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for 1 < p < � . Very recently, Bae et al. [1] derived a re“ned blow-up criterion

lim
T� T �

� T

0
	� v	 L� dt = � . (1.3)

When � is constant, system (1.1) becomes the initial value problem associated to the
homogeneous inviscid Boussinesq equations. The local well-posedness and regularity cri-
teria are well-established; see, for example, [2, 3, 5, 7, 9, 12, 16]. In particular, by using
Littlewood…Paley method, the authors in [2] and [7] derived the blow-up criterion (1.3)
in Besov…Morrey spaces (see Remark 1.3 in [2]) and Hölder spaces [7], respectively. Let
us mention that the global regularity question of the inviscid Boussinesq system (1.1) is a
rather challenging problem.

Compared with the homogeneous ”ow, fewer works are concerned with the nonhomo-
geneous system (1.1). Regarding the local existence and blow-up criteria results, one can
refer to [14, 17]. Precisely, Qiu and Yao [14] developed the methods of [4] and [18] and
got the blow-up criterion (1.2) in the Besov framework. Xu [17] obtained the blow-up
criterion (1.3) for smooth solutions to the 2-dimensional compressible Boussinesq equa-
tions. In this paper, we are going to establish the local existence and blow-up criterion
(1.3) for the N-dimensional (N � 2) system (1.1) by applying the standard energy method.
We suppose that

0 < � 
 � 0(x) 
 � < � ,

where� and � are positive constants and assume� 0 � � as|x| � � . Di�erent from the
homogeneous case, the classical energy method cannot be applied directly to the equation
of v ful“lling

vt + v · � v = …
1
�

� P+ � eN . (1.4)

To obtain the Hs estimate ofv, we need the elaborate estimates ofP. To this end, as in [1],
we introduce the following two variables to deal with the term1

� � P:

a def= � …� , b def=
1
�

…
1
�

.

As a consequence, we use the usual energy method to deal withP, which satis“es

…div
�

1
�

� P
�

= div(v · � v …� eN ). (1.5)

By virtue of (1.1)1, we see thata andb satisfy

at + v · � a = 0, bt + v · � b = 0, (1.6)

with the initial data

a0 = � 0 …� , b0 =
1
� 0

…
1
�

,

respectively.
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The main result of this paper is stated as follows.

Theorem 1.1 Let N � 2 and a0,b0,v0,� 0 � Hs, where s> 1 + N
2 and divv0 = 0. Then,

there exists T� > 0 such that system(1.1) has a unique solution(a,b,v,� ) with a,b,v,� �

C([0,T � );Hs). In addition, the solution(a,b,v,� ) blows up at T� if and only if

limsup
t� T �

	
	(a,b,v,� )(t)

	
	

Hs = � �� lim
T� T �

� T

0

	
	� v(t)

	
	

L� dt = � . (1.7)

Remark1.1 Our result (1.7) extends the criterion in [14], i.e., criterion (1.2). On the other

hand, when� � 0, system (1.1) becomes the classical inhomogeneous incompressible Eu-

ler system, and we recover the result in [1].

2 Proof of the main result
The proof of Theorem1.1is divided into two parts, i.e., the local existence and the blow-up

criterion.

Proof (Local existence). We “rst recall some basic lemmas that will be applied to the proof

of the local existence.

Lemma 2.1 (Picard theorem on a Banach space, [13]). Let O B be an open subset of a

Banach space B and F: O � B be a mapping that satis“es the following properties:

• F(X) maps O to B;
• F is locally Lipschitz continuous, namely, for any X � O there exists L > 0 and an open

neighborhood UX  O of X such that

	
	F(M) …F(N)

	
	

B 
 L	 M …N	 B for all M,N � UX.

Then for any X0 � O, there exists a time T such that the ODE

dX
dt

= F(X), X|t=0 = X0 � O,

has a unique(local) solution X � C1([0,T ];O).

Lemma 2.2 (Continuation of an autonomous ODE on a Banach space, [13]) Let O B

be an open subset of a Banach space B and let F: O � B be a locally Lipschitz continuous

operator. Then the unique solution X� C1([0,T ];O) to the autonomous ODE,

dX
dt

= F(X), X|t=0 = X0 � O,

either exists globally in time, or T < � and X(t) leaves the open set O as t� T .

Lemma 2.3 (Compactness lemma, [15]) Let X,B,Y be Banach spaces, and X  B  Y

with compact imbedding X�� B. Let F be bounded in L� (0,T ;X) and � F
� t be bounded in

Lr (0,T ;Y) where r> 1.Then F is relatively compact in C([0,T ];B).
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Let us “rst brie”y explain the idea of the proof of the local well-posedness, see [13,
Chap. 3], or [5] for details. As in [5], we regularize system (1.1) and then due to Lemmas

2.1 and 2.2, for any � > 0, we obtain the global solution (a� ,b� ,v� , � � ) of the regularized
Boussinesq equations in

C


[0,� );



Hs�4�

� C1
[0,� );


Hs…1�4�

, wheres> 1 +
N
2

.

Let us mention that, for the proof of the above global existence of regularized solutions,
one can refer to Theorem 3.2 in [13]. Next, noting thatHs…1 L� whens> 1+ N

2 , we could
show that there exists aT = T(	 (a0,b0,v0, � 0)	 Hs), such that (a� ,b� ,v� , � � ) is uniformly

bounded inL� ([0,T ]; (Hs)4) and (a�
t ,b

�
t ,v

�
t , � �

t ) is uniformly bounded inL� ([0,T ]; (Hs…1)4).
By virtue of Lemma2.3, {(a� ,b� ,v� , � � )} is relatively compact inC([0,T ]; (Hs� )4) for any

s� < s. As a consequence, we can “nd a solution

(a,b,v,� ) � C


[0,T ];



Hs��4�

� L� 

[0,T ];



Hs�4�

.

Then, we can prove

(a,b,v,� ) � C


[0,T ];



Hs�4�

� C1
[0,T ];


Hs…1�4�

,

which is unique.
Moreover, there exist a maximal time of existenceT � (possibly in“nite) and unique so-

lution

(a,b,v,� ) � C


[0,T � );



Hs�4�

� C1
[0,T � );


Hs…1�4�

.

If T � < � , then

limsup
t� T �

	
	(a,b,v,� )(t)

	
	

Hs = � .

Through Sobolev imbedding, we have

(a,b,v,� ) � C


[0,T � );



C1�4�

� C1
[0,T � );


C0�4�

,

which means that (a,b,v,� ) is a classical solution of system (1.1).

Based on the above arguments, here we only present the key part, that is, the so-
lution (a� ,b� ,v� , � � ) of the regularized Boussinesq equations is uniformly bounded in
L� ([0,T ]; (Hs)4) with respect to� . The remaining parts such as the approximation to sys-

tem (1.1), the process of taking limits, and that the solution is continuous in time in the
highest normHs are omitted, which can be referred to [13] and [5] for details. To simplify

the presentation, we also omit the superscript� and denote� def=
�

…� throughout the
paper.

Step 1. Hs estimate of(a,b,v,� ). Since divv = 0, it is easy to deduce (see [11, Theo-
rem 2.1]) that

	
	(� ,a,b)(t)

	
	

L2� L� 
 C.
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Applying the operator� s to the “rst equation in (1.6) and taking theL2 inner product
with itself, we have

1
2

d
dt

	
	� sa

	
	2

L2 = …
�

RN

�

� s(v · � a) …v · � � sa

�
� sa


dx …

�

RN
v� s� a� sa dx,

as divv = 0, the last term is zero. One gets that

d
dt

	
	� sa

	
	

L2 
 C	� v	 L�
	
	� sa

	
	

L2 + C	� a	 L�
	
	� sv

	
	

L2. (2.1)

Here and in what follows, we will frequently use the following two estimates fors> 0 (see
[10]):

	
	� s(fg) …f � sg

	
	

L2 
 C


	� f 	 L�

	
	� s…1g

	
	

L2 +
	
	� sf

	
	

L2	 g	 L�
�
,

	
	� s(fg)

	
	

L2 
 C	 f 	 L�
	
	� sg

	
	

L2 + C	 g	 L�
	
	� sf

	
	

L2.

Similarly, for b and � , we have

d
dt

	
	� sb

	
	

L2 
 C	� v	 L�
	
	� sb

	
	

L2 + C	� b	 L�
	
	� sv

	
	

L2, (2.2)

d
dt

	
	� s�

	
	

L2 
 C	� v	 L�
	
	� s�

	
	

L2 + C	� � 	 L�
	
	� sv

	
	

L2. (2.3)

Next, we deal withv. Multiplying (1.1)2 by v and (1.1)3 by � , respectively, integrating in
RN and combining the resulting equations together, we have

1
2

d
dt

�

RN



� |v|2 + |� |2

�
dx =

�

RN
� v · � eN dx 
 C	

�
� 	 L�

�

RN



� |v|2 + |� |2

�
dx,

which, together with Gronwall•s inequality and the bound of� , yields

	
	v(t)

	
	

L2 +
	
	� (t)

	
	

L2 
 C. (2.4)

Noting that v satis“es

vt + v · � v = …
1
�

� P+ � eN = …b� P…
1
�

� P+ � eN ,

we have

d
dt

	
	� sv

	
	2

L2 
 C	� v	 L�
	
	� sv

	
	2

L2 + C	� P	 L�
	
	� sb

	
	

L2

	
	� sv

	
	

L2

+ C	 b	 L�
	
	� s(� P)

	
	

L2

	
	� sv

	
	

L2 + C
	
	� s�

	
	

L2

	
	� sv

	
	

L2,

which yields

d
dt

	
	� sv

	
	

L2 
 C	� v	 L�
	
	� sv

	
	

L2 + C	� P	 L�
	
	� sb

	
	

L2

+ C
	
	� s(� P)

	
	

L2 + C
	
	� s�

	
	

L2. (2.5)
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Let N def= 	 a	 Hs + 	 b	 Hs + 	 � 	 Hs + 	 v	 Hs. Combining (2.1), (2.2), (2.3), and (2.5) gives

d
dt

N 
 C


1 +

	
	(� a,� b,� � , � v, � P)

	
	

L�

�
N + C	� P	 Hs. (2.6)

Step 2. Hs estimate of� P. We “rst give the L2 bound of � P. Since 1/� � 1/� > 0, the

classicalL2 theory used to (1.5) ensures that [8, Lemma 2]

	� P	 L2 
 � 	 v · � v	 L2 + C	 � 	 L2,

which, together with (2.4), gives

	� P	 L2 
 C	 v · � v	 L2 + C	 � 	 L2


 C	 v	 L2	� v	 L� + C	 � 	 L2


 C


	� v	 L� + 1

�
. (2.7)

Thanks to (1.5) again, one infers

…div
�

1
�

� s� P
�

= � sdiv(v · � v …� eN ) + div
�
� s(b� P) …b� s� P


. (2.8)

Taking theL2 inner product with � sP in (2.8) yields that

�

RN

�
1
�

� s� P
�

· � s� P dx

=
�

RN
� s…1div(v · � v)� s+1P dx…

�

RN
� s…1div(� eN )� s+1P dx

…
�

RN

�
� s(b� P) …b� s� P


� s� P dx. (2.9)

Based on that 1/� � 1/� > 0, we derive

	� P	 2
Hs 
 C

	
	div(v · � v)

	
	

Hs…1	� P	 Hs

+ C


	� b	 L� 	� P	 Hs…1+ 	 b	 Hs	� P	 L� + 	 � 	 Hs

�
	� P	 Hs


 C	� v	 L� 	 v	 Hs	� P	 Hs

+ C


	� b	 L� 	� P	 Hs…1+ 	 b	 Hs	� P	 L� + 	 � 	 Hs

�
	� P	 Hs.

That is,

	� P	 Hs


 C	� v	 L� 	 v	 Hs + C	� b	 L� 	� P	 Hs…1+ C	 b	 Hs	� P	 L� + C	 � 	 Hs


 C	� v	 L� 	 v	 Hs + C	� b	 L� 	� P	
s…1

s
Hs 	� P	

1
s
L2 + C	 b	 Hs	� P	 L� + C	 � 	 Hs



1
2

	� P	 Hs + C	� b	 s
L� 	� P	 L2 + C	� v	 L� 	 v	 Hs
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+ C	 b	 Hs	� P	 L� + C	 � 	 Hs, (2.10)

which, combined with (2.7), implies

	� P	 Hs 
 C


1 + 	� P	 L� + 	� v	 L�

�
N + C	� b	 s

L�



	� v	 L� + 1

�
. (2.11)

Step 3. L� estimate of� P. Firstly, by interpolation inequality, we have forN < p < �

that

	� P	 L� 
 C	 � P	
pN

pN…2N+2p
Lp 	� P	

2p…2N
pN…2N+2p

L2 
 C	 � P	 Lp + C	� P	 L2. (2.12)

In order to estimate	 � P	 Lp , we have from (1.5) that

� P= …� div(v · � v) …� � b · � P+ �� N � .

Then, by the interpolation inequality and Young•s inequality again, one deduces

	 � P	 Lp 
 	 � 	 L� 	� v	 L� 	� v	 Lp + 	 � 	 L� 	� b	 L� 	� P	 Lp + 	 � 	 L� 	� � 	 Lp


 C	� v	 L� 	� v	 Lp + C	� b	 L� 	� P	 Lp + C	� � 	 Lp


 C	� v	 L� 	� v	 Lp + C	� b	 L� 	 � P	
pN…2N

pN…2N+2p
Lp 	� P	

2p
pN…2N+2p

L2 + C	� � 	 Lp



1
2

	 � P	 Lp + C	� b	
pN…2N+2p

2p
L� 	� P	 L2 + C	� v	 L� 	� v	 Lp + C	� � 	 Lp

for N < p < � , which implies

	 � P	 Lp 
 C	� b	
pN…2N+2p

2p
L� 	� P	 L2 + C	� v	 L� 	� v	 Lp + C	� � 	 Lp. (2.13)

This, together with (2.12) and (2.7), gives

	� P	 L� 
 C


	� b	

pN…2N+2p
2p

L� + 1
�


	� v	 L� + 1
�

+ C	� v	 L� 	� v	 Lp + C	� � 	 Lp. (2.14)

Step 4. A priori estimates. Combining (2.6), (2.11), and (2.14) together, we end up with

d
dt

N 
 C
�
1 +

	
	(� a,� b,� � , � v)

	
	

L� +


	� b	

pN…2N+2p
2p

L� + 1
�


	� v	 L� + 1
�

+ 	� v	 L� 	� v	 Lp + 	� � 	 Lp

N + C



	� v	 L� + 1

�
	� b	 s

L� . (2.15)

By Sobolev embeddingHs �� W 1,p � W 1,� for s> 1 + N
2 andN < p < � , we have

d
dt

N 
 CN s+1.

This completes the proof of local well-posedness for system (1.1) in Hs.

Next, we present the proof of the second part in Theorem1.1, namely, the blow-up

criterion.
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(Blow-up criterion). We “rst show the “ � �� part in (1.7). From the equations ofa,b, and
� , we obtain

	
	


� a(t),� b(t)

�	
	

L� 

	
	(� a0, � b0)

	
	

L� exp
�� t

0

	
	� v(	 )

	
	

L� d	
�

,

	
	� � (t)

	
	

Lp 
 	� � 0	 Lp exp
�� t

0

	
	� v(	 )

	
	

L� d	
�

.

(2.16)

To deal with 	� v	 Lp , we de“ne the vorticity asw def= � × v when N = 2,3 or w = wij
def=

� jvi …� ivj whenN � 4. Then we turn to consider the following equations:

N = 2 : wt + v · � w = …� b · � � P+ � 1� ,

N = 3 : wt + v · � w = w� v …� b × � P+ � × (� e3),

N � 4 : wt + v · � w = …w� v …� b � � P+ � � (� eN ),

(2.17)

where� � = (…� 2,� 1) and� represents the wedge product. Next we only estimate the case
N = 3 since the other two cases could be handled similarly.

From (2.17)2, applying (2.13) and the fact that (see [6])

	� v	 Lp 
 Cp	 w	 Lp (1 <p < � ),

we have forN < p < � that

d
dt

	 w	 Lp 
 C	� v	 L� 	 w	 Lp + C	� b	 L� 	� P	 Lp + C	� � 	 Lp


 C	� v	 L� 	 w	 Lp + C	� b	 L� 	 � P	
pN…2N

pN…2N+2p
Lp 	� P	

2p
pN…2N+2p

L2 + C	� � 	 Lp


 C	� v	 L� 	 w	 Lp + C	� � 	 Lp + C	� b	 L�

×
�
	� b	

pN…2N+2p
2p

L� 	� P	 L2 + 	� v	 L� 	 w	 Lp + 	� � 	 Lp
 pN…2N

pN…2N+2p

× 	� P	
2p

pN…2N+2p

L2 ,

which, together with (2.7), implies that

d
dt

	 w	 Lp


 C	� v	 L� 	 w	 Lp + C	� � 	 Lp + C	� b	
2p+pN…2N

2p
L�



	� v	 L� + 1

�

+ C	� b	 L�


	� v	 L� + 1

�
	 w	

pN…2N
pN…2N+2p
Lp

+ C	� b	 L� 	� � 	
pN…2N

pN…2N+2p
Lp



	� v	 L� + 1

� 2p
pN…2N+2p


 C	� v	 L� 	 w	 Lp + C	� � 	 Lp + C	� b	
2p+pN…2N

2p
L�



	� v	 L� + 1

�

+ C	� b	 L�


	� v	 L� + 1

�

+ C	� b	 L�


	� v	 L� + 1

�
	 w	 Lp
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+ C	� b	 L� 	� � 	
pN…2N

pN…2N+2p
Lp



	� v	 L� + 1

� 2p
pN…2N+2p .

It follows by Gronwall•s inequality and (2.16) that

	
	w(t)

	
	

Lp


 exp
�

C
� t

0


	
	� v(	 )

	
	

L� +
	
	� b(	 )

	
	

L�


	
	� v(	 )

	
	

� + 1
��

d	
�

×
�

	 w0	 Lp + C
� t

0


	
	� b(	 )

	
	

2p+pN…2N
2p

L�



	� v	 L� + 1

�
+

	
	� b(	 )

	
	

L�



	� v	 L� + 1

�

+
	
	� b(	 )

	
	

L�

	
	� � (	 )

	
	

pN…2N
pN…2N+2p
Lp



	� v	 L� + 1

� 2p
pN…2N+2p +

	
	� � (	 )

	
	

Lp

�
d	

�


 C


	 w0	 Lp, 	� b0	 L� , 	� � 0	 Lp

�
exp exp

�

C
� t

0
	� v	 L� d	

�

. (2.18)

Integrating (2.15) in time and exploiting (2.16) and (2.18), we “nally deduce

N (t) 
 CeCt exp expexp
�

C
� t

0

	
	� v(	 )

	
	

L� d	
�

,

which ends the proof of the“ � �� part in Theorem 1.1.
Finally, we show the“ � �� part in (1.7). Assumea,b,v, and� remain smooth on the time

interval [0,T � ], i.e.,

sup
0
 t
 T


	
	(a,b,v,� )(·, t)

	
	

Hs

�

 CT� < � .

Sinces> 1 + N
2 , by the Sobolev inequality,

	
	� v(·, t)

	
	

L� 

	
	v(·, t)

	
	

Hs 
 CT� , 0 
 t 
 T � ,

which yields that

� T�

0

	
	� v(·, 	 )

	
	

L� d	 
 MT� < � .

This “nishes the proof of Theorem1.1. �
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