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Abstract
The aim of this paper is to show some applications of Sobolev inequalities in partial
differential equations. With the aid of some well-known inequalities, we derive the
existence of global solution for the quasilinear parabolic equations. When the
blow-up occurs, we derive the lower bound of the blow-up solution.
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1 Introduction
Sobolev inequalities, also called Sobolev imbedding theorems, belong to the issues of fo-
cus of current research, and play an important role in reality. Inequalities are often related
to the dimension of space. We note two inequalities which are widely used in partial dif-
ferential equations (see [6, 14, 15, 19]).

Lemma 1.1 Assume that � ⊂ RN is a bounded, sufficiently smooth, simply connected do-
main with boundary ∂� of bounded curvature and supposing v ∈ C1

0(�). Then for N > 2

(∫
�

|v|δ dx
) 1

δ ≤ �

(∫
�

|∇v|2 dx
) 1

2
,

where δ = 2N
N–2 and � = [N(N – 2)π ]– 1

2 [ (N–1)!
�( N

2 )
]

1
N . This lemma has been proved in [18]. How-

ever, when N = 2, the Lemma 1.1 is no longer valid. Bandle [1] obtained a similar result
which can be written as follows.

Lemma 1.2 Let D be a plane domain with sufficiently smooth boundary ∂D, and let v be
a sufficiently smooth function defined on the closure D of D. If v = 0 on ∂D, then

λ1

∫
D

|v|2 dx ≤
∫

D
|∇v|2 dx,
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where λ1 is the smallest positive eigenvalue of

	ω + λω = 0 in D, ω = 0 on ∂D.

The aim of the present paper is to show how to use Lemma 1.1 and Lemma 1.2 to
prove the nonexistence and global existence for the quasilinear parabolic system. Besides
Lemma 1.1 and Lemma 1.2, we will also use the Young inequality, the arithmetic geomet-
ric mean inequality, and the Hölder inequality. These inequalities make it possible for us
to obtain more optimal results than the literature. When one studied the global existence
and blow-up of the solutions of parabolic equations, many papers always required the ini-
tial data to be sufficiently small (or sufficiently large) and/or compactly supported, and
the dimension of space and the parameters of the equation satisfy certain restrictions (see
e.g., [3, 8–10, 16, 20]). In this paper, it is only necessary to assume that the initial data
belongs to L2(�). When the dimension of space and the parameters of equation satisfy
certain constraints, the global solution of quasilinear parabolic equation is proved. When
blow-up occurs, we derive the lower bound of the blow-up time. Obviously, this approach
fully shows that the differential inequality technique is very interesting. In next section,
we introduce the quasilinear parabolic equation and give our main results.

2 The quasilinear parabolic equation
The global existence or nonexistence and the blow-up in finite time of solutions to semilin-
ear or quasilinear parabolic equations and systems have received a lot of attention. Payne
and Schaefer [15] considered the following problem of a semilinear heat equation:

ut = 	u + f (u)

under homogeneous Dirichlet boundary conditions and appropriate constraints on the
nonlinearity f (u). By using a differential inequality technique, a lower bound on the blow-
up time was determined if blow-up occurs.

Grillo et al. [9] considered the nonlinear evolution problem of the form

ut = 	um + up,

in an N-dimensional complete, simply connected Riemannian manifold with nonpositive
sectional curvatures (namely a Cartan–Hadamard manifold). Under some appropriate
constraints on p, m and the initial data, they proved that the problem has a global in time
solution or the solution of the problem blows up at a finite time.

Yang et al. [21] considered local quasilinear parabolic equation with a potential term

ut = 	um – V (x)um + up.

By using the test function method and constructing a supersolution technique, they
proved that every nontrivial solution blows up in finite time if 1 < p ≤ pc and there are
both global and nonglobal solutions if p > pc. For more results, see [5, 12, 17, 20].

In this paper, we consider a more interesting system of quasilinear parabolic equation

ut = 	um – V (x)u + |x|αup
(∫

�

β(x)uq dx
) r

q
, in � × (0, T), (1)
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u = 0, on ∂� × (0, T), (2)

u(x, 0) = u0(x), in �, (3)

where α, p, q, r > 0, m > 1, u0 ∈ C0(�) is nonnegative, V (x) is a positive function satisfying
V (x) ∼ |x|–σ ,σ > 0, β(x) is positive. The model (1)–(3) describes the diffusion of concen-
tration of some Newtonian fluids through a porous medium or the density of some biolog-
ical species in many physical phenomena and biological species theories (see [2, 7]). Many
methods (e.g., the Fourier coefficient method, the supersolution technique, the Green
function method, the test function method, weighted energy arguments, the comparison
method, and the concavity method) used to determine an upper bound for the blow-up
time. The lower bound for the blow-up time is equally important and may be more diffi-
cult to obtain. In this paper, we first use the Sobolev inequalities to prove the existence of
global solution. Our main results can be written as follows.

Theorem 2.1 Letting u(x, t) be a nonnegative solution of problem (1)–(3) in �, where � is
a simply connected, bounded domain in RN (N ≥ 2). Then, if m + 3 > 4(p + r), then problem
(1)–(3) has a solution that is global in time whether N = 2 or N > 2.

Furthermore, if m + 3 ≤ 4(p + r), the solution of (1)–(3) maybe blows up in some finite
time. In this case, it is necessary to derive the lower bound of blow-up time. Whether the
blow-up occurs or not, such a lower bound is still meaningful. We can obtain the following
result.

Theorem 2.2 Letting u(x, t) be a nonnegative solution of problem (1)–(3) in �, where � is
a simply connected, bounded domain in RN (N ≥ 2). If u(x, t) blows up at some finite time
t∗, then t∗ can be bounded from below.

More precisely,
if 2 < N < 4(p+r)

4(p+r)–(m+3) and 2(p + r) < m + 3 < 4(p + r), then

t∗ ≥ C4
2(m + 3) – 4(p + r)
4(p + r) – (m + 3)

[
ϕ(0)

] (m+3)–4(p+r)
2(m+3)–4(p+r) ,

where C4 is a positive constant and ϕ(0) =
∫
�

u2
0 dx.

If N = 2 and 2(p + r) < m + 1, m + 3 < 4(p + r), then

t∗ ≥ (m + 1) – (p + r)
p + r

C6
[
ϕ(0)

]– p+r
(m+1)–(p+r) ,

where C6 is a positive constant.

3 The proof of Theorem 2.1
To prove Theorem 2.1, we establish an auxiliary function:

ϕ(t) =
∫

�

u2 dx. (4)

By using the divergence theorem and (1)–(3), we compute

ϕ′(t) = 2
∫

�

uut dx = 2
∫

�

u
[
	um – V (x)u + |x|αup

(∫
�

β(x)uq dx
) r

q
]

dx
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= –
8m

(m + 1)2

∫
�

∣∣∇u
m+1

2
∣∣2 dx – 2

∫
�

V (x)u2 dx

+ 2
∫

�

|x|αup+1
(∫

�

β(x)uq dx
) r

q
dx. (5)

1. If N > 2, noting that m+3 > 4(p+r), then, by using the Hölder inequality and Lemma 1.1,
we are led to

2
∫

�

|x|αup+1
(∫

�

β(x)uq dx
) r

q
dx

= 2
(∫

�

|x|αup+1 dx
)(∫

�

β(x)uq dx
) r

q

≤ 2
(∫

�

(
u

m+1
2

)δ dx
)δ1(∫

�

V (x)u2 dx
)δ2+ 1

2

×
(∫

�

|x| α
δ3 β

r
qδ3 (x)V –

δ2+ 1
2

δ3 (x) dx
)δ3

≤ 2�δδ1

(∫
�

∣∣∇u
m+1

2

)∣∣2 dx)
δδ1

2

(∫
�

V (x)u2 dx
)δ2+ 1

2

×
(∫

�

|x| α
δ3 β

r
qδ3 (x)V –

δ2+ 1
2

δ3 (x) dx
)δ3

, (6)

where δ1 = (p+r)(N–2)
(m+3)N , δ2 = p+r

m+3 and δ3 = 4(p+r)–N[4(p+r)–(m+3)]
2(m+3)N . So, we can get

2
∫

�

|x|αup+1
(∫

�

β(x)uq dx
) r

q
dx

≤ 2C1�
δδ1

[
ε

– (p+r)
m+3–(p+r)

1

(∫
�

V (x)u2 dx
) m+3+2(p+r)

2(m+3)–2(p+r)
] m+3–(p+r)

(m+3)

×
(

ε1

∫
�

∣∣∇u
m+1

2
∣∣2 dx

) p+r
m+3

≤ 2C1
m + 3 – (p + r)

(m + 3)
�δδ1ε

– (p+r)
m+3–(p+r)

1

(∫
�

V (x)u2 dx
) m+3+2(p+r)

2(m+3)–2(p+r)

+ 2C1
p + r
m + 3

�δδ1ε1

∫
�

∣∣∇u
m+1

2
∣∣2 dx, (7)

where C1 = (
∫
�

|x| α
δ3 β

r
qδ3 (x)V –

δ2+ 1
2

δ3 (x) dx)δ3 and ε1 is a positive constant to be determined
later. Inserting (7) into (5) and choosing ε1 = 8m(m+3)

2C1(p+r)�δδ1 (m+1)2 , we obtain

ϕ′(t) ≤ C2

(∫
�

V (x)u2 dx
) m+3+2(p+r)

2(m+3)–2(p+r)
– 2

∫
�

V (x)u2 dx, (8)
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where C2 = 2C1
m+3–(p+r)

m+3 �δδ1ε
– (p+r)

m+3–(p+r)
1 . Since m + 3 > 4(p + r), we can deduce from (8)

ϕ′(t) ≤
(∫

�

V (x)u2 dx
) m+3+2(p+r)

2(m+3)–2(p+r)
[

C2 – 2
(∫

�

V (x)u2 dx
) m+3–4(p+r)

2(m+3)–2(p+r)
]

. (9)

Inequality (9) shows that the solution of (1)–(3) cannot blow up in any finite time. Oth-
erwise, if the solution of (1)–(3) becomes unbounded in a time t∗ < ∞, there must be an
interval [t0, t∗) in which ϕ′(t) < 0. So ϕ(t∗) < ϕ(t0). This is a contradiction.

2. If N = 2, noting that m + 3 > 4(p + r), we use the Hölder inequality and Lemma 1.2 to
obtain

2
∫

�

|x|αup+1
(∫

�

β(x)uq dx
) r

q
dx

≤ 2
(∫

�

(
u

m+1
2

)2 dx
) p+r

m+3
(∫

�

V (x)u2 dx
) p+r

m+3 + 1
2

×
(∫

�

|x| 2(m+3)α
(m+3)–4(p+r) β

2(m+3)r
q[(m+3)–4(p+r)] (x)V – 2(p+r)+(m+3)

(m+3)–4(p+r) (x) dx
) (m+3)–4(p+r)

2(m+3)

≤ 2λ
p+r
m+3
1

[
ε

– p+r
m+3–(p+r)

2

(∫
�

V (x)u2 dx
) (m+3)+2(p+r)

2[(m+3)–(p+r)]
] m+3–(p+r)

m+3

×
[
ε2

∫
�

∣∣∇u
m+1

2
∣∣2 dx

] p+r
m+3

×
(∫

�

|x| 2(m+3)α
(m+3)–4(p+r) β

2(m+3)r
q[(m+3)–4(p+r)] (x)V – 2(p+r)+(m+3)

(m+3)–4(p+r) (x) dx
) (m+3)–4(p+r)

2(m+3)
.

Similar to the computations in (6)–(9), we can prove the problem (1)–(3) has a solution
that is global in time in this case. The proof of Theorem 2.1 is completed.

4 The proof for Theorem 2.2
First, we also use the function ϕ(t) which we have defined in (4). However, if N > 2, we
rewrite (6) as

2
∫

�

|x|αup+1
(∫

�

β(x)uq dx
) r

q
dx

≤ 2
(∫

�

u2 dx
) 1

2
(∫

�

(
u

m+1
2

)δ dx
)δ1(∫

�

V (x)u2 dx
)δ2

×
(∫

�

|x| α
δ3 β

r
qδ3 (x)V – δ2

δ3 (x) dx
)δ3

≤ 2�δδ1

(∫
�

u2 dx
) 1

2
(∫

�

∣∣∇u
m+1

2
∣∣2 dx

) δδ1
2

(∫
�

V (x)u2 dx
)δ2

×
(∫

�

|x| α
δ3 β

r
qδ3 (x)V – δ2

δ3 (x) dx
)δ3

. (10)
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Since 2 < N < 4(p+r)
4(p+r)–(m+3) and 2(p + r) < m + 3 < 4(p + r), inequality (10) holds. Moreover,

by the Young inequality we have

2
∫

�

|x|αup+1
(∫

�

β(x)uq dx
) r

q
dx

≤ 2C3�
δδ1

[
ε

– 2(p+r)
m+3–2(p+r)

3

(∫
�

u2 dx
) m+3

2(m+3)–4(p+r)
] m+3–2(p+r)

m+3

×
[
ε3

(∫
�

∣∣∇u
m+1

2
∣∣2 dx

) 1
2
(∫

�

V (x)u2 dx
) 1

2
] 2(p+r)

m+3

≤ 2C3�
δδ1

m + 3 – 2(p + r)
m + 3

ε
– 2(p+r)

m+3–2(p+r)
3

(∫
�

u2 dx
) m+3

2(m+3)–4(p+r)

+ C3�
δδ1

2(p + r)
m + 3

ε3

[∫
�

∣∣∇u
m+1

2
∣∣2 dx +

∫
�

V (x)u2 dx
]

, (11)

where C3 = (
∫
�

|x| α
δ3 β

r
qδ3 (x)V – δ2

δ3 (x) dx)δ3 and ε3 is a positive constant to be determined
later. Now inserting (11) into (5), we have

ϕ′(t) ≤ –
[

8m
(m + 1)2 – C3�

δδ1
2(p + r)
m + 3

ε3

]∫
�

∣∣∇u
m+1

2
∣∣2 dx

–
[

2 – C3�
δδ1

2(p + r)
m + 3

ε3

]∫
�

V (x)u2 dx

+ 2C3�
δδ1

m + 3 – 2(p + r)
m + 3

ε
– 2(p+r)

m+3–2(p+r)
3

(∫
�

u2 dx
) m+3

2(m+3)–4(p+r)
. (12)

After choosing ε3 small enough such that

8m
(m + 1)2 – C3�

δδ1
2(p + r)
m + 3

ε3 > 0, 2 – C3�
δδ1

2(p + r)
m + 3

ε3 > 0,

we have from (12)

ϕ′(t) ≤ 1
C4

[
ϕ(t)

] m+3
2(m+3)–4(p+r) , (13)

where

C4 =
[

2C3�
δδ1

m + 3 – 2(p + r)
p + r

ε
– 2(p+r)

m+3–2(p+r)
3

]–1

.

If the solution of problem (1)–(3) blows up at some finite time t∗, we may derive from (13)

t∗ ≥ C4
2(m + 3) – 4(p + r)
4(p + r) – (m + 3)

[
ϕ(0)

] (m+3)–4(p+r)
2(m+3)–4(p+r) . (14)

2. If N = 2, we use the Hölder inequality and Lemma 1.2 to obtain

2
∫

�

|x|αup+1
(∫

�

β(x)uq dx
) r

q
dx



Li et al. Boundary Value Problems        (2020) 2020:156 Page 7 of 9

≤ 2
(∫

�

u2 dx
) 1

2
(∫

�

(
u

m+1
2

)2 dx
) p+r

m+1

×
(∫

�

|x| 2(m+1)α
(m+1)–2(p+r) β

2(m+1)r
q[(m+1)–2(p+r)] (x) dx

) (m+1)–2(p+r)
2(m+1)

≤ 2λ
p+r
m+1
1

[
ε

– p+r
m+1–(p+r)

4

(∫
�

u2 dx
) (m+1)

(m+1)–(p+r)
] m+1–(p+r)

m+1

×
[
ε4

∫
�

∣∣∇u
m+1

2
∣∣2 dx

] p+r
m+1

×
(∫

�

|x| 2(m+1)α
(m+1)–2(p+r) β

2(m+1)r
q[(m+1)–2(p+r)] (x) dx

) (m+1)–2(p+r)
2(m+1)

,

where we have used the condition 2(p + r) < m + 1, m + 3 < 4(p + r). By the Young inequality,
we have

2
∫

�

|x|αup+1
(∫

�

β(x)uq dx
) r

q
dx

≤ 2λ
p+r
m+1
1 C5

m + 1 – (p + r)
m + 1

ε
– p+r

m+1–(p+r)
4

(∫
�

u2 dx
) m+1

(m+1)–(p+r)

+ 2λ
p+r
m+1
1 C5

(p + r)
m + 1

ε4

∫
�

∣∣∇u
m+1

2
∣∣2 dx, (15)

where C5 = (
∫
�

|x| 2(m+1)α
(m+1)–2(p+r) β

2(m+1)r
q[(m+1)–2(p+r)] (x) dx)

(m+1)–2(p+r)
2(m+1) . Inserting (15) into (5) and choos-

ing ε4 small enough such that

8m
(m + 1)2 – 2λ

p+r
m+1
1 C5

(p + r)
m + 1

ε4 = 0,

we have

ϕ′(t) ≤ 1
C6

[
ϕ(t)

] m+1
(m+1)–(p+r) , (16)

where C6 = [2λ
p+r
m+1
1 C5

m+1–(p+r)
m+1 ε

– p+r
m+1–(p+r)

4 ]–1. Integrating (16) from 0 to t∗, we obtain

t∗ ≥ (m + 1) – (p + r)
p + r

C6
[
ϕ(0)

]– p+r
(m+1)–(p+r) . (17)

The proof of Theorem 2.2 is completed.

5 Conclusion
From the proofs of Theorem 2.1 and Theorem 2.2, we can see that Lemmas 1.1 and 1.2 play
a key role. In general, Sobolev inequalities are not only related to the dimension of space,
but also to the boundary conditions. For example, if the solution of (1) does not vanish on
the boundary of �, Lemmas 1.1 and 1.2 do not hold. However, in this case, Brezis (see [4])
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has obtained for N > 2

∫
�

v
2N

N–2 dx ≤ C
[∫

�

v2 dx +
∫

�

|∇v|2 dx
] N

N–2
,

where C is a positive constant which depends on � and N . For N = 2, Li [11] has proved

(∫
�

v4 dx
) 1

2 ≤ C
[∫

�

v2 dx + δ

∫
�

|∇v|2 dx
]

, (18)

where δ is a positive arbitrary constant and � is a rectangular area. Combining with the
methods in Appendix B of [13], it is possible to get a result similar to (18), when � is
a bounded star-shaped domain in R2. Predictably, such an inequality will also be widely
used. For example, when Neumann or nonlinear conditions are prescribed on the bound-
ary rather than Dirichlet conditions (2), the problem (1) becomes more complicated and
interesting. We will study this problem in a future paper.
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