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(V2) For any T > 0, there exists r > 0 such that

lim|y|→∞ meas
({

x ∈R
3 : |x – y| ≤ r, V (x) ≤ T

})
= 0,

where meas(A) is the Lebesgue measure of A.
(f1) f ∈ C(R) and f (u) = o(u) as u → 0.
(f2) f (u)/u → +∞ as |u| → ∞.

The solution to (1.1) is understood in the weak sense, that is, a pair (u,φ) ∈ H1(R3) ×D
is a solution to (1.1) if

∫
R3

(∇u∇v + V (x)uv + φuv
)
dx =

∫
R3

(
λf (u)v + |u|4uv

)
dx, ∀v ∈ H1(

R
3),

∫
R3

∇φ∇ω dx +
∫
R3

�φ�ω dx =
∫
R3

φu2 dx, ∀ω ∈D,

whereD is a function space that will be introduced in Sect. 2. To the best of our knowledge,
there are very few papers related to the existence of solutions to problem (1.1). In [1],
d’Avenia and Siciliano studied the following Schrödinger–Bopp–Podolsky equation:

⎧⎨
⎩–�u + ωu + q2φu = |u|p–2u, in R

3,

–�φ + a2�2φ = 4πu2, in R
3.

(1.2)

The authors give existence and nonexistence results, depending on the parameters p and q.
Moreover, they also show that in the radial case, the solutions that they find tend to solu-
tions of the classical Schrödinger–Poisson system as a → 0.

When a = 0, (1.2) reduces to the following well-known Schrödinger–Poisson equation

⎧⎨
⎩–�u + ωu + q2φu = |u|p–2u, in R

3,

–�φ = 4πu2, in R
3,

that has been extensively studied in the past few decades. There have been many existence
and nonexistence results in the past decades. For some recent results, we refer the readers
to [8–13] and the references therein. We now summarize our main results as follows.

Theorem 1.1 Suppose that assumptions (f1)–(f2) and (V1)–(V2) are satisfied. Then there
exists λ1 > 0 such that, for any λ ∈ (0,λ1), problem (1.1) has a nontrivial solution.

Remark 1.1 We note that the usual growth condition and the Ambrosetti–Rabinowitz
condition are not needed in our result. Moreover, f is allowed to be sign-changing.

Remark 1.2 A typical example of a function satisfying assumptions (f1)–(f2) is given by
f (t) = |t|q–2t, q > 6. Furthermore, our conclusion holds for general supercritical nonlinear-
ity.

The proof will be carried out by variational methods. Since the Sobolev embedding
H1(R3) ↪→ Ls(R3) is not compact, the main difficulty is the lack of compactness. Since we
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do not assume Ambrosetti–Rabinowitz or growth conditions on f , we first make a suit-
able modification on f , solve the modified problem, and then check that, for small enough
λ, the solutions of the modified problem are also the solutions of the original problem.
We note that even for the modified problem it is not easy to obtain compactness in view
of the critical growth of the nonlinearity. To overcome the loss of compactness for the
energy functional, we shall verify that the Palais–Smale condition is regained when the
energy functional is below a suitable level.

The rest of this paper is organized as follows. In Sect. 2, we state some preliminary nota-
tions, modify the original problem, and prove the existence result of the modified problem.
In Sect. 3, we prove Theorem 1.1.

2 Preliminaries and the modified problem
In this paper, we use the following notation:

• H1(R3) is the usual Sobolev space with an inner product and norm given by

〈u, v〉H1(R3) :=
∫
R3

(∇u∇v + uv) dx, ‖ · ‖H1(R3) =
(∫

R3

(|∇u|2 + |u|2)dx
) 1

2
.

• Lp(R3), 1 ≤ p ≤ +∞, denotes a Lebesgue space, and the norm in Lp(R3) is denoted by
| · |p.

• D1,2(R3) is the completion of C∞
0 (R3) with respect to the norm

‖u‖2
D1,2(R3) =

∫
R3

|∇u|2 dx.

• C, Ci denote (possible different) any positive constant.
• H–1 denotes the dual space of H1(R3).
In this section, we summarize some fundamental properties of the operator –� + �2

and functional space D. The D is defined by the completion of C∞
0 (R3) equipped with the

norm ‖ · ‖D induced by the scalar product

〈u, v〉D :=
∫
R3

∇u∇v dx +
∫
R3

�u�v dx.

For more details, we refer the reader to [1].
It is easy to show that D is a Hilbert space continuously embedded into D1,2(R3) and

consequently in L∞(R3), see [1].

Lemma 2.1 ([1, Lemma 3.2]) The space C∞
0 (R3) is dense in

A :=
{
φ ∈ D1,2(

R
3) : �φ ∈ L2(

R
3)}

normed by
√〈φ,φ〉D and, therefore, D = A.

For every fixed u ∈ H1(R3), the Riesz theorem implies that there exists a unique solution
φu ∈D such that

–�φ + �2φ = u2.
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In order to write explicitly this solution, we consider

K(x) =
1 – e–|x|

4π |x| ,

and K(x – y) is the fundamental solution of the equation –�φ + �2φ = δy. See [7, formula
2.6] and [1, Lemma 3.3] for more properties of K(x). Then, the unique solution in D to
the second equation in (1.1) is

φu(x) := K ∗ u2 =
1

4π

∫
R3

1 – e–|x–y|

|x – y| u2(y) dy. (2.1)

The function φu possesses the following properties (see [1]).

Lemma 2.2 For every u ∈ H1(R3), we have:
(i) φu ≥ 0 for all u ∈ H1(R3);
(ii) ‖φu‖D ≤ C‖u‖2,

∫
R3 φuu2 dx ≤ C‖u‖4

12/5;
(iii) if un ⇀ u in H1(R3), then φun ⇀ φu in D;
(iv) for every y ∈R

3, φu(·+y) = φu(· + y);
(v) φu is the unique minimizer of the functional

E(φ) =
1
2
‖∇φ‖2

2 +
1
2
‖�φ‖2

2 –
∫
R3

φu2 dx, φ ∈D.

Substituting (2.1) into (1.1), we obtain

–�u + V (x)u + φuu = λf (u) + |u|4u, u ∈ H1(
R

3).

Then we define a smooth functional Φ : H1(R3) →R by setting

Φ(u) =
∫
R3

φu(x)u2(x) dx. (2.2)

In fact, functional Φ possesses the following useful BL-splitting properties, similar to the
Brézis–Lieb lemma [14].

Lemma 2.3 Let un ⇀ u in H1(R3) and un → u a.e. in R
3, then

Φ(un – u) = Φ(un) – Φ(u) + o(1), as n → ∞,

where Φ is defined by (2.2).

Proof Since K(x) ∈ Lτ (R3) for τ ∈ (3, +∞], together with un ⇀ u in H1(R3) and un → u
a.e. in R

3, we have

φun–u = φun – φu + o(1). (2.3)

By Lemma 2.2 (v), we obtain that

〈φu,φu〉D = Φ(u), ∀u ∈ H1(
R

3).
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Consequently, by (2.3) and Lemma 2.2 (ii)–(iii), we obtain that

Φ(un – u) = 〈φun–u,φun–u〉D
=

〈
φun – φu + o(1),φun – φu + o(1)

〉
D

= 〈φun ,φun〉D – 2〈φun ,φu〉D + 〈φu,φu〉D + o(1)

= Φ(un) – Φ(u) + o(1).

The proof is complete. �

We shall search critical points for the functional

Iλ(u) =
1
2

∫
R3

(|∇u|2 + V (x)u2)dx +
1
4
Φ(u) –

∫
R3

(
λF(u) +

1
6
|u|6

)
dx,

where F(t) =
∫ t

0 f (s) ds, as solutions to (1.1). It is well defined on the Hilbert space

X =
{

u ∈ H1(
R

3) :
∫
R3

V (x)u2 dx < +∞
}

and has the inner product and norm

〈u, v〉 =
∫
R3

(∇u∇v + V (x)uv
)
dx, ‖u‖ = 〈u, u〉 1

2 .

It is well known under assumptions (V1) and (V2) that we have the following compactness
lemma see [15] or [16].

Lemma 2.4 Suppose that assumptions (V1) and (V2) are satisfied. Then the embedding
from X into Ls(R3) is compact for s ∈ [2, 6).

Since f is continuous, we have Iλ ∈ C1(X,R) and

〈
I ′
λ(u), v

〉
=

∫
R3

(∇u∇v + V (x)uv + φuuv
)
dx –

∫
R3

(
λf (u)v + |u|4uv

)
dx, ∀u, v ∈ X.

Since (f1) and (f2) imply that limt→0+
f (t)
t = 0, limt→+∞ f (t)

t = +∞, we can introduce a trun-
cated function. Let T > 0 be large enough such that f (T) > 0 according to (f2). We set

gT (t) =

⎧⎪⎪⎨
⎪⎪⎩

f (t), 0 ≤ t ≤ T ,

CTtp–1, t > T ,

0, t ≤ 0,

where CT = f (T)/Tp–1, p ∈ (4, 6). Based on assumptions (f1) and (f2) it is easy to show that
gT (t) is a continuous function and satisfies the following properties:

(g1) limt→0+
gT (t)

t = 0.
(g2) limt→+∞ GT (t)

t4 = +∞, where G(t) =
∫ t

0 g(s) ds.
(g3) |gT (t)| ≤ C∗

T |t| + CT |t|p–1, where C∗
T = maxt∈[0,T] |f (t)|/t.

(g4) There exists μ = μ(T) > 0 such that tgT (t) – 4GT (t) ≥ –μt2 for all t ≥ 0.
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Now we obtain the modified problem

⎧⎨
⎩–�u + V (x)u + φuu = λgT (u) + |u|4u, x ∈R

3,

u ∈ X, u(x) > 0.
(2.4)

We shall search critical points for the functional

Iλ,T (u) =
1
2

∫
R3

(|∇u|2 + V (x)u2)dx +
1
4
Φ(u) –

∫
R3

(
λGT (u) +

1
6
|u|6

)
dx,

as solutions to (2.4). Since gT is continuous, we have Iλ,T ∈ C1(X,R) and, for any u, v ∈ X,

〈
I ′
λ,T (u), v

〉
=

∫
R3

(∇u∇v + V (x)uv + φuuv
)
dx –

∫
R3

(
λgT (u)v + |u|4uv

)
dx. (2.5)

The next lemma shows that the functional Iλ,T (u) satisfies the mountain pass geometry[14].

Lemma 2.5 The functional Iλ,T (u) satisfies the following conditions:
(i) there exist α,ρ > 0 such that Iλ,T (u) ≥ α with ‖u‖ = ρ ;
(ii) there exists e ∈ X such that ‖e‖ > ρ and Iλ,T (e) < 0.

Proof For any u ∈ X\{0} and ε > 0 small, it follows from (g1) and (g3) that

∣∣gT (t)
∣∣ ≤ ε|t| + Cε |t|5

and

∣∣GT (t)
∣∣ ≤ ε

2
|t|2 +

Cε

6
|t|6.

Thus

Iλ,T (u) ≥ 1
2
‖u‖2 +

1
4
Φ(u) –

∫
R3

(
λε

2
|u|2 +

1 + λCε

6
|u|6

)
dx

≥ 1
2
‖u‖2 – Cε‖u‖2 – C‖u‖6

by Lemma 2.2 (i) and the Sobolev embedding X ↪→ Ls(R3) for s ∈ [2, 6]. Since ε is arbitrar-
ily small, there exist ρ > 0 and α > 0 such that Iλ,T (u) ≥ α > 0 for ‖u‖ = ρ .

Let us check (ii). From (g2), for any M > 0, there exists rM > 0 such that

GT (t) ≥ Mt4, ∀t ≥ rM.

Together with (g1) and (g3), this implies that, for any M > 0, there exists a constant CM > 0
such that

GT (t) ≥ Mt4 – CMt2, ∀t > 0. (2.6)
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Then, for each u ∈ X \ {0} and t > 0, we obtain that

Iλ,T (tu) ≤ t2

2
‖u‖2 +

t4

4
Φ(u) – λMt4

∫
R3

|u|4 dx + λCMt2
∫
R3

|u|2 dx –
t6

6

∫
R3

|u|6 dx.

The step is proved by taking e = t0u with t0 > 0 large enough. �

Now, in view of Lemma 2.5, we can apply a version of the mountain pass theorem with-
out the (PS) condition to obtain a sequence {un} such that

Iλ,T (un) → cλ,T ,
∥∥I ′

λ,T (un)
∥∥

X–1 → 0. (2.7)

As in [14], we define

cλ,T = inf
γ∈Γ

max
t∈[0,1]

Iλ,T
(
γ (t)

)
,

where

Γ =
{
γ ∈ C

(
[0, 1], H1(

R
3)) : γ (0) = 0, Iλ,T

(
γ (1)

)
< 0

}
.

Lemma 2.6 Every sequence satisfying (2.7) is bounded in X.

Proof For every c ∈ R, let {un} ⊂ X be a (PS)c sequence satisfying (2.7). Then, by (g4), we
deduce that

cλ,T + on(1)‖un‖

≥ Iλ,T (un) –
1
4

I ′
λ,T (un)un

=
1
4
‖un‖2 +

λ

4

∫
R3

[
gT (un)un – 4GT (un)

]
dx +

1
12

∫
R3

|un|6 dx

≥ 1
4
‖un‖2 –

λμ

4

∫
R3

∣∣u+
n
∣∣2 dx, (2.8)

where u+
n = max{un(x), 0}, u–

n = min{un(x), 0}, un(x) = u+
n + u–

n . We argue by contradiction
that ‖un‖ → +∞ as n → ∞. Let vn = un

‖un‖ , n ≥ 1. According to Lemma 2.4, X ↪→ Ls(R3),
s ∈ [2, 6) is compact. We may assume that

vn → v, a.e. in R
3,

vn ⇀ v, weakly in X,

vn → v, strongly in Ls(
R

3), 2 ≤ s < 6.

Moreover, we have

v+
n → v+, a.e. in R

3,

v+
n ⇀ v+, weakly in X,

v+
n → v+, strongly in Ls(

R
3), 2 ≤ s < 6.

(2.9)
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From (2.8), we have

on(1) ≥ 1
4

(
1 – λμ

∫
R3

∣∣v+
n
∣∣2 dx

)
=

1
4

(
1 – λμ

∫
R3

∣∣v+∣∣2 dx
)

+ o(1).

We conclude that v+ �= 0. Then u+
n = v+

n‖un‖ → +∞. By (2.5) and (2.7), we obtain

I ′
λ,T (un)un

‖un‖4

= on(1) +
∫
R3 φunu2

n dx
‖un‖4 –

∫
R3

λgT (u+
n)u+

n

(u+
n)4

(
v+

n
)4 dx – ‖un‖2

∫
R3

|vn|6 dx

≤ on(1) +
∫
R3 φunu2

n dx
‖un‖4 –

∫
R3

λgT (u+
n)u+

n

(u+
n)4

(
v+

n
)4 dx. (2.10)

Taking the limit and using Lemma 2.2 (ii), (g2), and (2.9), we obtain 0 ≤ –∞, yielding a
contradiction. Therefore, {un} is bounded in X. �

Now, we denote by S the best constant of the Sobolev embedding H1(R3) ↪→ L6(R3), i.e.,

S = inf
u∈D1,2(R3)

∫
R3 |∇u|2 dx

(
∫
R3 |u|6 dx)1/3 .

As we will show in the following result, the modified functional satisfies the local com-
pactness condition.

Lemma 2.7 Iλ,T satisfies the (PS)c condition at any level cλ,T ∈ (0, 1
3 S

3
2 ).

Proof Let {un} be a (PS)cλ,T sequence satisfying (2.7). By Lemma 2.6, {un} is bounded in
X. Up to a subsequence, we may assume that

un → u, a.e. in R
3,

un ⇀ u, weakly in X,

un → u, strongly in Ls(
R

3), 2 ≤ s < 6.

(2.11)

Since φ : L12/5(R3) →D is continuous, from (2.11) we obtain that

φun → φu in D, as n → ∞,∫
R3

φunu2
n dx →

∫
R3

φuu2 dx, as n → ∞.
(2.12)

Using (2.11) and [14, Theorem A.1 ], for any ϕ ∈ C∞
0 (R3) ⊂ X, we can obtain that

∫
R3

(∇un∇ϕ + V (x)unϕ
)
dx →

∫
R3

(∇u∇ϕ + V (x)uϕ
)
dx,

∫
R3

gT (un)ϕ dx →
∫
R3

gT (u)ϕ dx,
∫
R3

|un|4unϕ dx →
∫
R3

|u|4uϕ dx.

(2.13)
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From (2.11)–(2.12), the Hölder inequality, and the Sobolev embedding, we obtain

∫
R3

(φunun – φuu)ϕ dx =
∫
R3

φun (un – u)ϕ dx +
∫
R3

(φun – φu)uϕ dx

≤ C‖φun‖D1,2(R3)|un – u|12/5|ϕ|12/5

+ C‖φun – φu‖D1,2(R3)|u|12/5|ϕ|12/5

→ 0. (2.14)

By (2.13)–(2.14), the density of C∞
0 (R3) in X, and (2.7), we can conclude that I ′

λ,T (un) →
I ′
λ,T (u) = 0. Let wn = un – u, as n → ∞. It follows from Lemma 2.3 and the Brezis–Lieb

lemma that

Iλ,T (wn) = Iλ,T (un) – Iλ,T (u) = c – Iλ,T (u) + o(1) := d + o(1),

and I ′
λ,T (wn) → 0 in X–1. We recall that the continuous embedding X ↪→ Ls(R3) is compact

for 2 ≤ s < 6. Hence, up to a subsequence, wn → 0 in Ls(R3), and

‖wn‖2 +
∫
R3

φwnw2
n dx =

∫
R3

λgT (wn)wn dx +
∫
R3

w6
n dx + o(1). (2.15)

By Lemma 2.2(ii), we obtain that

∫
R3

φwnw2
n dx ≤ C|wn|412/5 → 0. (2.16)

Hence, by (g3), (2.15)–(2.16), we have

‖wn‖2 =
∫
R3

|wn|6 dx + o(1).

Since wn ⊂ X is bounded, we may assume that as n → ∞

‖wn‖2 → b ≥ 0,
∫
R3

|wn|6 dx → b ≥ 0,

up to a subsequence. Suppose by contradiction that b > 0. By the Sobolev inequality, we
have

‖wn‖2 ≥
∫
R3

|∇wn|2 dx ≥ S|wn|26

and, therefore, b ≥ S
3
2 . Thus

d = lim
n→∞ Iλ,T (wn) =

(
1
2

–
1
6

)
b ≥ 1

3
S

3
2 ,

which contradicts our assumption. Therefore, b = 0 and the proof is complete. �

To obtain the existence result for problem (2.4) by Lemma 2.7, we need to show that the
mountain pass value cλ,T < 1

3 S
3
2 .
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Lemma 2.8 For any λ > 0, cλ,T < 1
3 S

3
2 .

Proof For ε > 0, consider the function

Uε(x) =
(3ε2) 1

4

(ε2 + |x|2) 1
2

.

We recall that Uε(x) satisfies
⎧⎨
⎩–�u = |u|4u, in R

3,

u ∈ D1,2(R3), u(x) > 0, in R
3,

and ∫
R3

|∇Uε |2 dx =
∫
R3

|Uε |6 dx = S
3
2 .

Let ψ ∈ C∞
0 (R3, [0, 1]) be such that ψ(x) = 1 for |x| ≤ r and ψ(x) = 0 for |x| ≥ 2r. Set uε(x) =

ψ(x)Uε(x). Then, the following asymptotic estimates hold if ε is small enough (see [14]):
∫
R3

|∇uε |2 dx = S
3
2 + O(ε), (2.17)

∫
R3

|uε |6 dx = S
3
2 + O

(
ε3), (2.18)

∫
R3

|uε |s dx =

⎧⎪⎪⎨
⎪⎪⎩

O(ε s
2 ), s ∈ [2, 3),

O(ε s
2 | ln ε|), s = 3,

O(ε 6–s
2 ), s ∈ (3, 6).

(2.19)

Since Iλ,T (tuε) → –∞, as t → ∞, there exists tε > 0 such that

Iλ,T (tεuε) = sup
t≥0

Iλ,T (tuε) > 0.

We claim that {tε}ε>0 is bounded from below by a positive constant. Otherwise, there exists
a sequence {εn} ⊂R

+ such that limn→∞ tεn = 0 and

Iλ,T (tεnuεn ) = sup
t≥0

Iλ,T (tuε).

Therefore, 0 < α ≤ c ≤ limn→∞ Iλ,T (tεnuεn ) = 0, yielding a contradiction. Thus there exists
t0 > 0 such that tε ≥ t0 > 0. Moreover, we make the following assertion: {tε}ε>0 is bounded
from above. In fact, suppose by contradiction that there exists a subsequence {tεn} with
tεn → +∞. Then, from (2.17)–(2.19), we obtain

0 < cλ,T ≤ Iλ,T (tεnuεn ) ≤ C1t2
εn + C2t4

εn – C3t6
εn . (2.20)

Letting n → ∞ in (2.20), we obtain 0 < –∞, which is a contradiction. Therefore, {tε}ε>0 is
bounded from above. Let

h(t) =
t2

2

∫
R3

|∇uε |2 dx –
t6

6

∫
R3

|uε |6 dx.
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It is easy to see that

sup
t≥0

h(t) =
1
3

S
3
2 + O(ε). (2.21)

By (V2), for |x| ≤ r, there exists β > 0 such that

∣∣V (x)
∣∣ ≤ β . (2.22)

From (2.6), (2.21)–(2.22), and (2.19), we obtain

cλ,T ≤ Iλ,T (tεuε)

≤ sup
t≥0

h(t) +
t2
ε

2
β

∫
R3

|uε |2 dx +
t4
ε

4

∫
R3

φuε u2
ε dx

– λMt4
ε

∫
R3

|uε |4 dx + t2
ε λCM

∫
R3

|uε |2 dx

≤ sup
t≥0

h(t) + C|uε |22 + C|uε |412/5 – λMC|uε |44

≤ 1
3

S
3
2 + CO(ε) + CO

(
ε2) – λMCO(ε). (2.23)

Choosing large enough M > 0, the conclusion follows from (2.23) for small enough ε > 0. �

Theorem 2.9 For any λ > 0, T > 0, problem (2.4) has a nontrivial solution uλ with
Iλ,T (uλ) = cλ,T .

Proof Since the functional Iλ,T contains the mountain pass geometry and satisfies the (PS)c

condition, the mountain pass theorem [14] implies that there exists a critical point uλ ∈ X.
Moreover, Iλ,T (uλ) = cλ,T ≥ α > 0 = I(0), so that uλ is a nontrivial solution. �

3 Proof of Theorem 1.1
In this section, we prove our main result. Our approach is based on showing that the solu-
tion obtained in Theorem 2.9 satisfies the estimate |uλ|∞ ≤ T . This implies that uλ is in-
deed the solution to the original problem (1.1). The following lemma plays a fundamental
role in the study of the existence of the nontrivial solution to problem (1.1), and its proof
involves some arguments explored in [17, 18] and involves the use of the Nash–Moser
method [19].

Lemma 3.1 If u is a critical point of Iλ,T , then u ∈ L∞(R3) and

|u|∞ ≤ C
1

2(η–1)
0 ηη/(η–1)2[(

λC∗
T + α(ε, u)

)(
1 + |u|2

)2 + λCT |u|p–2
6

] 1
2(η–1) |u|κ6 ,

where C0 > 0 and κ ≤ 1 are constants independent of λ and T , η = (8 – p)/2.

Proof Let Ak = {x ∈R
3, |u|s–1 ≤ k}, Bk = R

3\Ak , where s > 1, k > 0. Define

uk =

⎧⎨
⎩u|u|2(s–1), x ∈ Ak ,

k2u, x ∈ Bk ,
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and

wk =

⎧⎨
⎩u|u|s–1, x ∈ Ak ,

ku, x ∈ Bk .

Then uk , wk ∈ X, |uk| ≤ |u|2s–1, and w2
k = uuk ≤ |u|2s. It is easy to check that

∇uk =

⎧⎨
⎩(2s – 1)|u|2s–2∇u, x ∈ Ak ,

k2∇u, x ∈ Bk ,

∇wk =

⎧⎨
⎩s|u|s–1∇u, x ∈ Ak ,

k∇u, x ∈ Bk ,

and

∫
R3

(|∇wk|2 – ∇u∇uk
)
dx = (s – 1)2

∫
Ak

|u|2(s–1)|∇u|2 dx. (3.1)

Observe that

∫
R3

∇u · ∇uk dx

= (2s – 1)
∫

Ak

|u|2(s–1)|∇u|2 dx + k2
∫

Bk

|∇u|2 dx

≥ (2s – 1)
∫

Ak

|u|2(s–1)|∇u|2 dx. (3.2)

Therefore, by (3.1)–(3.2), we obtain that
∫
R3 ∇u · ∇uk dx ≥ 0 and

∫
R3

|∇wk|2 dx ≤ s2
∫
R3

∇u · ∇uk dx. (3.3)

Using uk as a test function in (2.5), we obtain

∫
R3

(∇u∇uk + V (x)uuk + φuuuk
)
dx =

∫
R3

(
λgT (u)uk + |u|4uuk

)
dx.

Together with (3.3), this shows that

∫
R3

|∇wk|2 dx ≤ s2
(∫

R3
λgT (u)uk dx +

∫
R3

|u|4uuk dx
)

.

By a version of the Brézis–Kato lemma, as in [20, Lemma 2.5], for any ε > 0, there exists
α(ε, u) such that

∫
R3

|u|4w2
k dx ≤ ε

∫
R3

|∇wk|2 dx + α(ε, u)
∫
R3

|wk|2 dx.



Yang et al. Boundary Value Problems        (2020) 2020:144 Page 13 of 16

Choosing ε = 1
2s2 , we obtain

∫
R3

|∇wk|2 dx ≤ 2s2
(∫

R3
λgT (u)uk dx + α(ε, u)

∫
R3

|wk|2 dx
)

. (3.4)

By (g3) and w2
k = uuk , we obtain

∣∣gT (u)uk
∣∣ ≤ C∗

Tw2
k + CT |u|p–2w2

k . (3.5)

By the Sobolev embedding theorem, (3.4)–(3.5), and the Hölder inequality, we obtain

(∫
Ak

|wk|6
)1/3

≤ S–1
∫
R3

|∇wk|2 dx

≤ S–12s2
[∫

R3
λ
(
C∗

Tw2
k + CT |u|p–2w2

k
)
dx + α(ε, u)

∫
R3

|wk|2 dx
]

≤ S–12s2[(λC∗
T + α(ε, u)

)|wk|22 + λCT |u|p–2
6 |wk|22q

]
, (3.6)

where q = 6
8–p ∈ ( 3

2 , 3). Recalling that |wk| ≤ |u|s and |wk| = |u|s for x ∈ Ak , together with
(3.6), we obtain that

(∫
Ak

|u|6s
)1/3

≤ S–12s2[(λC∗
T + α(ε, u)

)|u|2s
2s + λCT |u|p–2

6 |u|2s
2sq

]
. (3.7)

Moreover, by the interpolation inequality, we obtain |u|2s ≤ |u|1–σ
2 |u|σ2qs, where σ ∈ (0, 1)

satisfying 1
2s = 1–σ

2 + σ
2sq , that is, σ = q(s–1)

qs–1 . Consequently, since 2s(1 – σ ) = 2 + 2(1–s)
qs–1 < 2, we

obtain

|u|2s
2s ≤ |u|2s(1–σ )

2 |u|2sσ
2sq ≤ (

1 + |u|2
)2|u|2sσ

2sq . (3.8)

Letting k → ∞, from (3.7)–(3.8), we obtain

|u|6s ≤ (
S–12s2) 1

2s
[(

λC∗
T + α(ε, u)

)(
1 + |u|2

)2|u|2sσ
2sq + λCT |u|p–2

6 |u|2s
2sq

] 1
2s

≤ C
1
2s

0 s
1
s
[(

λC∗
T + α(ε, u)

)(
1 + |u|2

)2 + λCT |u|p–2
6

] 1
2s |u|κ2sq, (3.9)

where κ = {σ , 1}, C0 = max{2S–1, 1}. Let η = 6
2q , then η ∈ (1, 2). We now perform j iterations

by setting sj = ηj in (3.9) and obtain that

|u|6ηj

≤ C
1
2

∑∞
j=1

1
ηj

0 η

∑∞
j=1

j
ηj [(λC∗

T + α
)(

1 + |u|2
)2 + λCT |u|p–2

6
] 1

2
∑∞

j=1
1
ηj |u|κ1···κj

6 , (3.10)

where σj = q(ηj – 1)/(qηj – 1) < 1, κj = {σj, 1} ≤ 1. By a simple calculation, we obtain that∑∞
j=1 1/ηj = 1

η–1 ,
∑∞

j=1 j/ηj = η

(η–1)2 . We will divide the study of |u|∞ into two cases.
(i) If |u|6 ≥ 1, then |u|κ1κ2···κj

6 ≤ |u|6. Letting j → ∞ in (3.10), we obtain

|u|∞ ≤ C
1

2(η–1)
0 η

η

(η–1)2
[(

λC∗
T + α(ε, u)

)(
1 + |u|2

)2 + λCT |u|p–2
6

] 1
2(η–1) |u|6.
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(ii) If |u|6 < 1 from σj = q(ηj–1)
qηj–1 ≥ 1 – 1

ηj and κj = {σj, 1}, then for any j ∈N, we obtain

0 < σ1σ2 · · ·σj ≤ κ1κ2 · · ·κj.

It can be easily seen that ln(1 – s) ≥ –s – s2

2(1–s)2 , s ∈ (0, 1), implying that

j∑
i=1

lnκi ≥
j∑

i=1

lnσi ≥ –
j∑

i=1

1
ηi –

1
2

j∑
i=1

1
(ηi – 1)2 .

By a direct calculation, we can conclude that

∞∑
i=1

1
(ηi – 1)2 ≤ η2

(η2 – 1)(η – 1)2 .

Hence, we obtain that

∞∑
i=1

lnκi ≥ –
1

η – 1
–

η2

2(η2 – 1)(η – 1)2 := θ .

Therefore, κ1κ2 · · ·κj ≥ eθ , ∀j ∈ N. Consequently, by |u|6 < 1 we obtain that |u|κ1κ2···κj
6 ≤

|u|eθ6 . Similarly, letting j → ∞ in (3.10), we obtain

|u|∞ ≤ C
1

2(η–1)
0 η

η

(η–1)2
[(

λC∗
T + α(ε, u)

)(
1 + |u|2

)2 + λCT |u|p–2
6

] 1
2(η–1) |u|eθ6 .

Let κ = 1 or κ = eθ ≤ 1. The proof is complete. �

We are now ready to prove the main result of the paper.

Proof of Theorem 1.1 Let u ∈ C∞
0 (R3) and u(x) ≤ 0, then GT (u) = 0. Hence,

Iλ,T (tu) =
t2

2

∫
R3

(|∇u|2 + V (x)u2)dx +
t4

4
Φ(u) –

t6

6

∫
R3

|u|6 dx → –∞, as t → +∞.

Therefore, there exists t0 > 0 such that Iλ,T (t0u) < 0. Let γ (·) = tt0u, t ∈ [0, 1], we get γ (t) ∈
Γ . Since GT (u) = 0, for all t ∈ [0, 1], we obtain

cλ,T ≤ max
t∈[0,1]

Iλ,T
(
γ (t)

) ≤ max
t≥0

(
t2

2
‖u‖2 +

t4

4
Φ(u) –

t6

6
|u|66

)
:= D > 0,

where D is a constant independent of λ and T . From Theorem 2.9, (g4), and (V ), we obtain

4D ≥ 4cλ,T = 4Iλ,T –
〈
I ′
λ,T (uλ), uλ

〉 ≥ 1
2
‖uλ‖2 +

(
V0

2
– λμ

)
|uλ|22. (3.11)

We can choose λ0 > 0 such that V0
2 – λ0μ > 0. Therefore, based on (3.11), ‖uλ‖ ≤ 8D.

Hence, we conclude that |uλ|2 ≤ C4, |uλ|26 ≤ C5, where C4, C5 > 0 independent of λ, T .
From Lemma 3.1, we obtain

|uλ|∞ ≤ C
1

2(η–1)
0 η

η

(η–1)2
[(

λC∗
T + α(ε, u)

)
(1 + C4)2 + λCTCp–2

5
] 1

2(η–1) Cκ
5 .
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Hence, we first choose T > 0 large enough such that

C
1

2(η–1)
0 η

η

(η–1)2
[(

α(ε, u)
)
(1 + C4)2] 1

2(η–1) Cκ
5 ≤ T

2
.

Since C∗
T , CT are fixed constants for above T , we can choose λ1 < λ0 such that

|uλ|∞ ≤ C
1

2(η–1)
0 η

η

(η–1)2
[(

λ1C∗
T + α(ε, u)

)
(1 + C4)2 + λ1CTCp–2

5
] 1

2(η–1) Cκ
5 ≤ T .

Then, for λ ∈ (0,λ1), we can obtain |uλ|∞ ≤ T , and uλ is also a solution to the original
problem (1.1). The proof of the theorem is now complete. �
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