1

1+α +
ω

1
2

2

�
π2ω(‖a‖(σ ∗)

2
1+α + ‖e‖(σ ∗)

1
1+α )

π2 …‖a‖ω2

� 1
2

+
πω2(2‖a‖(σ ∗)

1
1+α + ‖e‖)

2(π2 …‖a‖ω2)

�
.

Remark1.1 The techniques used are quite di�erent from that in [5, 8, 10, 17] and our

results are more general than those in [5, 8, 10, 17] in two aspects. We “rst obtain the

existence of a positive periodic solution for equation (1.1) with weak and strong singular-

ities if the external forcee(t) may change sign. Secondly, we give the existence interval of

positive periodic solution of Eq. (1.1).

In the following, we consider the existence of a periodic solution for Eq. (1.1) without

the external forcee(t).

Corollary 1.1 Assume that(H2) holds. Furthermore, suppose the following conditions are

satis“ed:

(H ′
1) e(t) = 0;

(H ′
3) σ∗ > (ω

1
2

2 (π2ω‖a‖(σ∗)
2

1+α
π2…‖a‖ω2 )

1
2 + πω2‖a‖(σ∗)

1
1+α

(π2…‖a‖ω2)
)1+α .

Then Eq. (1.1) has at least one positive periodic solution x with

x ∈
�

(σ∗)
1

1+α …
ω

1
2

2

�
π2ω‖a‖(σ ∗)

2
1+α

π2 …‖a‖ω2

� 1
2

…
πω2‖a‖(σ ∗)

1
1+α

(π2 …‖a‖ω2)
,

�
σ ∗� 1

1+α +
ω

1
2

2

�
π2ω‖a‖(σ ∗)

2
1+α

π2 …‖a‖ω2

� 1
2

+
πω2‖a‖(σ ∗)

1
1+α

(π2 …‖a‖ω2)

�
.

Obviously, the condition (H3) (or (H ′
3)) is hard restrictive for the existence of a positive

periodic solution to Eq. (1.1). In the following, we study the existence of a positive periodic

solution for Eq. (1.1) with strong singularity (i.e.α ≥ 1) if conditions (H1) and (H2) are

satis“ed.

Theorem 1.2 Assume that conditions(H1) and (H2) hold. Furthermore, suppose the fol-

lowing condition is satis“ed:

(H4) b(t) ≡ b and b is a positive constant.
Then Eq. (1.1) has at least one positive periodic solution ifα ≥ 1.

2 Proof of theorems
We “rst recall the Sobolev inequality recently proved in [21, P. 357] and the topological

degree theorem by Mawhin [20].

Lemma 2.1 (Sobolev inequality; see [21]) Let u∈ W 1,p(R) and u(0) = u(ω) = 0. Then we

have

S(σ )ω…1…2/σ‖x‖2
σ ≤ �

� x′�� 2
2, (2.1)
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where S(σ ) is the Sobolev constant, σ is a positive constant andσ > 1,S(σ ) =
4(1+σ

2 )2B2( 1
σ , 1

2 )

σ2(1+ 1
σ )

and B(·, ·) is the Beta function.

Remark2.1 Whenσ = 2, we getS(2) =π2.

Next, we investigate a family of (1.1) as follows:

x′′(t) + λ
�

f
�
x(t)

�
x′(t) + a(t)x(t) …

b(t)
xα(t)

�
= λe(t), λ ∈ (0, 1]. (2.2)

Using [20, Theorem 3.1], we obtain the following conclusion.

Lemma 2.2 Assume that there exist positive constants E1, E2, E3 and E1 < E2 such that the

following conditions hold:

(1) Each possible periodic solution x to Eq. (2.2) such that E1 < x(t) < E2, ∀t ∈ [0,ω] and
‖x′‖ < E3.

(2) Each possible solution C to the equation

� ω

0

�
a(t)C …

b(t)
Cα

�
dt = 0

satisfies C ∈ (E1,E2).
(3) We have

� ω

0

�
a(t)E1 …

b(t)
Eα

1

�
dt ·

� ω

0

�
a(t)E2 …

b(t)
Eα

2

�
dt < 0.

Then Eq. (1.1) has at least one positive periodic solution.

We investigate the existence of a periodic solution for Eq. (1.1) with weak and strong

singularities.

Proof of Theorem1.1 Integrating Eq. (2.2) from 0 to ω, we get

� ω

0

�
a(t)x(t) …

b(t)
xα(t)

�
dt = 0. (2.3)

In view of the mean value theorem of integrals, we know that there exists a pointξ ∈ (0,ω)

such that

a(ξ )x(ξ ) =
b(ξ )
xα(ξ )

,

since
� ω

0 x′′(t) dt = 0 and
� ω

0 e(t)dt = 0 from condition (H1). Furthermore, we deduce

(σ∗)
1

1+α ≤ x(ξ ) ≤ �
σ ∗� 1

1+α . (2.4)
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Multiplying both sides of Eq. (2.2) byx(t) and integrating on the interval [0,ω], we obtain

� ω

0
x′′(t)x(t)dt + λ

� ω

0
f
�
x(t)

�
x(t)x′(t) dt + λ

� ω

0
a(t)

	
	x(t)

	
	2

dt

= λ
� ω

0
b(t)x1…α(t) dt + λ

� ω

0
e(t)x(t)dt. (2.5)

Substituting
� ω

0 x′′(t)x′(t) dt = …
� ω

0 |x′(t)|2 dt and
� T

0 f (x(t))x(t)x′(t) dt = 0 into Eq. (2.5), ap-

plying the Hölder inequality, we have

� ω

0

	
	x′(t)

	
	2

dt = λ
� ω

0
a(t)

	
	x(t)

	
	2

dt …λ
� ω

0
b(t)x1…α(t) dt …λ

� ω

0
e(t)x(t)dt

≤
� ω

0

	
	a(t)

	
	
	
	x(t)

	
	2

dt +
� ω

0

	
	e(t)

	
	
	
	x(t)

	
	 dt

≤ ‖a‖
� ω

0

	
	x(t)

	
	2

dt + ‖e‖ω 1
2

� � T

0

	
	x′(t)

	
	2

dt
� 1

2

, (2.6)

sinceb(t) > 0 andx(t) > 0. De“ne u(t) := x(t + ξ ) …x(ξ ), whereξ is as in Eq. (2.4), then

u(0) = u(ω) = 0. Using Eq. (2.4), Lemma2.1and the Minkowski inequality, we deduce

� � ω

0

	
	x(t)

	
	2

dt
� 1

2

=
� � ω

0

	
	u(t) + x(ξ )

	
	2

dt
� 1

2

≤
� � ω

0

	
	u(t)

	
	 dt

� 1
2

+
� � ω

0

	
	x(ξ )

	
	 dt

� 1
2

≤ ω√
S(2)

� � ω

0

	
	u′(t)

	
	2

dt
� 1

2

+
�
σ ∗� 1

1+α ω
1
2

≤ ω
π

� � ω

0

	
	x′(t)

	
	2

dt
� 1

2

+
�
σ ∗� 1

1+α ω
1
2 , (2.7)

sinceu′(t) = x′(t) and S(2) = π2 from Remark 2.1. Substituting Eqs. (2.7) into (2.6), we

arrive at

� ω

0

	
	x′(t)

	
	2

dt ≤ ‖a‖
�

ω
π

� � ω

0

	
	x′(t)

	
	2

dt
� 1

2

+
�
σ ∗� 1

1+α ω
1
2

� 2

+ ‖e‖ω 1
2
ω
π

�� � ω

0

	
	x′(t)

	
	2

dt
� 1

2

+
�
σ ∗� 1

1+α ω
1
2

�

= ‖a‖ω2

π2

� ω

0

	
	x′(t)

	
	2

dt +
ω

3
2

π
�
2‖a‖�

σ ∗� 1
1+α + ‖e‖�

� � ω

0

	
	x′(t)

	
	2

dt
� 1

2

+
� ‖a‖�

σ ∗� 2
1+α + ‖e‖�

σ ∗� 1
1+α

�
ω

= ‖a‖ω2

π2

� ω

0

	
	x′(t)

	
	2

dt + N1

� � ω

0

	
	x′(t)

	
	2

dt
� 1

2

+ N2,
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whereN1 := ω
3
2

π (2‖a‖(σ ∗)
1

1+α +‖e‖) andN2 := (‖a‖(σ ∗)
2

1+α +‖e‖(σ ∗)
1

1+α )ω. From condition

(H2), we see that

�
1 …‖a‖ω2

π2

� � ω

0

	
	x′(t)

	
	2

dt ≤ N1

� � ω

0

	
	x′(t)

	
	2

dt
� 1

2

+ N2.

It is clear that

� ω

0

	
	x′(t)

	
	2

dt ≤ π2N1

π2 …‖a‖ω2

� � ω

0

	
	x′(t)

	
	2

dt
� 1

2

+
π2N2

π2 …‖a‖ω2
.

Furthermore, we obtain

�� � ω	
	x′(t)

	
	2

dt
� 1

2

…
π2N1

2π2 … 2‖a‖ω2

� 2

≤ π2N2

π2 …‖a‖ω2
+

π4N2
1

(2π2 … 2‖a‖ω2)2
.

Therefore, the above inequality implies

� � ω

0

	
	x′(t)

	
	2

dt
� 1

2

≤
�

π2N2

π2 …‖a‖ω2
+

π4N2
1

(2π2 … 2‖a‖ω2)2

� 1
2

+
π2N1

2π2 … 2‖a‖ω2

=
�

π2ω(‖a‖(σ ∗)
2

1+α + ‖e‖(σ ∗)
1

1+α )
π2 …‖a‖ω2

+
π2ω3(2‖a‖(σ ∗)

1
1+α + ‖e‖)2

(2π2 … 2‖a‖ω2)2

� 1
2

+
πω

3
2 (2‖a‖(σ ∗)

1
1+α + ‖e‖)

2π2 … 2‖a‖ω2

≤
�

π2ω(‖a‖(σ ∗)
2

1+α + ‖e‖(σ ∗)
1

1+α )
π2 …‖a‖ω2

� 1
2

+
πω

3
2 (2‖a‖(σ ∗)

1
1+α + ‖e‖)

π2 …‖a‖ω2
:= M ′

1 (2.8)

where the lase inequality holds because of a classical inequality, i.e.,

(a + b)k ≤ ak + bk, for k ∈ (0, 1),a,b ∈ (0,+∞).

From Eqs. (2.4), (2.8) and the Hölder inequality, we deduce

x(t) =
1
2

�
x(t) + x(t …ω)

�

=
1
2

�
x(ξ ) +

� t

ξ
x′(s)ds+ x(ξ ) …

� ξ

t…ω
x′(s)ds

�

≤ x(ξ ) +
1
2

� � t

ξ

	
	x′(s)

	
	 ds+

� ξ

t…ω

	
	x′(s)

	
	 ds

�

= x(ξ ) +
1
2

� t

t…ω

	
	x′(s)

	
	 ds

≤ �
σ ∗� 1

1+α +
1
2

� ω

0

	
	x′(t)

	
	 dt
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≤ �
σ ∗� 1

1+α +
ω

1
2

2

� � ω

0

	
	x′(t)

	
	2

dt
� 1

2

≤ �
σ ∗� 1

1+α +
ω

1
2

2

�
π2ω(‖a‖(σ ∗)

2
1+α + ‖e‖(σ ∗)

1
1+α )

π2 …‖a‖ω2

� 1
2

+
πω2(2‖a‖(σ ∗)

1
1+α + ‖e‖)

2(π2 …‖a‖ω2)
:= M1. (2.9)

On the other hand, from Eqs. (2.4), (2.8) and (2.9), we get

x(t) = x(ξ ) +
1
2

� t

t…ω
x′(s)ds

≥ (σ∗)
1

1+α …
1
2

� � t

ξ

	
	x′(s)

	
	 ds+

� ξ

t…ω

	
	x′(s)

	
	 ds

�

≥ (σ∗)
1

1+α …
1
2

� ω

0

	
	x′(t)

	
	 ds

≥ (σ∗)
1

1+α …
ω

1
2

2

� � ω

0

	
	x′(t)

	
	2

dt
� 1

2

≥ (σ∗)
1

1+α …
ω

1
2

2

�
π2ω(‖a‖(σ ∗)

2
1+α + ‖e‖(σ ∗)

1
1+α )

π2 …‖a‖ω2

� 1
2

…
πω2(2‖a‖(σ ∗)

1
1+α + ‖e‖)

2(π2 …‖a‖ω2)
:= M2 > 0, (2.10)

sinceσ∗ > (ω
1
2

2 (π2ω(‖a‖(σ∗)
2

1+α +‖e‖(σ∗)
1

1+α )
π2…‖a‖ω2 )

1
2 + πω2(2‖a‖(σ∗)

1
1+α +‖e‖)

2(π2…‖a‖ω2)
)1+α from condition (H3).

Next, we are going to obtain a uniform bound onx′(t). In fact, in view ofx(0) = x(ω),
there exists a pointt1 ∈ (0,ω) such thatx′(t1) = 0, from Eqs. (2.2), (2.9) and (2.10), it is easy
to see that

�
� x′�� = max

t∈[0,ω]


 	
	x′(t)

	
	�

= max
t∈[t1,t1+ω]

� 	
	
	
	

� t

t1

�
x′′(s)

�
ds

	
	
	
	




≤
� ω

0

	
	f

�
x(t)

� 		
	
	x′(t)

	
	 dt +

� ω

0

	
	a(t)

	
	
	
	x(t)

	
	 dt +

� ω

0

	
	
	
	

b(t)
xα(t)

	
	
	
	 dt +

� ω

0

	
	e(t)

	
	 dt

≤ |fM1|M ′
1ω

1
2 + ‖a‖M1ω +

‖b‖ω
Mα

2
+ ‖e‖ω := M3, (2.11)

where|fM1| := maxM2≤x≤M1 |f (x)|.
Having in mind Eqs. (2.9), (2.10) and (2.11), we de“ne

Ω :=


x ∈ X : E1 < x(t) < E2 and

�
� x′�� < E3∀t ∈ R

�
,

whereX := {x ∈ C(R,R) : x(0)≡ x(ω),∀t ∈ R}, 0 <E1 < M2, E2 > M1 andE3 > M3. Then the
conditions (i) and (ii) of Lemma2.2are satis“ed. From Eqs. (2.4), (2.9) and (2.10), we have

� ω

0

�
a(t)E1 …

b(t)
Eα

1

�
dt ·

� ω

0

�
a(t)E2 …

b(t)
Eα

2

�
dt < 0.



Xin and Hu Boundary Value Problems        (2020) 2020:143 Page 8 of 12

Therefore, applying2.2, we see that Eq. (1.1) has at least one positive periodic solutionx
with

x ∈
�

(σ∗)
1

1+α …
ω

1
2

2

�
π2ω(‖a‖(σ ∗)

2
1+α + ‖e‖(σ ∗)

1
1+α )

π2 …‖a‖ω2

� 1
2

…
πω2(2‖a‖(σ ∗)

1
1+α + ‖e‖)

2(π2 …‖a‖ω2)
,

�
σ ∗� 1

1+α +
ω

1
2

2

�
π2ω(‖a‖(σ ∗)

2
1+α + ‖e‖(σ ∗)

1
1+α )

π2 …‖a‖ω2

� 1
2

+
πω2(2‖a‖(σ ∗)

1
1+α + ‖e‖)

2(π2 …‖a‖ω2)

�
.

�

Next, we address the condition on the existence of a periodic solution for Eq. (1.1) with
strong singularity.

Proof of Theorem1.2 Similar to the proof of Theorem1.1, from (2.4) and condition (H4),
we know that there exists a pointζ ∈ (0,ω) such that

(η∗)
1

1+α ≤ x(ζ ) ≤ �
η∗� 1

1+α , (2.12)

whereη∗ := b
mint∈[0,ω] a(t) , η∗ := b

maxt∈[0,ω] a(t) . From Eq. (2.9), we get

x(t) ≤ M1.

Next, we claim that there exist two positive constantsM ∗
2 andM ∗

3 such that

x(t) ≥ M ∗
2, and

�
� x′�� ≤ λM ∗

3, λ ∈ (0, 1).

In fact, we “rst consider
� ω

0 | b
xα (t) |dt from condition (H4). Sinceb > 0 andx(t) > 0, from

Eqs. (2.3) and (2.9), we obtain

� ω

0

	
	
	
	

b
xα(t)

	
	
	
	 dt =

� ω

0

b
xα(t)

dt

=
� ω

0
a(t)x(t)dt

≤ ‖a‖M1ω. (2.13)

Afterwards, from Eqs. (2.9), (2.11) and (2.13), we have

�
� x′�� ≤ λ

� � ω

0

	
	f

�
x(t)

� 		
	
	x′(t)

	
	 dt + ‖a‖

� ω

0

	
	x(t)

	
	 dt +

� ω

0

	
	
	
	

b
xα(t)

	
	
	
	 dt +

� ω

0

	
	e(t)

	
	 dt

�

≤ λ
� |fM1|M ′

1ω
1
2 + 2‖a‖M1ω + ‖e‖ω�

:= λM ∗
3. (2.14)

On the other hand, multiplying both sides of Eq. (2.2) by x′(t) and integrating on [ζ , t ],
wherex(ζ ) ≥ (σ∗)

1
1+α is as in Eq. (2.12), we see that

� t

ζ
x′′(s)x′(s)ds+ λ

� t

ζ
f
�
x(s)

� 		x′(s)
	
	2

ds+ λ
� t

ζ
a(s)x(s)x′(s)ds

= λ
� t

ζ

bx′(s)
xα(s)

ds+ λ
� t

ζ
e(s)x′(s)ds.



Xin and Hu Boundary Value Problems        (2020) 2020:143 Page 9 of 12

Furthermore, from Eq. (2.9) and (2.14), it is clear that

λb

	
	
	
	

� x(t)

x(ζ )

dν
να

	
	
	
	 = λ

	
	
	
	

� t

ζ

bx′(s)
xα(s)

ds

	
	
	
	

=

	
	
	
	

� t

ζ
x′′(s)x′(s)ds+ λ

� t

ζ
f
�
x(s)

� 		x′(s)
	
	2

ds

+ λ
� t

ζ
a(s)x(s)x′(s)ds…λ

� t

ζ
e(s)x′(s)ds

	
	
	
	

≤1
2

�
x′2(t) …x′2(ζ )

�
+ λ

� ω

0

	
	f

�
x(s)

� 		
	
	x′(s)

	
	2

ds

+ λ
� ω

0

	
	a(s)

	
	
	
	x′(s)

	
	2

ds+ λ
� ω

0

	
	e(s)

	
	
	
	x′(s)

	
	 ds

≤ λ2�
M ∗

3

� 2
+ λ|fM1|M ∗

3ω + λ‖a‖M1M ∗
3ω + λ‖e‖M ∗

3ω,

sinceb > 0. Therefore, the above inequality implies

	
	
	
	

� x(t)

x(ζ )

dν
να

	
	
	
	 ≤ M ∗

3

b

�
M ∗

3 + |fM1|M ∗
3ω + ‖a‖M1ω + ‖e‖ω�

:= M ′
2. (2.15)

Sinceα ≥ 1, we get

	
	
	
	 lim
x→0+

� 1

x

dν
να

	
	
	
	 =

1
1 …α

+
1

α … 1
lim

x→0+

1
xα…1

= +∞. (2.16)

From Eq. (2.16) andx(ζ ) ≥ (η∗)
1

1+α , there exists a constantM ∗
2 ∈ (0, (η∗)

1
1+α ) such that

� (η∗)
1

1+α

M∗
2

dν
να > M ′

2. (2.17)

Thus, if there is a pointζ1 ∈ [ζ , t ] such thatx(ζ1) ≤ M ∗
2, then

	
	
	
	

� x(ζ )

x(ζ1)

dν
να

	
	
	
	 ≥

	
	
	
	

� (η∗)
1

1+α

M∗
2

dν
να

	
	
	
	 > M ′

2, (2.18)

which contradicts (2.15). Therefore, we getx(t) > M ∗
2 for all t ∈ [ζ ,ω]. For the caset ∈

[0,ζ ], we can proceed similarly.

The proof is the same as Theorem1.1. �

Remark2.2 It is worth mentioning that the method of Theorem1.2is no longer applicable

to the proof of existence of a positive periodic solution for Eq. (1.1) with weak singularity

(i.e. 0 <α < 1). Due to 0 <α < 1, we cannot get the result that Eq. (2.16) holds, so we do

not deduce that Eqs. (2.15) and (2.18) are a contradiction.

Remark2.3 In condition (H4), we require thatb(t) ≡ b. Actually, if b(t) is a continuous

periodic function rather than a positive constant, the work on estimating a lower bound

of a positive periodic solution for Eq. (1.1) is no longer applicable. In fact, due tob(t)
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being a function andb(t) 
≡constant, it is easy to verify that| � t
ζ

b(s)x′(s)
xα (s) ds| 
= |b|| � x(t)

x(ζ )
dν
να ds|.

Therefore, we cannot get Eq. (2.15).

Finally, we illustrate our results with two numerical examples.

Example2.1 Consider the following Liénard equation with weak singularity:

x′′ + x3x′ +
�

1
4

sin 8π t +
1
2

�
x =

sin2 4π t + 6

x
1
2

+ cos 8π t . (2.19)

It is clear thatT = 1
4,α = 1

2, f (x) = x3,a(t) = 1
4 sin 8π t + 1

2,b(t) = sin2 4π t +6,e(t) = cos 8π t ,

σ∗ = 8, σ ∗ = 28, and‖a‖ = 3
4 < 16π2, conditions (H1) and (H2) are satis“ed. Next, we con-

sider condition (H3),

ω
1
2

2

�
π2ω(‖a‖(σ ∗)

2
1+α + ‖e‖(σ ∗)

1
1+α )

π2 …‖a‖ω2

� 1
2

+
πω2(2‖a‖(σ ∗)

1
1+α + ‖e‖)

2(π2 …‖a‖ω2)

=
1
4

×
� π2 × 1

4 × ( 3
4 × (28)

4
3 + 1× (28)

2
3 )

π2 …3
64

� 1
2

+
π × 1

4 × ( 3
2 × (28)

2
3 + 1)

2π2 …3
32

≈ 1
4

× (18.3355)
1
2 + 0.594

≈ 1.6668 < 4 = (σ∗)
1

1+α .

Furthermore, we get

(σ∗)
1

1+α …
ω

1
2

2

�
π2ω(‖a‖(σ ∗)

2
1+α + ‖e‖(σ ∗)

1
1+α )

π2 …‖a‖ω2

� 1
2

…
πω2(2‖a‖(σ ∗)

1
1+α + ‖e‖)

2(π2 …‖a‖ω2)

> 4 … 1.6668 = 2.3332,

�
σ ∗� 1

1+α +
ω

1
2

2

�
π2ω(‖a‖(σ ∗)

2
1+α + ‖e‖(σ ∗)

1
1+α )

π2 …‖a‖ω2

� 1
2

+
πω2(2‖a‖(σ ∗)

1
1+α + ‖e‖)

2(π2 …‖a‖ω2)

< 9.221 + 1.6668 = 10.8878.

Therefore, applying Theorem1.1, we know that Eq. (2.19) has at least one positive14-

periodic solutionx with x ∈ (2.3332,10.8878). Moreover, using Matlab, we can “nd a pos-

itive periodic solution for this equation as shown in Fig.1.

Example2.2 Consider the following Liénard equation with strong singularity:

x′′ + x2x′ +
�

sin2 2t +
1
2

�
x =

5
x4

. (2.20)

It is obvious thatT = π
2 , a(t) = sin2 2t + 1

2, b = 5 ‖a‖ = 3
2 < 4,α = 4, then conditions (H1),

(H2) and (H4) are satis“ed. Hence, applying Theorem1.2, we see that Eq. (2.20) has at least

one positiveπ
2 -periodic solution. Moreover, using Matlab, we can “nd a positive periodic

solution for this equation as shown in in Fig.2.
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Figure 1 The first picture shows the system response in the (x, y). The second shows the system response in
the (t, x) over the time interval of 0 ≤ t ≤ 50. The initial conditions are x0 = 5.52907, y0 = 0, t0 = 0

Figure 2 The first picture shows the system response in the (x, y). The second shows the system response in
the (t, x) over the time interval of 0 ≤ t ≤ 50. The initial conditions are x0 = 2, y0 = 0, t0 = 0

3 Conclusions
In this paper, applying an extension of the Manásevich…Mawhin continuation theorem,

we investigate the existence of a periodic solution for Eq. (1.1), where the external force

e(t) may change sign, the singular termb(t)
xα satis“es weak and strong singularities of re-

pulsive type. Besides, we give the existence interval of periodic solution of Eq. (1.1). At

last, two examples and numerical solutions (phase portraits and time portraits of periodic

solutions of the example) are given to show applications of the theorem. The techniques

used of this paper are quite di�erent from that in [5, 8, 10, 17] and our results are more

general than those in [5,8,10,17] in two aspects. We “rst obtain the existence of a positive

periodic solution for Eq. (1.1) with weak and strong singularities if the external forcee(t)

may change sign. Secondly, we give the existence interval of positive periodic solution of

Eq. (1.1).
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