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Abstract
In this work, we propose a nonstationary Navier–Stokes problem equipped with an
unusual boundary condition. The time discretization of such a problem is based on
the backward Euler’s scheme. However, the variational formulation deduced from the
nonstationary Navier–Stokes equations is discretized using the spectral method. We
prove that the time semidiscrete problem and the full spectral discrete one admit at
most one solution.
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1 Introduction
We consider � to be an open, bounded, and simply-connected domain ofRd (d = 2, 3), and
∂� as its Lipschitz-continuous connected boundary. Let [0, T] be an interval in R where
T is a positive real number. We denote x = (x, y) or x = (x, y, z) according to the dimension,
and let n be the unit outward normal vector to � on the boundary ∂�. We are interested
in this paper in the following time-dependent Navier–Stokes system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t (x, t) – ν�u(x, t) + (u · ∇u)(x, t) + ∇P(x, t) = f(x, t) in � × [0, T],

div u(x, t) = 0 in � × [0, T],

u(x, t) · n(x) = 0 on ∂� × [0, T],

τ (curlu)(x, t) = 0 on ∂� × [0, T],

u(x, 0) = u0 in �,

(1)

where u and P are the unknowns denoting the velocity and pressure of the fluid, f repre-
sents the density of the body forces, and ν is the viscosity that we suppose to be a positive
constant. The operator τ defines the boundary value of curlu in dimension d = 2 and the
boundary tangential components of curlu in dimension d = 3. This problem with non-
standard boundary conditions was studied for the first time in the pioneering paper [1]
where the domain � is assumed to be convex in both dimension d = 2 and d = 3. The
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basic idea in [2, 3] consists in introducing the vorticity ω = curlu as a new unknown (see
also [4–6]) and the fact that the convection term can be written as:

u · ∇u = ω × u +
1
2

grad|u|2.

Consequently, problem (1) is fully equivalent to the following system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t (x, t) + ν(curlω)(x, t) + (ω × u)(x, t) + ∇p(x, t) = f(x, t) in � × [0, T],

div u(x, t) = 0 in � × [0, T],

ω(x, t) = curlu(x, t) in � × [0, T],

u(x, t) · n(x) = 0 on ∂� × [0, T],

τ (ω)(x, t) = 0 on ∂� × [0, T],

u(x, 0) = u0 in �.

(2)

The dynamical pressure p is defined by the formula

p = P +
1
2
|u|2.

We assume that the initial velocity and vorticity satisfy the following conditions:

div u0 = 0 in � and ω(x, 0) = ω0 = curlu0 in �. (3)

This type of problem has been handled in the stationary case by the finite element method
[3, 7] and by the spectral method [8, 9]. However, the nonstationary case has been con-
sidered for a posteriori analysis of the finite discretization [10, 11] and also for a spectral
discretization of the linear Stokes problem [12]. Relying on the equivalent variational for-
mulation of problem (2), we propose a semidiscrete scheme based on the backward Euler
method. In dimension d = 2, we show that the time semidiscrete problem admits a so-
lution with no restriction on the regularity of the domain, while in dimension d = 3, we
assume that the domain � has either a C1,1 boundary or is a polyhedron with no reentrant
corners. Note, however, that this result of existence is established only for a sufficiently
large viscosity in dimension d = 3. For such a problem, we also study the uniqueness of
the solution. We prove the existence of a discrete solution of the full spectral discrete
problem.

The paper is organized as follows:
• In Sect. 2, we present the variational formulation and the analysis of the model.
• Sect. 3 is devoted to the time semidiscrete problem and to the proof of existence and

uniqueness results.
• In Sect. 4 we prove the well posedness of the full spectral discrete problem.

2 The variational formulation
To write the variational formulation of problem (2), we suggest the following Sobolev
spaces:

W m,p(�) =
{
φ ∈ Lp(�); ∂αφ ∈ Lp(�),∀|α| ≤ m

}
,
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each of which is a Banach space equipped with the following norm and seminorm:

‖φ‖m,p,� =
( ∑

|α|≤m

∫

�

∣
∣∂αφ(x)

∣
∣p

) 1
p

and |φ|m,p,� =
( ∑

|α|=m

∫

�

∣
∣∂αφ(x)

∣
∣p

) 1
p

.

If p = 2, W m,2(�) = Hm(�) is a Hilbert space equipped with the scalar product

(φ,ψ)m,� =
( ∑

|α|≤m

(
∂αφ, ∂αψ

)2
) 1

2
.

We denote by (·, ·) the L2(�) scalar product. We note that L2
0(�) is the space of functions

in L2(�) which have a null integral on �, and D(�) is the space of indefinitely differen-
tiable functions with a compact support in �. We consider the domain H(div,�) of the
div operator,

H(div,�) =
{
ϕ ∈ L2(�)d; divϕ ∈ L2(�)

}
,

provided with the norm

‖ϕ‖H(div,�) =
(‖ϕ‖2

L2(�)d + ‖divϕ‖2
L2(�)

) 1
2 .

We remind (see [13, Chap. I, Sect. 2]) that the normal trace operator is defined from
H(div,�) into H– 1

2 (∂�) such that for any scalar function χ in H(div,�),

〈ϕ · n,χ〉 =
∫

�

divϕ(x)χ (x) dx +
∫

�

ϕ(x) · ∇χ (x) dx,

where 〈·, ·〉 is the duality product between H– 1
2 (∂�) and H 1

2 (∂�). This allows us to intro-
duce the kernel of the normal trace operator in H(div,�),

H0(div,�) = {ϕ ∈ H(div,�);ϕ · n = 0 on ∂�}.

Furthermore, we consider the domain H(curl,�) of the curl operator,

H(curl,�) =
{
ϕ ∈ L2(�)d; curlϕ ∈ L2(�)

d(d–1)
2

}
,

equipped with the norm

‖ϕ‖H(curl,�) =
(‖ϕ‖2

L2(�)d+‖curlϕ‖2

L2(�)
d(d–1)

2

) 1
2 .

In dimension d = 3, the tangential trace operator τ is defined from H(curl,�) into
H– 1

2 (∂�)3, for any vector field χ ∈ H(curl,�), by

〈ϕ × n,χ〉 =
∫

�

ϕ(x) · curlχ (x) dx –
∫

�

curlϕ(x) · χ (x) dx.
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Then we introduce the kernel of the tangential operator in H(curl,�),

H0(curl,�) = {ϕ ∈ H(curl,�);ϕ × n = 0 on ∂�}.

Remark 1 In dimension d = 2, the space H(curl,�), respectively H0(curl,�), is equal to
the space H1(�), respectively to H1

0 (�).

In order to handle some problems depending on time, we consider the following spaces.
Let Z be a separable Banach space. We introduce Cm(0, T ; Z), the set of time Cm class

functions with values in Z; Cm(0, T ; Z) is a Banach space provided with the norm

‖ϕ‖Cm(0,T ;Z) = sup
0≤t≤T

m∑

i=0

∥
∥∂ i

tϕ
∥
∥

Z ,

where ∂ i
tϕ is the partial derivative of order i in time of the function ϕ. Consider also the

spaces

Lp(0, T ; Z) =
{

ϕ measurable on ]0, T[ such that
∫ T

0

∥
∥ϕ(t, ·)∥∥p

Z dt < ∞
}

and

Hs(0, T ; Z) =
{
ϕ ∈ L2(0, T ; Z); ∂mϕ ∈ L2(0, T ; Z); m ≤ s

}
.

Then Lp(0, T ; Z) is a Banach space equipped with the norm

‖ϕ‖Lp(0,T ;Z) =

⎧
⎨

⎩

(
∫ T

0 ‖ϕ(t, ·)‖p
Z dt)

1
p for 1 ≤ p < +∞,

sup0≤t≤T ‖ϕ(t, ·)‖Z for p = +∞,

and Hs(0, T ; Z) is a Hilbert space when it is equipped with the following scalar product:

(ϕ,ψ)Hs(0,T ;Z) =

(

(ϕ,ψ)2
L2(0,T ;Z) +

s∑

k=0

(
∂kϕ, ∂kψ

)2
L2(0,T ;Z)

) 1
2

.

Finally, we define also L(Z) to be the Banach space of the linear and continuous functions
from Z to R provided with the norm

∀L ∈L(Z), ‖L‖L(Z) = sup
x∈Z/{0}

|L(x)|
‖x‖Z

.

We assume that the data f belongs to the space L2(0, T ; H0(div,�)′), where H0(div,�)′ is
the dual space of H0(div,�) (see [14] for more details about the space H0(div,�)′). Con-
sider the following variational formulation:

Find (ω, u, p) ∈ L2(0, T ; H0(curl,�)) × L2(0, T ; H0(div,�)) × L2(0, T ; L2
0(�)) such that

⎧
⎪⎪⎨

⎪⎪⎩

∀v ∈ H0(div,�), ( ∂u
∂t , v) + a(ω, u; v) + N(ω, u; v) + b(v, p) =≺ f , v �,

∀q ∈ L2
0(�), b(u, q) = 0,

∀ϑ ∈ H0(curl,�), c(ω, u;ϑ) = 0,

(4)
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where ≺ ·, · � is the duality product between H0(div,�)′ and H0(div,�); a(·, ·; ·), b(·, ·), and
c(·, ·; ·) are bilinear forms defined as follows:

a(ω, u; v) = ν

∫

�

curl(ω)(x, t) · v(x) dx, b(u, q) = –
∫

�

div u(x, t)q(x) dx

c(ω, u;ϑ) =
∫

�

ω(x, t) · ϑ(x) dx –
∫

�

u(x, t) · curlϑ(x) dx.

On the other hand, the trilinear form N(·, ·; ·) is defined by

N(ω, u; v) =
∫

�

(ω × u)(x, t) · v(x) dx. (5)

By the same arguments used in our work about the stationary Stokes problem (see [9,
Proposition 2.1]), we deduce the following

Proposition 1 (ω, u, p) ∈ L2(0, T ; H0(curl,�))×L2(0, T ; H0(div,�))×L2(0, T ; L2
0(�)) is so-

lution of problem (2) such that ω×u belongs to L2(0, T ; L2(�)d) if and only if it is a solution
of problem (4) in the sense of distributions.

To prove that problem (4) has a solution, we need to define

V =
{
ϕ ∈ H0(div,�);∀q ∈ L2

0(�), b(ϕ, q) = 0
}

,

which is the kernel of the bilinear form b(·, ·) and is the space of divergence-free functions
in H0(div,�), since H0(div,�) is included in L2

0(�). We also consider

U =
{

(ϑ ,ϕ) ∈ H0(curl,�) × V;∀ψ ∈ H0(curl,�), c(ϑ ,ϕ;ψ) = 0
}

=
{

(ϑ ,ϕ) ∈ H0(curl,�) × V;ϕ = curlϑ
}

,

the kernel of the bilinear form c(·, ·; ·). We note that V and U are Hilbert spaces, since the
bilinear forms b(·, ·) and c(·, ·; ·) are continuous.

So we observe that if (ω, u, p) is a solution of problem (4), then (ω, u) is a solution of the
following reduced problem:

Find (ω, u) ∈ L2(0, T ; U) such that

∀v ∈ V,
(

∂u
∂t

, v
)

+ a(ω, u; v) + N(ω, u; v) =≺ f , v � . (6)

The main difficulty consists in proving the existence of a solution of problem (6). More-
over, for the three-dimensional case, in order to give a sense to the nonlinear term
N(ω, u; v), we need to assume that the spaces H0(div,�) ∩ H(curl,�) and H(div,�) ∩
H0(curl,�) are compactly embedded in H1(�) see ([15], Theorem 2.17). Nonetheless, the
proof is much simpler in dimension d = 2.

Assumption 1 In dimension d = 3, we assume that the domain � has a C1,1 boundary or
is convex.
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The spaces L2
0(�) and H(div,�) verify a uniform inf-sup condition (see, for instance,

[16] or [13, Chap. I, Corollary 2.4]):
There exists a constant β∗ > 0 such that

∀q ∈ L2
0(�), sup

ϕ∈H0(div,�)

b(ϕ, q)
‖ϕ‖H(div,�)

≥ β∗‖q‖L2(�). (7)

When Assumption 1 is satisfied, the arguments for the proof of the existence of a solution
of problems (6) and (4) are exactly the same as for [17, Chap. III, Theorem 1.1], see also
[18, Chap. V] and [8]. We prefer to omit this proof since it is beyond the aim of this paper.

3 The time semidiscrete problem
In this section we study the discretization in time of problem (4) using the implicit Euler’s
method. We consider a partition of the interval [0, T] into subintervals [tn–1, tn], for 1 ≤
n ≤ M, where M is a positive integer and 0 = t0 < t1 < · · · < tN = T ; h = (h1, h2, . . . , hn) stands
for the step of the partition where hn = tn – tn–1, and |h| = max1≤n≤M hn.

For any data f ∈ L2(0, T ; (H0(div,�))′), u0 ∈ H0(div,�), and ω0 ∈ H0(curl,�) satisfying
condition (3), we consider the following problem:

Find (ωn)0≤n≤M ∈ (H0(curl,�))M+1, (un)0≤n≤M ∈ (H0(div,�))M+1 and (pn)1≤n≤M ∈
(L2

0(�))M such that

ω0 = ω0 and u0 = u0 in � (8)

and for all 1 ≤ n ≤ M,

∀v ∈ H0(div,�), A
(
ωn, un; v

)
+ hnN

(
ωn, un; v

)
+ hnb

(
v, pn) = L(v),

∀q ∈ L2
0(�), b

(
un, q

)
= 0,

∀ϑ ∈ H0(curl,�), c
(
ωn, un;ϑ

)
= 0,

(9)

where fn = f(·, tn),

A
(
ωn, un; v

)
=

(
un, v

)
+ hna

(
ωn, un; v

)
,

and

L(v) =
(
un–1, v

)
+ hn ≺ fn, v � .

Then, if (ωn, un, pn) is a solution of problem (8)–(9), (ωn, un) belongs to U and is a solution
of the following reduced problem:

∀v ∈ V, A
(
ωn, un; v

)
+ hnN

(
ωn, un; v

)
= L(v). (10)

The main difficulty now consists in showing that problem (10) admits a solution. We re-
call here the two properties (positivity and inf-sup condition) related to the bilinear form
A(·, ·; ·) proved in [12, Lemma 1]:



Abdelwahed and Chorfi Boundary Value Problems        (2020) 2020:152 Page 7 of 15

There exists a constant β > 0 such that

∀v ∈ V\{0}, sup
(ωn ,un)∈U

A
(
ωn, un; v

)
> 0 (11)

and

∀(
ωn, un) ∈ U, sup

v∈V

A(ωn, un; v)
‖v‖L2(�)d

≥ β
(∥
∥ωn∥∥

L2(�)
d(d–1)

2
+

∥
∥un∥∥

L2(�)d
)
. (12)

Let now study the properties of non linear term N(·, ·; ·).

Lemma 1 Under Assumption 1, we have that
1) N(·, ·; ·) is continuous, that is,

∀(ω, u) ∈ U,∀v ∈ V,

N(ω, u; v) ≤ M‖ω‖H(curl,�)‖u‖H(div,�)‖v‖H(div,�),
(13)

where M is a positive constant only depending on the domain �;
2) N(·, ·; ·) is antisymmetric, that is,

∀(ω, u) ∈ U,∀v ∈ V, N(ω, u; v) = –N(ω, v; u). (14)

Proof 1) For any couple (ω, u) ∈ U, we have ω ∈ H(div,�) ∩ H0(curl,�) and u ∈
H0(div,�) ∩ H(curl,�). From the definition of the nonlinear term N(·, ·; ·) in (5) and using
Hölder’s inequality, we derive for 1

s + 1
r = 1

2 ,

∀(ω, u) ∈ U,∀v ∈ V,

N(ω, u; v) ≤ M‖ω‖
Lr (�)

d(d–1)
2

‖u‖Ls(�)d‖v‖L2(�)d .

• In dimension 2, H0(curl,�) = H1
0 (�) is compactly included in the space Lp(�) for any

p < +∞, while H0(div,�)∩H(curl,�) is compactly embedded in L3(�)2 since it is included
in H 1

2 (�)2, with r = 6 and s = 3 (see [19]).
• In dimension 3, if Assumption 1 holds, using the Sobolev embedding theorem, the

space U is compactly included in Lr(�)3 × Ls(�)3 for r = 4 and s = 4.
2) Since u ∈ V and equality (15) holds, we easily deduce the antisymmetry property (14).

Equality (15) is proved by using Green formula:

∫

�

(curlu × u) · v dx = –
∫

�

(curlu × v) · u dx –
∫

�

(u · v) div u dx. (15)
�

Proposition 2 Assume that the data f belongs to L2(0, t; H0(div,�)′) and that the initial
vorticity–velocity (ω0, u0) belongs to H0(curl,�) × H0(div,�) and satisfies (3). Knowing
un–1 at each time step n, problem (10) has a solution (ωn, un) in U for dimension d = 2. This
solution satisfies for n ≥ 1:

n∑

j=1

∥
∥ωj∥∥2

H(curl,�) +
∥
∥un∥∥2

L2(�)d
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≤ c
ν

(

‖u0‖2
L2(�)d +

n∑

j=1

hj
∥
∥f j∥∥2

(H0(div,�))′

)

, (16)

where c is a positive constant independent of n.

Proof We consider the function � defined on U into its dual space by

∀(
ωn, un) ∈ U,∀(θ , v) ∈ U,

〈
�

(
ωn, un), (θ , v)

〉
= A

(
ωn, un; v + curlθ

)
+ hnN

(
ωn, un; v + curlθ

)

– L(v + curlθ ).

We derive from the continuity of the trilinear form N in (13) that the function � is con-
tinuous on the space U. Having the following inequality proved in [12]:

A(ω, u; u + curlω) ≥ ν

2
‖ω‖2

H(curl,�) +
ν

2c2
0
‖u‖2

L2(�)2 , (17)

and the fact that N(ω, u; curlω) = 0 in dimension 2, we obtain

〈
�

(
ωn, un), (θ , v)

〉 ≥ ν

2
∥
∥ωn∥∥2

H(curl,�) +
ν

2c2
0

∥
∥un∥∥2

L2(�)2

– ‖L‖L(H0(div,�))
(∥
∥ωn∥∥2

H(curl,�) +
∥
∥un∥∥2

L2(�)2
)
,

where c0 is the smallest constant such that

∀ϕ ∈ V; ‖ϕ‖L2(�)2 ≤ c0‖curlϕ‖L2(�).

Then if we consider the sphere with radius

r =
2
√

2 max(1, c2
0)

ν
‖L‖L(H0(div,�)),

the duality product 〈� (ωn, un), (θ , v)〉 is nonnegative on this sphere. The space U is a
separable Hilbert space since it is included in L2(�) × L2(�)2. Then there exists an in-
creasing sequence (Uk)k of finite-dimensional subspaces Uk of U such that

⋃
k(Uk) is

dense in U. Using Brouwer’s fixed point theorem [13, Chap. IV, Corollary 1.1], there exists
(ωn

k , un
k ) ∈ Uk such that

∀(θk , vk) ∈ Uk,
〈
�

(
ωn

k , un
k
)
, (θk , vk)

〉
= 0

and
(∥
∥ωn

k
∥
∥2

H(curl,�) +
∥
∥un

k
∥
∥2

H(div,�)

) ≤ r2.
(18)

Since the sequence (ωn
k , un

k ) is bounded by r, there exists a subsequence, still denoted by
(ωn

k , un
k ), that converges weakly to (ωn, un). Now, using the fact that the two operators

∀(θ , v) ∈ U: (ω, u) → ω × v and (ω, u) → θ × u are compact on U, we conclude in passing
to the limit in equation (18) that

∀(θk , vk) ∈ Uk,
〈
�

(
ωn, un), (θk , vk)

〉
= 0.



Abdelwahed and Chorfi Boundary Value Problems        (2020) 2020:152 Page 9 of 15

Using the density of
⋃

k(Uk) in U yields

∀(θ , v) ∈ U,
〈
�

(
ωn, un), (θ , v)

〉
= 0.

Then we conclude that (ωn, un) is a solution of problem (10) for any w = θ + curlv ∈ V.
Moreover, since the solution (ωn, un) is bounded by r, we obtain (16) by the same proof as
for [12, Corollary 1]. �

In dimension d = 3, the existence of the solution of problem (10) is obtained for a large
enough viscosity ν with respect to the norm of the operator L.

Proposition 3 Assume that the data f belongs to L2(0, T ; H0(div,�)′) and that the initial
vorticity–velocity (ω0, u0) belongs to H0(curl,�) × H0(div,�) and satisfies (3). If Assump-
tion 1 holds and there exists a constant c∗ such that

c∗ν–2‖L‖L(H0(div,�)) < 1, (19)

then, knowing un–1 at each time step n, problem (10) has a solution (ωn, un) ∈ U. This so-
lution satisfies

n∑

j=1

∥
∥ωj∥∥2

H(curl,�) +
∥
∥un∥∥2

L2(�)d ≤ c
ν

(

‖u0‖2
L2(�)d +

n∑

j=1

hj
∥
∥f j∥∥2

(H0(div,�))′

)

, (20)

where c is a positive constant independent of n.

Proof We consider an iterative sequence ((ωn
k , un

k ))k such that (ωn
0 , un

0) = (0, 0) and (ωn
k , un

k )
is the solution in U of the following problem:

∀v ∈ V, A
(
ωn

k , un
k ; v

)
= L(v) – hnN

(
ωn

k–1, un
k–1; v

)
. (21)

From the properties of the bilinear form A(·, ·; ·) in (11)–(12) and the continuity of the
trilinear form N(·, ·; ·) in (13), problem (21) has a unique solution; see [9]. Let

r =
ν

4M
√

2 max(1, c2
0)

, (22)

where M is the continuity constant of N(·, ·; ·). By induction on k and by an appropriate
choice of c∗ in (19), the sequence ((ωn

k , un
k ))k is bounded by r:

(∥
∥ωn

k
∥
∥2

H(curl,�) +
∥
∥un

k
∥
∥2

H(div,�)

) ≤ r2. (23)

We have for any k ≥ 2,

A
(
ωn

k – ωn
k–1, un

k – un
k–1; v

)
= N

(
ωn

k–2, un
k–2; v

)
– N

(
ωn

k–1, un
k–1; v

)

= –N
(
ωn

k–1 – ωn
k–2, un

k–2; v
)

– N
(
ωn

k–1, un
k–1 – un

k–2; v
)
.
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Thanks to (17), (13), and (23), together with (22), we obtain that

(∥
∥ωn

k – ωn
k–1

∥
∥2

H(curl,�) +
∥
∥un

k – un
k–1

∥
∥2

H(div,�)

)

≤ 1
8
(∥
∥ωn

k–1 – ωn
k–2

∥
∥2

H(curl,�) +
∥
∥un

k–1 – un
k–2

∥
∥2

H(div,�)

)
.

The sequence ((ωn
k , un

k ))k is a Cauchy sequence in U, so it converges to a pair (ωn, un). By
passing to the limit in (21), it is readily checked that (ωn, un) is a solution of problem (10).
Moreover, the solution (ωn, un) is bounded by r, then we obtain (20) by the same proof as
for [12, Corollary 1]. �

Theorem 1 Assume that the data f belongs to L2(0, t; (H0(div,�))′) and that the initial
vorticity–velocity (ω0, u0) belongs to H0(curl,�) × H0(div,�) and satisfies (3). In dimen-
sion d = 2, for any n, 1 ≤ n ≤ M, problem (8)–(9) has at most one solution (ωn, un, pn) in
H0(curl,�) × H0(div,�) × L2(�). In dimension d = 3, if Assumption 1 holds, such that
(19) is satisfied, problem (8)–(9) has at most one solution (ωn, un, pn) in H0(curl,�) ×
H0(div,�) × L2(�).

Proof Let (ωn
1 , un

1) and (ωn
2 , un

2) be two solutions of problem (10) such that ω
j
1 = ω

j
2 and

uj
1 = uj

2 for 0 ≤ j ≤ (n – 1). In dimension d = 2, both (ωn
1 , un

1) and (ωn
2 , un

2) satisfy (16).
Similarly, in dimension d = 3, it follows from Assumption 1 and condition (19) that both
(ωn

1 , un
1) and (ωn

2 , un
2) satisfy (20). On the other hand, the pair (ωn, un), with ωn = ωn

1 – ωn
2

and un = un
1 – un

2 , belongs to U and satisfies:

∀v ∈ V, A
(
ωn, un; v

)
= N

(
ωn

2 , un
2; v

)
– N

(
ωn

1 , un
1; v

)
= –N

(
ωn, un

2; v
)

– N
(
ωn

1 , un; v
)
.

By using (17) and taking v = un + curlωn in the previous line, we have

ν

2 max(1, c2
0)

(∥
∥ωn∥∥2

H(curl,�) +
∥
∥un∥∥2

L2(�)d
) ≤ (∣

∣N
(
ωn, un

2; v
)∣
∣ +

∣
∣N

(
ωn

1 , un; v
)∣
∣
)
.

Using the antisymmetry property of the trilinear form N(·, ·; ·) (14) gives N(ωn
1 , un; un) = 0.

Applying the continuity of N(·, ·; ·) in (13) together with (16) and (20) gives

ν

2 max(1, c2
0)

(∥
∥ωn∥∥2

H(curl,�) +
∥
∥un∥∥2

L2(�)d
)

≤ cν–1‖L‖L(H0(div,�))
(∥
∥ωn∥∥2

H(curl,�) +
∥
∥un∥∥2

L2(�)d
)
.

Thus, if condition (19) holds, we obtain that ωn and un are equal to zero.
Let (ωn, un) be a solution of problem (8)–(10). We consider for any v ∈ H0(div,�),

ϒn(v) =≺ fn, v � –a
(
ωn, un; v

)
– N

(
ωn, un; v

)
–

1
hn

(
un – un–1, v

)
,

a linear and continuous functional which vanishes on the space V. Then, according to the
inf-sup condition (7), there exists a unique pn in L2

0(�) such that

∀v ∈ H0(div,�),ϒn(v) = –
(
div v, pn)
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and

∥
∥pn∥∥

L2(�) ≤
(

1
β∗

)

sup
v∈H(div,�)

(
ϒn(v)

‖v‖H(div,�)

)

. �

4 The full discrete problem
Hereinafter, we suppose that � is a square [–1, 1]2 in dimension d = 2 or a cube [–1, 1]3

in dimension d = 3. To define the discrete spaces, we follow the same idea proposed by
Nédélec in the case of the finite element method (see [20, Sect. 2]). If d = 2 (resp. d = 3),
let Pnm(�) (resp. Pnms(�)) be the space of the restriction on � of the polynomials of degree
n in the x direction and m in the y direction (resp. and s in the z direction). Let N ≥ 2 be
an integer. We consider the spaces:

DN = H0(div,�) ∩
⎧
⎨

⎩

PN ,N–1(�) × PN–1,N (�) if d = 2,

PN ,N–1,N–1(�) × PN–1,N ,N–1(�) × PN–1,N–1,N (�) if d = 3,

which approximates the velocity in H0(div,�) and

CN =

⎧
⎨

⎩

H1
0 (�) ∩ PN (�) if d = 2,

H0(curl,�) ∩ (PN–1,N ,N (�) × PN ,N–1,N (�) × PN ,N ,N–1(�)) if d = 3,

which approximates the vorticity in H0(curl,�). This space is rather different conforming
to the dimension (see Remark 1).

Lastly, for the approximation of pressure in L2
0(�), we propose the space

MN = L2
0(�) ∩ PN–1(�).

Having ξ0 = –1 and ξN = 1, we consider the N – 1 nodes ξj, 1 ≤ j ≤ N – 1, roots of the
polynomial LN

′, where LN is the Legendre polynomial of degree N and the N +1 weights ρj,
0 ≤ j ≤ N , of the Gauss–Lobatto quadrature formula. LetPn(–1, 1) the space of restrictions
to ] – 1, 1[ of polynomials with degree ≤ n, then

∀φ ∈ P2N–1(–1, 1),
∫ 1

–1
φ(x) dx =

N∑

j=0

φ(ξj)ρj. (24)

We remind the important following property, see [21] for its proof:

∀χN ∈ PN (–1, 1), ‖χN‖2
L2(–1,1) ≤

N∑

j=0

χ2
N (ξj)ρj ≤ 3‖χN‖2

L2(–1,1). (25)

Based on formula (25), we define the following discrete scalar product on PN (�): For a
continuous functions ϕ and ψ on �̄,

(ϕ,ψ)N =

⎧
⎨

⎩

∑N
i=0

∑N
j=0 ϕ(ξi, ξj)ψ(ξi, ξj)ρiρj if d = 2,

∑N
i=0

∑N
j=0

∑N
k=0 ϕ(ξi, ξj, ξk)ψ(ξi, ξj, ξk)ρiρjρk if d = 3.
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Finally, we consider IN to be the Lagrange interpolating operator at the nodes (ξi, ξj), 0 ≤
i, j ≤ N , in dimension d = 2, and at the nodes (ξi, ξj, ξk), 0 ≤ i, j, k ≤ N , in dimension d = 3,
with values in the space PN (�).

We assume that the data f is continuous on � × [0, T]. We construct the discrete prob-
lem from problem (8)–(9) by means of the Galerkin method combined with numerical
integration.

If u0
N = IN (u0), knowing un–1, we find (ωn

N , un
N , pn

N ) in CN ×DN ×MN such that for 1 ≤
n ≤ M,

∀vN ∈DN , AN
(
ωn

N , un
N ; vN

)
+ hnNN

(
ωn

N , un
N ; vN

)
+ hnbN

(
vN , pn

N
)

= LN (vN ),

∀qN ∈MN , bN
(
un

N , qN
)

= 0,

∀ϑN ∈CN , cN
(
ωn

N , un
N ;ϑN

)
= 0,

(26)

where the bilinear forms AN (·, ·; ·), bN (·, ·), and cN (·, ·; ·) are defined by

AN
(
ωn

N , un
N ; vN

)
=

(
un

N , vN
)

N + hnν
(
curlωn

N , vN
)

N , bN (vN , qN ) = –(div vN , qN )N ,

and cN
(
ωn

N , un
N ;ϕN

)
=

(
ωn

N ,ϕN
)

N –
(
un

N , curlϕN
)

N .

By formula (25) combined with Cauchy–Schwarz inequality, we prove that the bilinear
forms AN (·, ·; ·), bN (·, ·), and cN (·, ·; ·) are respectively continuous on (CN ×DN )×DN ,DN ×
MN , and (CN × DN ) × CN with constants independent of N . The functional LN (vN ) =
(un–1

N , vN )N + hn(IN (fn), vN )N is linear and continuous on DN . Moreover, as a consequence
of the exactness property (24), the bilinear forms b(·, ·) and bN (·, ·) coincide on DN ×MN .
While the trilinear form NN (·, ·; ·) is defined as follows:

NN
(
ωn

N , un
N ; vN

)
=

(
ωn

N × un
N , vN

)

N .

To prove that problem (26) has a solution, we consider the kernel

VN =
{

vN ∈DN ;∀qN ∈MN , bN (vN , qN ) = 0
}

= DN ∩ V . (27)

We remark that VN is the space of divergence-free polynomials in DN (if qN = div vN in
(27)).

Let also the kernel

UN =
{

(ϑN , vN ) ∈CN × VN ;∀ϕN ∈CN , cN (ϑN , vN ;ϕN ) = 0
}

.

We note that the discrete kernel UN is not contained in U in the general case; see [9,
Corollary 3.2]. We consider herein the following reduced discrete problem:

If u0
N = IN (u0) and knowing un–1, find (ωn

N , un
N ) ∈ UN such that for 1 ≤ n ≤ M,

∀vN ∈ VN , AN
(
ωn

N , un
N ; vN

)
+ hnNN

(
ωn

N , un
N ; vN

)
= LN (vN ). (28)

The existence of a solution of problem (28) is proved by the same arguments as for the
continuous reduced problem (10), for instance.
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Proposition 4 For any data f continuous on �̄ × [0, T] and knowing un–1
N at each time

step n, problem (28) admits a solution (ωn
N , un

N ) in UN . Moreover, this solution satisfies, for
1 ≤ n ≤ M,

n∑

j=1

∥
∥ω

j
N
∥
∥2

H(curl,�) +
∥
∥un

N
∥
∥2

L2(�)d ≤ 3dc
2ν

(
∥
∥u0

N
∥
∥2

L2(�)d +
n∑

j=1

hj
∥
∥IN

(
f j)∥∥2

L2(�)d

)

, (29)

where c is a positive constant independent of N and n.

Proof We introduce the mapping �N defined from UN into its dual space by

∀(
ωn

N , un
N
) ∈ UN ,∀(θN , vN ) ∈ UN ,

〈
�N

(
ωn

N , un
N
)
, (θN , vN )

〉
= AN

(
ωn

N , un
N ; vN

)
+ hnNN

(
ωn

N , un
N ; vN

)
– LN (vN ).

We equip UN with the following norm:

(∥
∥ωn

N
∥
∥2

L2(�)
d(d–1)

2
+

∥
∥un

N
∥
∥2

L2(�)d
) 1

2 .

The mapping �N is continuous since the space UN has a finite dimension. Next, not-
ing by the same arguments as for Lemma 1 from the property of antisymmetry that
NN (ωn

N , un
N ; un

N ) = 0, we have

〈
�N

(
ωn

N , un
N
)
,
(
ωn

N , un
N
)〉

= ν
(
curlωn

N , un
N
)

N – LN
(
un

N
)
.

Then using (25) with the definition of UN gives

〈
�N

(
ωn

N , un
N
)
,
(
ωn

N , un
N
)〉 ≥ ∥

∥ωn
N
∥
∥2

L2(�)
d(d–1)

2
– 3

d
2 ‖LN‖L(VN )

(
un

N , un
N
) 1

2
N .

For any un
N in VN , it follows from [9, Lemmas 3.4 and 3.5] that there exists τ n

N in CN such
that un

N = curlτ n
N and

∥
∥τ n

N
∥
∥

L2(�)
d(d–1)

2
≤ c

∥
∥un

N
∥
∥

L2(�)d .

Using once more (25) and inserting τ n
N in the definition of the space UN , we have

(
un

N , un
N
)

N =
(
un

N , curlτ n
N
)

N =
(
ωn

N , τ n
N
)

N ≤ 3d∥∥τ n
N
∥
∥

L2(�)
d(d–1)

2

∥
∥ωn

N
∥
∥

L2(�)
d(d–1)

2
.

Combining all this yields

〈
�N

(
ωn

N , un
N
)
,
(
ωn

N , un
N
)〉

= ν
∥
∥ωn

N
∥
∥2

L2(�)
d(d–1)

2
– c‖LN‖L(VN )

∥
∥ωn

N
∥
∥

L2(�)
d(d–1)

2
.

Now letting

rN =
2c max(1, c)

ν
‖LN‖L(VN ),
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we deduce from (25) that

(∥
∥ωn

N
∥
∥2

L2(�)
d(d–1)

2
+

∥
∥un

N
∥
∥2

L2(�)d
) 1

2 ≤ √
2 max(1, c)

∥
∥ωn

N
∥
∥

L2(�)
d(d–1)

2
.

Then we remark that 〈�N (ωn
N , un

N ), (ωn
N , un

N )〉 is nonnegative on the sphere of UN of ra-
dius rN . So by Brouwer’s fixed point theorem (see [13, Chap. IV, Corollary 1.1]), we con-
clude that problem (28) has a solution (ωn

N , un
N ) in UN . Moreover, the solution (ωn

N , un
N ) is

bounded by rN , so we obtain (29) by the same proof as that of [12, Proposition 5)]. �

The following inf-sup condition is proved in [9, Lemma 3.9]:
There exists a positive constant γ , independent of N , such that the form bN (·, ·) satisfies

the inf-sup condition:

∀qN ∈ MN , sup
vN ∈DN

bN (vN , qN )
‖vN‖H(div,�)

≥ γ ‖qN‖L2(�).

The full existence result is deduced from Proposition 4 and the above inf-sup condition.
The proof follows the same arguments as for Theorem 1.

Theorem 4.1 If the data f is continuous on �̄× [0, T] and knowing un–1
N at each time step

n, problem (26) has a solution (ωn
N , un

N , pn
N ) in CN ×DN ×MN . Moreover, the part (ωn

N , un
N )

of this solution satisfies (29).

Remark 2 Note that the previous existence result still holds when NN (·, ·; ·) is replaced by
N(·, ·; ·) in problem (26). This means in practice that a more precise quadrature formula,
exact on P3N–1(�), is used to evaluate the integrals that appear in the treatment of the
nonlinear term.

5 Conclusion
This work concerns the numerical analysis of the implicit Euler scheme in time and the
spectral discretization in space of the nonstationary vorticity–velocity–pressure formula-
tion of the Navier–Stokes equations. We prove using Brouwer’s fixed point theorem that
the new discrete formulation has at most one solution. The study of the error, the algo-
rithm solution, and the numerical implementation of these results will be the subject of
our forthcoming work.
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