
Xin and Hu Boundary Value Problems        (2020) 2020:143 
https://doi.org/10.1186/s13661-020-01441-1

R E S E A R C H Open Access

Weak and strong singularities problems to
Liénard equation
Yun Xin1 and Guixin Hu2*

*Correspondence:
hgx_1982@126.com
2School of Mathematics and
Information Science, Henan
Polytechnic University, Jiaozuo
454000, China
Full list of author information is
available at the end of the article

Abstract
This paper is devoted to an investigation of the existence of a positive periodic
solution for the following singular Liénard equation:

x′′ + f (x(t))x′(t) + a(t)x =
b(t)
xα

+ e(t),

where the external force e(t) may change sign, α is a constant and α > 0. The novelty
of the present article is that for the first time we show that weak and strong
singularities enables the achievement of a new existence criterion of positive periodic
solution through an application of the Manásevich–Mawhin continuation theorem.
Recent results in the literature are generalized and significantly improved, and we
give the existence interval of periodic solution of this equation. At last, two examples
and numerical solution (phase portraits and time portraits of periodic solutions of the
example) are given to show applications of the theorem.
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1 Introduction
The main purpose of this paper is to consider the existence of a periodic solution for the
Liénard equation with weak and strong singularities of repulsive type,

x′′ + f
(
x(t)

)
x′(t) + a(t)x =

b(t)
xα

+ e(t), (1.1)

where a, b ∈ C(R, (0, +∞)) are ω-periodic functions, f ∈ C(R,R), the external force e ∈
C(R,R) is an ω-periodic function. Moreover, note that when f (x(t)) ≡ 0, Eq. (1.1) becomes

x′′ + a(t)x =
b(t)
xα

+ e(t). (1.2)
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In 1987, Lazer and Solimini [1] investigated the following second-order differential
equation with singularity of repulsive type:

x′′ =
1
xα

+ h(t),

and obtained the result that if the external force h(t) was continuous and ω-periodic, then
for all α > 0 a positive periodic solution existed if and only if the external force h(t) has a
positive mean value. We say the equation to obey the strong force condition if α ≥ 1 and
the weak force condition if 0 < α < 1.

Lazer and Solimini’s work has attracted the attention of many scholars in singular equa-
tions. More recently, the Poincaré–Birkhoff twist theorem [2–4], Schauder’s fixed point
theorem [5–8], the Leray–Schauder alternative principle [9–11], coincidence degree the-
ory [12–15],the Krasnoselskii fixed point theorem in cones [16, 17] and Leray–Schauder
degree theory [18, 19] have been employed to discuss the existence of a positive periodic
solution of singular equations.

Among these papers, there have been published some results on Eq. (1.2) (see [5, 6, 8,
10, 17]). Chu et al. [10] in 2007 discussed the existence of a positive periodic solution
for Eq. (1.2) if the external force e(t) ≥ 0 and ‖a‖ := maxt∈[0,ω] |a(t)| < π2

ω2 . Their results
were based on a nonlinear alternative principle of Leray–Schauder and are applicable to
the case of a strong singularity and the case of a weak singularity. Afterwards, Torres [8]
proved Eq. (1.2) in the cases of weak and strong singularities had at least one positive
periodic solution if the external force e(t) > 0 and ‖a‖ < π2

ω2 . Moreover, the author obtained
the result that there was one positive periodic solution for Eq. (1.2) in the case of a weak
singularity if one of the following conditions holds:

(i) e(t) ≡ 0 and ‖a‖ < π2

ω2 ; or (ii) e(t) < 0 and ‖a‖ < π2

ω2 .
Wang [17] in 2010 improved the above result and presented a new assumption, which

is weaker than the singular condition in [8]. The author obtained the result that Eq. (1.2)
in the cases that weak and strong singularities have at least one positive periodic solution
if and only if one of the following conditions holds:

(i) e(t) ≥ 0 and ‖a‖ < π2

ω2 ; or (ii) e(t) < 0 and ‖a‖ < π2

ω2 .
The proof of their results was based on the Krasnoselskii fixed point theorem in a cone.
All the aforementioned results are related to Eq. (1.2) with the external force e(t) not

changing sign. Naturally, a new question arises: how may Eq. (1.1) with weak and strong
singularities work on the external force e(t) changing sign? In this paper, we fill the gap and
provide sufficient conditions for the existence of a positive periodic solution for Eq. (1.1)
with weak and strong singularities, where the external force e(t) may change sign, α is
a constant and α > 0. By applications of the Manásevich–Mawhin continuation theorem
[20, Theorem 3.1], we obtain the following conclusion.

Theorem 1.1 Assume that the following conditions are satisfied:
(H1)

∫ ω

0 e(t) dt = 0;
(H2) ‖a‖ < π2

ω2 ;
(H3)

σ∗ >
(

ω
1
2

2

(
π2ω(‖a‖(σ ∗) 2

1+α + ‖e‖(σ ∗) 1
1+α )

π2 – ‖a‖ω2

) 1
2

+
πω2(2‖a‖(σ ∗) 1

1+α + ‖e‖)
2(π2 – ‖a‖ω2)

)1+α

,

where σ ∗ := b∗
a∗ , σ∗ := b∗

a∗ , b∗ := maxt∈[0,ω] b(t), b∗ := mint∈[0,ω] b(t).
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Then Eq. (1.1) has at least one positive periodic solution x with

x ∈
(

(σ∗)
1

1+α –
ω

1
2

2

(
π2ω(‖a‖(σ ∗) 2

1+α + ‖e‖(σ ∗) 1
1+α )

π2 – ‖a‖ω2

) 1
2

–
πω2(2‖a‖(σ ∗) 1

1+α + ‖e‖)
2(π2 – ‖a‖ω2)

,

(
σ ∗) 1

1+α +
ω

1
2

2

(
π2ω(‖a‖(σ ∗) 2

1+α + ‖e‖(σ ∗) 1
1+α )

π2 – ‖a‖ω2

) 1
2

+
πω2(2‖a‖(σ ∗) 1

1+α + ‖e‖)
2(π2 – ‖a‖ω2)

)
.

Remark 1.1 The techniques used are quite different from that in [5, 8, 10, 17] and our
results are more general than those in [5, 8, 10, 17] in two aspects. We first obtain the
existence of a positive periodic solution for equation (1.1) with weak and strong singular-
ities if the external force e(t) may change sign. Secondly, we give the existence interval of
positive periodic solution of Eq. (1.1).

In the following, we consider the existence of a periodic solution for Eq. (1.1) without
the external force e(t).

Corollary 1.1 Assume that (H2) holds. Furthermore, suppose the following conditions are
satisfied:

(H ′
1) e(t) = 0;

(H ′
3) σ∗ > ( ω

1
2

2 ( π2ω‖a‖(σ∗)
2

1+α

π2–‖a‖ω2 ) 1
2 + πω2‖a‖(σ∗)

1
1+α

(π2–‖a‖ω2) )1+α .
Then Eq. (1.1) has at least one positive periodic solution x with

x ∈
(

(σ∗)
1

1+α –
ω

1
2

2

(
π2ω‖a‖(σ ∗) 2

1+α

π2 – ‖a‖ω2

) 1
2

–
πω2‖a‖(σ ∗) 1

1+α

(π2 – ‖a‖ω2)
,

(
σ ∗) 1

1+α +
ω

1
2

2

(
π2ω‖a‖(σ ∗) 2

1+α

π2 – ‖a‖ω2

) 1
2

+
πω2‖a‖(σ ∗) 1

1+α

(π2 – ‖a‖ω2)

)
.

Obviously, the condition (H3) (or (H ′
3)) is hard restrictive for the existence of a positive

periodic solution to Eq. (1.1). In the following, we study the existence of a positive periodic
solution for Eq. (1.1) with strong singularity (i.e. α ≥ 1) if conditions (H1) and (H2) are
satisfied.

Theorem 1.2 Assume that conditions (H1) and (H2) hold. Furthermore, suppose the fol-
lowing condition is satisfied:

(H4) b(t) ≡ b and b is a positive constant.
Then Eq. (1.1) has at least one positive periodic solution if α ≥ 1.

2 Proof of theorems
We first recall the Sobolev inequality recently proved in [21, P. 357] and the topological
degree theorem by Mawhin [20].

Lemma 2.1 (Sobolev inequality; see [21]) Let u ∈ W 1,p(R) and u(0) = u(ω) = 0. Then we
have

S(σ )ω–1–2/σ‖x‖2
σ ≤ ∥∥x′∥∥2

2, (2.1)
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where S(σ ) is the Sobolev constant, σ is a positive constant and σ > 1, S(σ ) = 4(1+ σ
2 )2B2( 1

σ , 1
2 )

σ 2(1+ 1
σ )

and B(·, ·) is the Beta function.

Remark 2.1 When σ = 2, we get S(2) = π2.

Next, we investigate a family of (1.1) as follows:

x′′(t) + λ

(
f
(
x(t)

)
x′(t) + a(t)x(t) –

b(t)
xα(t)

)
= λe(t), λ ∈ (0, 1]. (2.2)

Using [20, Theorem 3.1], we obtain the following conclusion.

Lemma 2.2 Assume that there exist positive constants E1, E2, E3 and E1 < E2 such that the
following conditions hold:

(1) Each possible periodic solution x to Eq. (2.2) such that E1 < x(t) < E2, ∀t ∈ [0,ω] and
‖x′‖ < E3.

(2) Each possible solution C to the equation

∫ ω

0

(
a(t)C –

b(t)
Cα

)
dt = 0

satisfies C ∈ (E1, E2).
(3) We have

∫ ω

0

(
a(t)E1 –

b(t)
Eα

1

)
dt ·

∫ ω

0

(
a(t)E2 –

b(t)
Eα

2

)
dt < 0.

Then Eq. (1.1) has at least one positive periodic solution.

We investigate the existence of a periodic solution for Eq. (1.1) with weak and strong
singularities.

Proof of Theorem 1.1 Integrating Eq. (2.2) from 0 to ω, we get

∫ ω

0

(
a(t)x(t) –

b(t)
xα(t)

)
dt = 0. (2.3)

In view of the mean value theorem of integrals, we know that there exists a point ξ ∈ (0,ω)
such that

a(ξ )x(ξ ) =
b(ξ )
xα(ξ )

,

since
∫ ω

0 x′′(t) dt = 0 and
∫ ω

0 e(t) dt = 0 from condition (H1). Furthermore, we deduce

(σ∗)
1

1+α ≤ x(ξ ) ≤ (
σ ∗) 1

1+α . (2.4)
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Multiplying both sides of Eq. (2.2) by x(t) and integrating on the interval [0,ω], we obtain

∫ ω

0
x′′(t)x(t) dt + λ

∫ ω

0
f
(
x(t)

)
x(t)x′(t) dt + λ

∫ ω

0
a(t)

∣∣x(t)
∣∣2 dt

= λ

∫ ω

0
b(t)x1–α(t) dt + λ

∫ ω

0
e(t)x(t) dt. (2.5)

Substituting
∫ ω

0 x′′(t)x′(t) dt = –
∫ ω

0 |x′(t)|2 dt and
∫ T

0 f (x(t))x(t)x′(t) dt = 0 into Eq. (2.5), ap-
plying the Hölder inequality, we have

∫ ω

0

∣∣x′(t)
∣∣2 dt = λ

∫ ω

0
a(t)

∣∣x(t)
∣∣2 dt – λ

∫ ω

0
b(t)x1–α(t) dt – λ

∫ ω

0
e(t)x(t) dt

≤
∫ ω

0

∣∣a(t)
∣∣∣∣x(t)

∣∣2 dt +
∫ ω

0

∣∣e(t)
∣∣∣∣x(t)

∣∣dt

≤ ‖a‖
∫ ω

0

∣
∣x(t)

∣
∣2 dt + ‖e‖ω 1

2

(∫ T

0

∣
∣x′(t)

∣
∣2 dt

) 1
2

, (2.6)

since b(t) > 0 and x(t) > 0. Define u(t) := x(t + ξ ) – x(ξ ), where ξ is as in Eq. (2.4), then
u(0) = u(ω) = 0. Using Eq. (2.4), Lemma 2.1 and the Minkowski inequality, we deduce

(∫ ω

0

∣
∣x(t)

∣
∣2 dt

) 1
2

=
(∫ ω

0

∣
∣u(t) + x(ξ )

∣
∣2 dt

) 1
2

≤
(∫ ω

0

∣∣u(t)
∣∣dt

) 1
2

+
(∫ ω

0

∣∣x(ξ )
∣∣dt

) 1
2

≤ ω√
S(2)

(∫ ω

0

∣
∣u′(t)

∣
∣2 dt

) 1
2

+
(
σ ∗) 1

1+α ω
1
2

≤ ω

π

(∫ ω

0

∣∣x′(t)
∣∣2 dt

) 1
2

+
(
σ ∗) 1

1+α ω
1
2 , (2.7)

since u′(t) = x′(t) and S(2) = π2 from Remark 2.1. Substituting Eqs. (2.7) into (2.6), we
arrive at

∫ ω

0

∣∣x′(t)
∣∣2 dt ≤ ‖a‖

(
ω

π

(∫ ω

0

∣∣x′(t)
∣∣2 dt

) 1
2

+
(
σ ∗) 1

1+α ω
1
2

)2

+ ‖e‖ω 1
2
ω

π

((∫ ω

0

∣
∣x′(t)

∣
∣2 dt

) 1
2

+
(
σ ∗) 1

1+α ω
1
2

)

= ‖a‖ω2

π2

∫ ω

0

∣∣x′(t)
∣∣2 dt +

ω
3
2

π

(
2‖a‖(σ ∗) 1

1+α + ‖e‖)
(∫ ω

0

∣∣x′(t)
∣∣2 dt

) 1
2

+
(‖a‖(σ ∗) 2

1+α + ‖e‖(σ ∗) 1
1+α

)
ω

= ‖a‖ω2

π2

∫ ω

0

∣∣x′(t)
∣∣2 dt + N1

(∫ ω

0

∣∣x′(t)
∣∣2 dt

) 1
2

+ N2,
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where N1 := ω
3
2

π
(2‖a‖(σ ∗) 1

1+α +‖e‖) and N2 := (‖a‖(σ ∗) 2
1+α +‖e‖(σ ∗) 1

1+α )ω. From condition
(H2), we see that

(
1 – ‖a‖ω2

π2

)∫ ω

0

∣∣x′(t)
∣∣2 dt ≤ N1

(∫ ω

0

∣∣x′(t)
∣∣2 dt

) 1
2

+ N2.

It is clear that

∫ ω

0

∣∣x′(t)
∣∣2 dt ≤ π2N1

π2 – ‖a‖ω2

(∫ ω

0

∣∣x′(t)
∣∣2 dt

) 1
2

+
π2N2

π2 – ‖a‖ω2 .

Furthermore, we obtain

((∫ ω∣∣x′(t)
∣∣2 dt

) 1
2

–
π2N1

2π2 – 2‖a‖ω2

)2

≤ π2N2

π2 – ‖a‖ω2 +
π4N2

1
(2π2 – 2‖a‖ω2)2 .

Therefore, the above inequality implies

(∫ ω

0

∣
∣x′(t)

∣
∣2 dt

) 1
2

≤
(

π2N2

π2 – ‖a‖ω2 +
π4N2

1
(2π2 – 2‖a‖ω2)2

) 1
2

+
π2N1

2π2 – 2‖a‖ω2

=
(

π2ω(‖a‖(σ ∗) 2
1+α + ‖e‖(σ ∗) 1

1+α )
π2 – ‖a‖ω2 +

π2ω3(2‖a‖(σ ∗) 1
1+α + ‖e‖)2

(2π2 – 2‖a‖ω2)2

) 1
2

+
πω

3
2 (2‖a‖(σ ∗) 1

1+α + ‖e‖)
2π2 – 2‖a‖ω2

≤
(

π2ω(‖a‖(σ ∗) 2
1+α + ‖e‖(σ ∗) 1

1+α )
π2 – ‖a‖ω2

) 1
2

+
πω

3
2 (2‖a‖(σ ∗) 1

1+α + ‖e‖)
π2 – ‖a‖ω2 := M′

1 (2.8)

where the lase inequality holds because of a classical inequality, i.e.,

(a + b)k ≤ ak + bk , for k ∈ (0, 1), a, b ∈ (0, +∞).

From Eqs. (2.4), (2.8) and the Hölder inequality, we deduce

x(t) =
1
2
(
x(t) + x(t – ω)

)

=
1
2

(
x(ξ ) +

∫ t

ξ

x′(s) ds + x(ξ ) –
∫ ξ

t–ω

x′(s) ds
)

≤ x(ξ ) +
1
2

(∫ t

ξ

∣
∣x′(s)

∣
∣ds +

∫ ξ

t–ω

∣
∣x′(s)

∣
∣ds

)

= x(ξ ) +
1
2

∫ t

t–ω

∣
∣x′(s)

∣
∣ds

≤ (
σ ∗) 1

1+α +
1
2

∫ ω

0

∣
∣x′(t)

∣
∣dt
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≤ (
σ ∗) 1

1+α +
ω

1
2

2

(∫ ω

0

∣∣x′(t)
∣∣2 dt

) 1
2

≤ (
σ ∗) 1

1+α +
ω

1
2

2

(
π2ω(‖a‖(σ ∗) 2

1+α + ‖e‖(σ ∗) 1
1+α )

π2 – ‖a‖ω2

) 1
2

+
πω2(2‖a‖(σ ∗) 1

1+α + ‖e‖)
2(π2 – ‖a‖ω2)

:= M1. (2.9)

On the other hand, from Eqs. (2.4), (2.8) and (2.9), we get

x(t) = x(ξ ) +
1
2

∫ t

t–ω

x′(s) ds

≥ (σ∗)
1

1+α –
1
2

(∫ t

ξ

∣∣x′(s)
∣∣ds +

∫ ξ

t–ω

∣∣x′(s)
∣∣ds

)

≥ (σ∗)
1

1+α –
1
2

∫ ω

0

∣∣x′(t)
∣∣ds

≥ (σ∗)
1

1+α –
ω

1
2

2

(∫ ω

0

∣
∣x′(t)

∣
∣2 dt

) 1
2

≥ (σ∗)
1

1+α –
ω

1
2

2

(
π2ω(‖a‖(σ ∗) 2

1+α + ‖e‖(σ ∗) 1
1+α )

π2 – ‖a‖ω2

) 1
2

–
πω2(2‖a‖(σ ∗) 1

1+α + ‖e‖)
2(π2 – ‖a‖ω2)

:= M2 > 0, (2.10)

since σ∗ > ( ω
1
2

2 ( π2ω(‖a‖(σ∗)
2

1+α +‖e‖(σ∗)
1

1+α )
π2–‖a‖ω2 ) 1

2 + πω2(2‖a‖(σ∗)
1

1+α +‖e‖)
2(π2–‖a‖ω2) )1+α from condition (H3).

Next, we are going to obtain a uniform bound on x′(t). In fact, in view of x(0) = x(ω),
there exists a point t1 ∈ (0,ω) such that x′(t1) = 0, from Eqs. (2.2), (2.9) and (2.10), it is easy
to see that

∥∥x′∥∥ = max
t∈[0,ω]

{∣∣x′(t)
∣∣}

= max
t∈[t1,t1+ω]

{∣
∣∣∣

∫ t

t1

(
x′′(s)

)
ds

∣
∣∣∣

}

≤
∫ ω

0

∣
∣f

(
x(t)

)∣∣
∣
∣x′(t)

∣
∣dt +

∫ ω

0

∣
∣a(t)

∣
∣
∣
∣x(t)

∣
∣dt +

∫ ω

0

∣∣
∣∣

b(t)
xα(t)

∣∣
∣∣dt +

∫ ω

0

∣
∣e(t)

∣
∣dt

≤ |fM1 |M′
1ω

1
2 + ‖a‖M1ω +

‖b‖ω
Mα

2
+ ‖e‖ω := M3, (2.11)

where |fM1 | := maxM2≤x≤M1 |f (x)|.
Having in mind Eqs. (2.9), (2.10) and (2.11), we define

Ω :=
{

x ∈ X : E1 < x(t) < E2 and
∥
∥x′∥∥ < E3∀t ∈R

}
,

where X := {x ∈ C(R,R) : x(0) ≡ x(ω),∀t ∈R}, 0 < E1 < M2, E2 > M1 and E3 > M3. Then the
conditions (i) and (ii) of Lemma 2.2 are satisfied. From Eqs. (2.4), (2.9) and (2.10), we have

∫ ω

0

(
a(t)E1 –

b(t)
Eα

1

)
dt ·

∫ ω

0

(
a(t)E2 –

b(t)
Eα

2

)
dt < 0.
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Therefore, applying 2.2, we see that Eq. (1.1) has at least one positive periodic solution x
with

x ∈
(

(σ∗)
1

1+α –
ω

1
2

2

(
π2ω(‖a‖(σ ∗) 2

1+α + ‖e‖(σ ∗) 1
1+α )

π2 – ‖a‖ω2

) 1
2

–
πω2(2‖a‖(σ ∗) 1

1+α + ‖e‖)
2(π2 – ‖a‖ω2)

,

(
σ ∗) 1

1+α +
ω

1
2

2

(
π2ω(‖a‖(σ ∗) 2

1+α + ‖e‖(σ ∗) 1
1+α )

π2 – ‖a‖ω2

) 1
2

+
πω2(2‖a‖(σ ∗) 1

1+α + ‖e‖)
2(π2 – ‖a‖ω2)

)
.

�

Next, we address the condition on the existence of a periodic solution for Eq. (1.1) with
strong singularity.

Proof of Theorem 1.2 Similar to the proof of Theorem 1.1, from (2.4) and condition (H4),
we know that there exists a point ζ ∈ (0,ω) such that

(η∗)
1

1+α ≤ x(ζ ) ≤ (
η∗) 1

1+α , (2.12)

where η∗ := b
mint∈[0,ω] a(t) , η∗ := b

maxt∈[0,ω] a(t) . From Eq. (2.9), we get

x(t) ≤ M1.

Next, we claim that there exist two positive constants M∗
2 and M∗

3 such that

x(t) ≥ M∗
2, and

∥
∥x′∥∥ ≤ λM∗

3, λ ∈ (0, 1).

In fact, we first consider
∫ ω

0 | b
xα (t) |dt from condition (H4). Since b > 0 and x(t) > 0, from

Eqs. (2.3) and (2.9), we obtain

∫ ω

0

∣
∣∣∣

b
xα(t)

∣
∣∣∣dt =

∫ ω

0

b
xα(t)

dt

=
∫ ω

0
a(t)x(t) dt

≤ ‖a‖M1ω. (2.13)

Afterwards, from Eqs. (2.9), (2.11) and (2.13), we have

∥
∥x′∥∥ ≤ λ

(∫ ω

0

∣
∣f

(
x(t)

)∣∣
∣
∣x′(t)

∣
∣dt + ‖a‖

∫ ω

0

∣
∣x(t)

∣
∣dt +

∫ ω

0

∣∣
∣∣

b
xα(t)

∣∣
∣∣dt +

∫ ω

0

∣
∣e(t)

∣
∣dt

)

≤ λ
(|fM1 |M′

1ω
1
2 + 2‖a‖M1ω + ‖e‖ω)

:= λM∗
3. (2.14)

On the other hand, multiplying both sides of Eq. (2.2) by x′(t) and integrating on [ζ , t],
where x(ζ ) ≥ (σ∗) 1

1+α is as in Eq. (2.12), we see that

∫ t

ζ

x′′(s)x′(s) ds + λ

∫ t

ζ

f
(
x(s)

)∣∣x′(s)
∣∣2 ds + λ

∫ t

ζ

a(s)x(s)x′(s) ds

= λ

∫ t

ζ

bx′(s)
xα(s)

ds + λ

∫ t

ζ

e(s)x′(s) ds.
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Furthermore, from Eq. (2.9) and (2.14), it is clear that

λb
∣∣∣
∣

∫ x(t)

x(ζ )

dν

να

∣∣∣
∣ = λ

∣∣∣
∣

∫ t

ζ

bx′(s)
xα(s)

ds
∣∣∣
∣

=
∣∣
∣∣

∫ t

ζ

x′′(s)x′(s) ds + λ

∫ t

ζ

f
(
x(s)

)∣∣x′(s)
∣
∣2 ds

+ λ

∫ t

ζ

a(s)x(s)x′(s) ds – λ

∫ t

ζ

e(s)x′(s) ds
∣∣
∣∣

≤1
2
(
x′2(t) – x′2(ζ )

)
+ λ

∫ ω

0

∣∣f
(
x(s)

)∣∣∣∣x′(s)
∣∣2 ds

+ λ

∫ ω

0

∣
∣a(s)

∣
∣
∣
∣x′(s)

∣
∣2 ds + λ

∫ ω

0

∣
∣e(s)

∣
∣
∣
∣x′(s)

∣
∣ds

≤ λ2(M∗
3
)2 + λ|fM1 |M∗

3ω + λ‖a‖M1M∗
3ω + λ‖e‖M∗

3ω,

since b > 0. Therefore, the above inequality implies

∣∣
∣∣

∫ x(t)

x(ζ )

dν

να

∣∣
∣∣ ≤ M∗

3
b

(
M∗

3 + |fM1 |M∗
3ω + ‖a‖M1ω + ‖e‖ω)

:= M′
2. (2.15)

Since α ≥ 1, we get

∣
∣∣∣ lim
x→0+

∫ 1

x

dν

να

∣
∣∣∣ =

1
1 – α

+
1

α – 1
lim

x→0+

1
xα–1 = +∞. (2.16)

From Eq. (2.16) and x(ζ ) ≥ (η∗) 1
1+α , there exists a constant M∗

2 ∈ (0, (η∗) 1
1+α ) such that

∫ (η∗)
1

1+α

M∗
2

dν

να
> M′

2. (2.17)

Thus, if there is a point ζ1 ∈ [ζ , t] such that x(ζ1) ≤ M∗
2 , then

∣
∣∣
∣

∫ x(ζ )

x(ζ1)

dν

να

∣
∣∣
∣ ≥

∣
∣∣
∣

∫ (η∗)
1

1+α

M∗
2

dν

να

∣
∣∣
∣ > M′

2, (2.18)

which contradicts (2.15). Therefore, we get x(t) > M∗
2 for all t ∈ [ζ ,ω]. For the case t ∈

[0, ζ ], we can proceed similarly.
The proof is the same as Theorem 1.1. �

Remark 2.2 It is worth mentioning that the method of Theorem 1.2 is no longer applicable
to the proof of existence of a positive periodic solution for Eq. (1.1) with weak singularity
(i.e. 0 < α < 1). Due to 0 < α < 1, we cannot get the result that Eq. (2.16) holds, so we do
not deduce that Eqs. (2.15) and (2.18) are a contradiction.

Remark 2.3 In condition (H4), we require that b(t) ≡ b. Actually, if b(t) is a continuous
periodic function rather than a positive constant, the work on estimating a lower bound
of a positive periodic solution for Eq. (1.1) is no longer applicable. In fact, due to b(t)
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being a function and b(t) ≡constant, it is easy to verify that | ∫ t
ζ

b(s)x′(s)
xα (s) ds| = |b|| ∫ x(t)

x(ζ )
dν
να ds|.

Therefore, we cannot get Eq. (2.15).

Finally, we illustrate our results with two numerical examples.

Example 2.1 Consider the following Liénard equation with weak singularity:

x′′ + x3x′ +
(

1
4

sin 8π t +
1
2

)
x =

sin2 4π t + 6
x 1

2
+ cos 8π t. (2.19)

It is clear that T = 1
4 , α = 1

2 , f (x) = x3, a(t) = 1
4 sin 8π t + 1

2 , b(t) = sin2 4π t +6, e(t) = cos 8π t,
σ∗ = 8, σ ∗ = 28, and ‖a‖ = 3

4 < 16π2, conditions (H1) and (H2) are satisfied. Next, we con-
sider condition (H3),

ω
1
2

2

(
π2ω(‖a‖(σ ∗) 2

1+α + ‖e‖(σ ∗) 1
1+α )

π2 – ‖a‖ω2

) 1
2

+
πω2(2‖a‖(σ ∗) 1

1+α + ‖e‖)
2(π2 – ‖a‖ω2)

=
1
4

×
(

π2 × 1
4 × ( 3

4 × (28) 4
3 + 1 × (28) 2

3 )
π2 – 3

64

) 1
2

+
π × 1

4 × ( 3
2 × (28) 2

3 + 1)
2π2 – 3

32

≈ 1
4

× (18.3355)
1
2 + 0.594

≈ 1.6668 < 4 = (σ∗)
1

1+α .

Furthermore, we get

(σ∗)
1

1+α –
ω

1
2

2

(
π2ω(‖a‖(σ ∗) 2

1+α + ‖e‖(σ ∗) 1
1+α )

π2 – ‖a‖ω2

) 1
2

–
πω2(2‖a‖(σ ∗) 1

1+α + ‖e‖)
2(π2 – ‖a‖ω2)

> 4 – 1.6668 = 2.3332,

(
σ ∗) 1

1+α +
ω

1
2

2

(
π2ω(‖a‖(σ ∗) 2

1+α + ‖e‖(σ ∗) 1
1+α )

π2 – ‖a‖ω2

) 1
2

+
πω2(2‖a‖(σ ∗) 1

1+α + ‖e‖)
2(π2 – ‖a‖ω2)

< 9.221 + 1.6668 = 10.8878.

Therefore, applying Theorem 1.1, we know that Eq. (2.19) has at least one positive 1
4 -

periodic solution x with x ∈ (2.3332, 10.8878). Moreover, using Matlab, we can find a pos-
itive periodic solution for this equation as shown in Fig. 1.

Example 2.2 Consider the following Liénard equation with strong singularity:

x′′ + x2x′ +
(

sin2 2t +
1
2

)
x =

5
x4 . (2.20)

It is obvious that T = π
2 , a(t) = sin2 2t + 1

2 , b = 5 ‖a‖ = 3
2 < 4, α = 4, then conditions (H1),

(H2) and (H4) are satisfied. Hence, applying Theorem 1.2, we see that Eq. (2.20) has at least
one positive π

2 -periodic solution. Moreover, using Matlab, we can find a positive periodic
solution for this equation as shown in in Fig. 2.
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Figure 1 The first picture shows the system response in the (x, y). The second shows the system response in
the (t, x) over the time interval of 0≤ t ≤ 50. The initial conditions are x0 = 5.52907, y0 = 0, t0 = 0

Figure 2 The first picture shows the system response in the (x, y). The second shows the system response in
the (t, x) over the time interval of 0≤ t ≤ 50. The initial conditions are x0 = 2, y0 = 0, t0 = 0

3 Conclusions
In this paper, applying an extension of the Manásevich–Mawhin continuation theorem,
we investigate the existence of a periodic solution for Eq. (1.1), where the external force
e(t) may change sign, the singular term b(t)

xα satisfies weak and strong singularities of re-
pulsive type. Besides, we give the existence interval of periodic solution of Eq. (1.1). At
last, two examples and numerical solutions (phase portraits and time portraits of periodic
solutions of the example) are given to show applications of the theorem. The techniques
used of this paper are quite different from that in [5, 8, 10, 17] and our results are more
general than those in [5, 8, 10, 17] in two aspects. We first obtain the existence of a positive
periodic solution for Eq. (1.1) with weak and strong singularities if the external force e(t)
may change sign. Secondly, we give the existence interval of positive periodic solution of
Eq. (1.1).
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