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Abstract
In this paper, we consider the three-dimensional compressible Navier–Stokes
equations with density-dependent viscosity and vorticity-slip boundary condition in
a bounded smooth domain. The main idea is to derive the uniform estimates for both
time and the Mach number. The difficulty is dealing with density-dependent viscosity
terms carefully. With the uniform estimates, we can verify the low Mach limit of the
global strong solutions of compressible Navier–Stokes equations and the global
existence and uniqueness of the strong solution of incompressible Navier–Stokes
equations around a steady state.
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1 Introduction
In this paper, we study the low Mach number limit for the initial-boundary value problem
of the following three-dimensional compressible Navier–Stokes equations in a bounded
domain � ⊂R3 with a smooth boundary:

ρt + div(ρu) = 0, (1)

(ρu)t + div(ρu ⊗ u) +
1
ε2 ∇p(ρ) = div

(
2μ(ρ)D(u)

)
+ ∇(

λ(ρ) div u
)
, (2)

where ρ and u = (u1, u2, u3) denote the density of the fluid and the velocity, respectively,
with D(u) = (∇u + ∇ut)/2. The functions μ(ρ) = ρα (α > 0) and λ(ρ) = ρβ (β > 0) are the
shear and bulk viscosity coefficients of the fluid, respectively, satisfying μ(ρ) > 0 and μ(ρ)+
2
3λ(ρ) > 0. This condition makes sense in the case that ρ is far away from the vacuum,
for instance, the shallow water waves. The constant ε ∈ (0, 1] is the Mach number. The
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pressure p(ρ) satisfies the barotropic law, namely,

p(ρ) = aργ , (3)

where a > 0 and γ > 1 are constants.
Formally, as the Mach number ε vanishes, the solution to (1)–(2) will converge to the

one of the following incompressible Navier–Stokes equations:

ut + u · ∇u – μ	u + ∇π = 0, (4)

div u = 0. (5)

It is known as the low Mach number limit. Since the large parameter ε–2 appears in (2),
this limit process is singular. The fact that both the uniform estimates in Mach number
and the convergence to the incompressible model are usually difficult to obtain creates a
serious difficulty for the rigorous justification of this limit.

The low Mach number limit of local smooth solutions to the Navier–Stokes equations
(or the Euler equations) in Rn or T n with “well-prepared” initial data was proved by Klain-
erman and Majda in [17, 18]. They established the general framework for studying the
low Mach number limit for local strong or smooth solutions. For bounded domain, Li-
ons and Masmoudi [19] investigated the low Mach number limit for the weak solutions to
the Navier–Stokes equations with the “vorticity-slip” boundary condition, that is, on the
boundary ∂� ⊂Rn,

u · n = 0, curl u = 0 for n = 2, or (6)

u · n = 0, n × curl u = 0 for n = 3, (7)

where curl u = (∂2u1, –∂1u2)t for n = 2 and curl u = (∂2u3 – ∂3u2, ∂3u1 – ∂1u3, ∂1u2 – ∂2u1)t

for n = 3. There are abundant results about the low Mach number limit for local solutions
to the isentropic Navier–Stokes equations, the reader may refer to [6–10, 23, 24] and the
references therein, for instance.

The low Mach number limit for global solutions to the isentropic Navier–Stokes equa-
tions have been considered by many authors; see [3, 14, 21, 22]. Compared with the study
of the low Mach number limit for local solutions, one must get the uniform estimates with
respect to both the Mach number ε and t ∈ [0, +∞). Thus this is challenging. D. Hoff [14]
verified the low Mach number limit for the global solutions in R3 × [0, +∞) with general
large initial data. For bounded domain, H. Bessaih [3] investigated the low Mach num-
ber limit of regular solutions to the compressible Navier–Stokes equations with no-slip
boundary conditions and slightly compressible initial data. In [21], Ou obtained the low
Mach number limit of regular solutions to the compressible Navier–Stokes equations (1)–
(2) with slightly compressible initial data in a 2-D bounded domain with the “vorticity-slip”
boundary condition (6). [22] investigated the low Mach number limit of strong solutions
to 3-D Navier–Stokes equations with Navier’s slip boundary condition for all time.

Concerning with the low mach number limit of the compressible non-isentropic
Navier–Stokes equations, many results was presented in [2, 5, 12, 13, 15, 16, 20], and the
references therein. After learning this progress on the low mach number limit carefully,
we find the fact that most of it was concerned with the constant viscosity coefficients.
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The purpose of this paper is to verify rigorously the corresponding low Mach number
limit for all time of the 3-D isentropic Navier–Stokes equations with density-dependent
viscosity and the “vorticity-slip” boundary condition. We establish the uniform estimates
of strong solutions with respect to the Mach number and justify rigorously the low Mach
number limit for all time when the non-constant viscosity coefficients are present, in con-
trast with [21]. Because the viscosity depends on the density, the uniform estimates of
strong solutions are much more difficult to obtain.

To verify the low Mach number limit, we shall consider the density varies slightly around
a constant state, namely,

ρ = 1 + εσ .

We reformulate the problem (1)–(2) as

σt + div(σu) +
1
ε

div u = 0, (8)

ρ(ut + u · ∇u) +
1
ε

p′(1 + εσ )∇σ = div
(
2μ(ρ)D(u)

)
+ ∇(

λ(ρ) div u
)
. (9)

The initial data for the system (1)–(2) are defined as

ρ(0, x) = ρ0(x), u(0, x) = u0(x), x ∈ �. (10)

We impose the “vorticity-slip” boundary condition for the velocity, that is, on the bound-
ary ∂� of � ⊂R3,

u · n = 0, n × curl u = 0, (11)

where curl u = (∂2u3 – ∂3u2, ∂3u1 – ∂1u3, ∂1u2 – ∂2u1)t and n is the unit outer normal vector
to the boundary.

We state the main results of this paper as follows.

Theorem 1.1 (Global-in-time existence) Let ε ∈ (0, 1] be a fixed constant and � ⊂R3 be
a simply connected, bounded domain with smooth boundary ∂�. Suppose that the initial
datum (σ0, u0) satisfies the following conditions:

∥∥(σ0, u0)
∥∥

H2 +
∥∥(σt , ut)(0)

∥∥
H1 ≤ m, (12)

with
∫
�

σ0 dx = 0 and 1 + εσ0 ≤ m for some positive constant m. Assume the following com-
patibility conditions are satisfied:

∂ i
t u(0) · n = n × ∂ i

t curl u(0) = 0 on ∂�, i = 0, 1. (13)

Then, for any ε ∈ (0, ε1] with ε1 ∈ (0, 1) being a constant, the initial-boundary value prob-
lem (8)–(11) admits a unique solution (σ , u, H) in � ×R+, satisfying

σ ∈ C
(
R+, H2), u ∈ C

(
R+, H2) ∩ L2(R+; H3),
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σt ∈ C
(
R+, H1), ut ∈ C

(
R+, H1) ∩ L2(R+; H2),

where R+ = [0, +∞). Moreover, the uniform estimates are satisfied:

sup
0≤s≤t

(∥∥(σ , u)(s)
∥∥

H2 +
∥∥(σt , ut)(s)

∥∥
H1

) ≤ Cm, ∀t ∈R+, (14)

where C is a positive constant independent of ε ∈ (0, ε1] and t ∈ [0, +∞).

Remark 1.1 To simplify the statement, we use the notation “ut(0)” to signify the quantity
ut|t=0 := –u0 ·∇u0 –p′(1+εσ0)∇σ0/ε +div(2μ(1+εσ0)D(u0))+∇(λ(1+εσ0) div u0) obtained
from the equation (9). The notation “∂ i

t u(0)” is given by differentiating (9) i – 1 times with
respect to t and then letting t = 0. The same rule applies to the notations ∂ i

tσ (0).

Assume that the assumptions in Theorem 1.1 are satisfied. Then one can get the local
existence of the initial-boundary problem (8)–(11) by the method of characteristics, the
Galerkin method and the Schauder fixed point theorem, that is, there exists a T
 > 0, such
that for T ≤ T
 the problem (8)–(11) admits a solution satisfying

σ ∈ C
(
[0, T], H2), (u, H) ∈ C

(
[0, T], H2) ∩ L2(0, T ; H3),

σt ∈ C
(
[0, T], H1), (ut , Ht) ∈ C

(
[0, T], H1) ∩ L2(0, T ; H2).

The boundary conditions (11) are “complementing” boundary conditions in the sense of
Agmon–Douglis–Nirenberg [1]. The local existence result can be proved by the frame in
[22], so we omit the details of the proof here.

Theorem 1.2 (Incompressible limit) Let the assumptions in Theorem 1.1 be satisfied, and
u be the global strong solution established in Theorem (1.1). Suppose that the initial data
u0 → v0 as ε → 0 in Hs for any 0 ≤ s < 2. Then we have u → v in C(R̄+

loc, Hs) as ε → 0, for
any 0 ≤ s < 2. Moreover, there exists a function P(x, t), such that (v, P) is the unique global
strong solution to the following initial-boundary value problem of incompressible Navier–
Stokes equations:

div v = 0,

vt + v · ∇v + ∇P = μ	v,

v · n = n × curl v = 0 on ∂�,

v|t=0 = v0(x), x ∈ �.

Before ending this section, we introduce the notations throughout this paper. We use the
constant C to denote various positive constants independent of ε and t, use the constant
Cη to emphasize the dependence on η. Moreover, we denote by Hm and ‖·‖Hm the Sobolev
space Hm(�) ≡ W m,2(�) and its norm, by Lp and ‖ · ‖Lp the Lebesgue space Lp(�) and its
norm.
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2 Preliminaries
In this paper, we will use the following lemmas frequently.

Lemma 2.1 (See [4]) Let � be a bounded domain in RN with smooth boundary ∂� and
outward normal n. Then there exists a constant C > 0 independent of u, such that

‖u‖Hs(�) ≤ C
(‖div u‖Hs–1(�) + ‖ curl u‖Hs–1(�) + ‖u · n‖

Hs– 1
2 (∂�)

+ ‖u‖Hs–1(�)
)
, (15)

for any u ∈ Hs(�)N .

Lemma 2.2 (See [26]) Let � be a bounded domain in RN with smooth boundary ∂U and
outward normal n. Then there exists a constant C > 0 independent of u, such that

‖u‖Hs(�) ≤ C
(‖div u‖Hs–1(�) + ‖ curl u‖Hs–1(�) + ‖u × n‖

Hs– 1
2 (∂�)

+ ‖u‖Hs–1(�)
)
, (16)

for all u ∈ Hs(�)N .

Lemma 2.3 (See [11]) Let � ⊂ R3 be a open bounded domain with C2 boundary ∂�.
Moreover, we assume that � is simply connected and non-axisymmetric. Then, for any
u ∈ H1(�) satisfying u · n|∂� = 0, one has

‖u‖H1(�) ≤ C
(∥∥D(u)

∥∥
L2(�) + ‖u‖L2(∂�)

)
(17)

and

‖∇u‖L2(�) ≤ C
(‖div u‖L2(�) + ‖ curl u‖L2(�)

)
, (18)

where C is a constant independent of u.

Lemma 2.4 (See [4]) Assume f ∈ C([0, T]; W k,p(�,RN )) with

k >
N
p

+ 1 and 1 ≤ p ≤ +∞.

Then the problem

du
dt

(x, t) = f
(
u(x, t), t

)
, u(x, 0) = x

has a solution u ∈ C1([0, T]; Dk,p(�)), where

Dk,p(�) =
{
η ∈ W k,p(�) | η is a bijective from � onto �,η–1 ∈ W k,p(�)

}
.

Lemma 2.5 (See [4]) Let k ≥ 2 be an integer, and let 1 ≤ p ≤ q ≤ +∞ be such that p < +∞
and k > N

p + 1. Let f ∈ W k,p(�), then the mapping g �−→ g ◦ f is continuous from Dk,p(�)
into W k,p(�).
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3 Energy estimates
In order to extend the local solution of the initial-boundary value problem (8)–(11) glob-
ally in time, we shall establish a differential inequality which provides us the uniform es-
timates of solutions for both time and the Mach number. Suppose that (σ , u) is the lo-
cal solution to the initial-boundary value problem (8)–(11) in � × (0, T), for 0 < T < ∞.
Moreover, we assume that 1/c ≤ ρ = 1 + εσ ≤ c for some constant c > 1. Then the viscosity
coefficients can be estimated as follows: 1/cα ≤ μ(ρ) = ρα ≤ cα and 1/cβ ≤ λ(ρ) = ρβ ≤ cβ .

3.1 L2 estimate
Lemma 3.1 For the solution to (8)–(11), we have

d
dt

∥
∥(√

p′(ρ)σ ,
√

ρu
)∥∥2

L2 + γ1‖u‖2
H1

≤ ε‖σt‖2
L2 + C‖σ‖2

H1
(‖u‖2

H2 + ‖σ‖2
H1

)
,

where γ1 is a positive constant independent of ε.

Proof We integrate the product of (8) and p′(ρ)σ to get

1
2

d
dt

∥∥
√

p′(ρ)σ
∥∥2

L2 +
1
ε

∫

�

p′(ρ) div uσ dx

= –
∫

�

p′(ρ)σ div(σu) dx +
1
2

∫

�

p′′(ρ)εσtσ
2 dx

≤ ε‖σt‖2
L2 + η‖u‖2

H1 + Cη‖σ‖4
H1 .

Due to the boundary conditions (11) and Lemma 2.3, we have

–
∫

�

(
2μ(ρ) div

(
D(u)

)
+ λ(ρ)∇ div u

) · u dx

= –
∫

�

((
2μ(ρ) + λ(ρ)

)∇ div u – μ(ρ) curl curl u
) · u dx

=
∫

�

((
2μ(ρ) + λ(ρ)

)|div u|2 + μ(ρ)| curl u|2)dx

+
∫

�

[∇(
2μ(ρ) + λ(ρ)

)
div u + ∇(

μ(ρ)
) × curl u

] · u dx

≥ ι0‖u‖2
H1 +

∫

�

[
(∇(

2μ(ρ) + λ(ρ)
)

div u + ∇(
μ(ρ)

)
curl u

] · u dx.

Integrating the product of (9) and u, we get

1
2

d
dt

‖√ρu‖2
L2 +

1
ε

∫

�

p′(ρ)u · ∇σ dx +
∥
∥
√(

2μ(ρ) + λ(ρ)
)

div u
∥
∥2

L2 +
∥
∥
√

μ(ρ) curl u
∥
∥2

L2

= –
∫

�

[∇(
2μ(ρ) + λ(ρ)

)
div u + ∇(

μ(ρ)
) × curl u

] · u dx

+
∫

�

[∇(
2μ(ρ)

) · D(u) + ∇(
λ(ρ)

)
div u

] · u dx

≤ η‖u‖2
H1 + Cη‖u‖2

H2‖σ‖2
H1 .
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Using (11) again and integration by parts, we have

1
ε

∫

�

p′(ρ) div uσ dx +
1
ε

∫

�

p′(ρ)u · ∇σ dx

= –
∫

�

p′′(ρ)∇σ · uσ dx ≤ η‖u‖2
H1 + Cη‖σ‖4

H1 . (19)

Summing up the above equalities and choosing η small enough, we get the lemma. �

3.2 Estimates of first order derivatives
Lemma 3.2 For the solution to (8)–(11), we have

1
2

d
dt

[∥∥
√

2μ(ρ) + λ(ρ) div u
∥∥2

L2 +
∥∥
√

μ(ρ) curl u
∥∥2

L2
]

+
d
dt

∫

�

ρut · u dx +
1
2
∥
∥
√

p′(ρ)σt
∥
∥2

L2

≤ C‖ut‖2
H1 + η‖u‖2

H2

+ Cη

[‖u‖2
H2

(‖u‖2
H2 + ‖σt‖2

H1 + ‖σ‖2
H2

)
+ ‖σ‖2

H2
(‖ut‖2

H1 + ‖σt‖2
H1

)]
,

where η is to be determined later.

Proof First, by differentiating (9) with respect to t, we have

(ρut)t + εσtu · ∇u + ρ(ut · ∇u + u · ∇ut) + p′′(ρ)σt∇σ +
1
ε

p′(ρ)∇σt

= div
(
2μ(ρ)D(ut)

)
+ ∇(

λ(ρ) div ut
)

+ div
(
2μ′(ρ)εσtD(u)

)
+ ∇(

λ′(ρ)εσt div u
)
. (20)

Multiplying (20) by u in L2, integrating by parts and using the boundary conditions (11),
we deduce that

1
2

d
dt

[∥∥
√

2μ(ρ) + λ(ρ) div u
∥∥2

L2 +
∥∥
√

μ(ρ) curl u
∥∥2

L2
]

+
d
dt

∫

�

ρutu dx +
1
ε

∫

�

p′(ρ)∇σt · u dx

=
∫

�

ρu2
t dx –

∫

�

ρt(u · ∇)u · u dx –
∫

�

ρ(ut · ∇u + u · ∇ut) · u dx

–
∫

�

p′′(ρ)σt∇σ · u dx +
∫

�

div
(
2μ′(ρ)εσtD(u)

)
+ ∇(

λ′(ρ)εσt div u
) · u dx

–
∫

�

∇(
2μ(ρ) + λ(ρ)

) · u div ut dx –
∫

�

∇(
μ(ρ)

) × curl ut · u dx

+
1
2

∫

�

∂t
(
2μ(ρ) + λ(ρ)

)|div u|2 dx +
1
2

∫

�

∂t
(
μ(ρ)

)| curl u|2 dx

≤ C‖ut‖2
L2 + η‖u‖2

H2

+ Cη

[‖u‖2
H2

(‖u‖2
H2 + ‖σt‖2

H1 + ‖σ‖2
H2

)
+ ‖σ‖2

H2
(‖ut‖2

H1 + ‖σt‖2
H1

)]
.



Ren et al. Boundary Value Problems        (2020) 2020:158 Page 8 of 20

We multiply (8) by p′(ρ)σt , integrate by parts and use the boundary conditions (11) again
to infer that

∥∥
√

p′(ρ)σt
∥∥2

L2 –
1
ε

∫

�

p′(ρ)∇σt · u dx

= –
∫

�

p′(ρ)σt div(σu) dx +
∫

�

∇(
p′(ρ)

) · uσt dx

≤ η‖σt‖2
L2 + Cη‖σ‖2

H1‖u‖2
H1 .

Summing up the above estimates, we obtain the above lemma. �

Lemma 3.3 For the solution to (8)–(11), we have

d
dt

‖∇σ‖2
L2 +

∥∥
√

p′(1)–1
√

2μ(ρ) + λ(ρ)∇ div u
∥∥2

L2

≤ C‖ut‖2
L2 + η‖u‖2

H1 + Cη‖σ‖4
H2 + C‖u‖2

H2‖σ‖2
H2 , 0 < η < 1,

where η is to be determined later.

Proof Applying ∇ to (8), multiplying the resulting equation by ∇σ , integrating in L2, we
obtain

1
2

d
dt

‖∇σ‖2
L2 +

1
ε

∫

�

∇ div u · ∇σ dx

= –
∫

�

(
(u · ∇)∇σ + ∇u∇σ + ∇σ div u + σ∇ div u

)∇σ dx

≤ η
(‖u‖2

H1 + ‖∇ div u‖2
L2

)
+ Cη‖σ‖4

H2 .

Now, we apply 〈(9), p′(ρ)–1∇ div u〉 to derive that

∥∥
√

p′(ρ)–1
√

2μ(ρ) + λ(ρ)∇ div u
∥∥2

L2 –
1
ε

∫

�

∇ div u · ∇σ dx

=
∫

�

ρ(ut + u · ∇u) · p′(ρ)–1∇ div u dx

+
∫

�

p′(ρ)–1μ(ρ) curl curl u · ∇ div u dx

–
∫

�

[
2∇μ(ρ) · D(u) + ∇λ(ρ) · div u

] · p′(ρ)–1∇ div u dx

≤ η‖∇ div u‖2
L2 + Cη

(‖ut‖2
L2 + ‖u‖2

H2 (‖u‖2
H2 + ‖σ‖2

H2 )
)
,

where with the aid of curl∇ = 0 and curl u × n|∂� = 0,

∫

�

p′(ρ)–1μ(ρ) curl curl u · ∇ div u dx

= –
∫

�

∇[
p′(ρ)–1μ(ρ)

] × curl u · ∇ div u dx
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+
∫

∂�

p′(ρ)–1μ(ρ)(n × curl u) · ∇ div u dS

≤ η‖∇ div u‖2
L2 + Cη‖u‖2

H2‖σ‖2
H2 .

Putting the above estimates together, we get this lemma. �

Lemma 3.4 For the solution to (8)–(11), we have

d
dt

(∥∥
√

p′(1)σt
∥∥2

L2 + ‖√ρut‖2
L2

)
+ γ2‖ut‖2

H1

≤ η‖u‖2
H1 + Cη‖σt‖4

H1

+ C
[‖σt‖2

H1
(‖u‖2

H2 + ‖σ‖2
H2 + ‖ut‖2

H2
)

+ ‖ut‖2
H1

∥∥(u,σ )
∥∥2

H2 + ‖σ‖4
H2

]
, (21)

where 0 < η < 1 is to be determined later, and γ2 is a positive constant independent of ε.

Proof Applying ∂t to (8), multiplying the resulting equation by p′(1)σt , integrating in L2,
we get

1
2

d
dt

∥
∥
√

p′(1)σt
∥
∥2

L2 +
p′(1)

ε

∫

�

σt div ut dx

= –p′(1)
∫

�

(u · ∇σt + ut · ∇σ + σt div u + σ div ut)σt dx

≤ η
(‖ut‖2

H1 + ‖u‖2
H1

)
+ Cη

(‖σ‖4
H1 + ‖σt‖4

H1
)
.

Applying ∂t to (9), we have

ρ(∂ttu + u · ∇ut) +
1
ε

p′(1)∇σt

= div
(
2μ(ρ)D(ut)

)
+ ∇(

λ(ρ) div ut
)

– ρt(ut + u · ∇u) – ρut · ∇u + ∂t

[
p′(1) – p′(1 + εσ )

ε
∇σ

]

+ div
(
2∂tμ(ρ)D(u)

)
+ ∇(

∂tλ(ρ) div u
)
. (22)

Taking 〈(22), ut〉 and using the boundary conditions (11), we find that

1
2

d
dt

‖√ρut‖2
L2 +

∥∥
√

2μ(ρ) + λ(ρ) div(ut)
∥∥2

L2

+
∥
∥
√

μ(ρ) curl ut
∥
∥2

L2 +
p′(1)

ε

∫

�

∇σt · ut dx

=
∫

�

[
p′(1) – p′(1 + εσ )

ε
∇σ

]

t
· ut dx –

∫

�

[
εσt(u · ∇)u + ρ(ut · ∇)u

] · ut dx

–
∫

�

[∇(
2μ(ρ) + λ(ρ)

)
div ut + ∇(

μ(ρ)
) × curl ut

] · ut dx

–
∫

�

∂t
(
2μ(ρ) + λ(ρ)

)|div ut|2 + ∂t
(
μ(ρ)

)| curl ut|2 dx
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+
∫

�

[
div

(
2∂tμ(ρ)D(u)

)
+ ∇(

∂tλ(ρ) div u
)] · ut dx

≤ η‖ut‖2
H1 + Cη

(‖σt‖2
H1

(∥∥(u,σ )
∥∥2

H2 + ‖ut‖2
H2

)
+ ‖ut‖2

H1

∥∥(u,σ )
∥∥2

H2
)
.

Hence, by choosing η appropriately small and using Korn’s inequality, we obtain the
estimate (21). �

Next, we estimate the vorticity of the velocity, which is denoted by ω = curl u. By virtue
of (8) and (9), it is easy to see that ω satisfies the following systems:

ρωt + ρu · ∇ω – μ(ρ)�ω = g,

ω × n = 0 on ∂�,
(23)

where

g = –ρω div u –
ε

ρ
∇σ × (

div
(
μ(ρ)∇u

)
+ ∇[

λ(ρ) div u
])

+ curl
(
μ(ρ)

)
	u +

(∇μ(ρ)
) · ∇ curl u.

Then we have the following.

Lemma 3.5

d
dt

‖√ρω‖2
L2 +

∥∥
√

μ(ρ) curlω
∥∥2

L2 ≤ η‖ω‖2
L2 + Cη‖u‖2

H2
(‖u‖2

H2 + ‖σ‖2
H2

)
, (24)

where 0 < η < 1 is a positive constant which is to be determined.

Proof Multiplying (23)1 by ω, with the aid of the boundary condition (23)2 we infer
that

1
2

d
dt

‖√ρω‖2
L2 +

∥∥
√

μ(ρ) curlω
∥∥2

L2 =
∫

�

g · ω dx –
∫

�

∇μ(ρ) × curlω · ω dx, (25)

where

–
∫

�

μ(ρ)�ω · ω dx =
∫

�

μ(ρ) curl curlω · ω dx

=
∫

�

μ(ρ)| curlω|2 dx +
∫

�

∇(
μ(ρ)

) × curlω · ω dx

+
∫

∂�

μ(ρ)(n × curl u) · ω dS.

With the aid of Lemma 2.2, it is easy to verify that

∫

�

gω dx ≤ η‖ω‖2
H1 + Cη‖u‖2

H2
(‖u‖2

H2 + ‖σ‖2
H2

)

≤ η
(‖ω‖2

L2 + ‖ curlω‖2
L2

)
+ Cη‖u‖2

H2
(‖u‖2

H2 + ‖σ‖2
H2

)
.
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Using Holder’s inequality and Young’s inequality, we have

∫

�

∇μ(ρ) × curlω · ω dx ≤ η‖ curlω‖2
L2 + Cη‖σ‖2

H2‖u‖2
H2 .

Inserting the above two inequalities into (25) and choosing η appropriately small, we get
the above lemma. �

Definition 3.1 Now, defining two functions:

�1(t) :=
∫

�

ρu · ut dx +
∥∥(σt , ut)

∥∥2
L2 +

∥∥(σ , u)
∥∥2

H1 ,

�1(t) := ‖σt‖2
L2 + ‖u‖2

H1 +
∥∥(curl curl u,∇ div u)

∥∥2
L2 + ‖ut‖2

H1 .
(26)

we conclude from Lemmas 3.1–3.5 that, for small ε, there is a positive constant C1, such
that

d
dt

�1(t) + �1(t) ≤ C1
(‖σt‖2

H1

∥∥(ut ,σt)
∥∥2

H1 + ‖σ‖2
H2

(‖σ‖2
H2 + ‖σt‖2

H1
)

+ ‖u‖2
H2

(∥∥(ut ,σt)
∥
∥2

H1 +
∥
∥(σ , u)

∥
∥2

H2
))

. (27)

3.3 Boundedness of second order derivatives
First, we show the following lemma.

Lemma 3.6 For the solution to (8)–(11), we have

d
dt

∥∥
√

2μ(ρ) + λ(ρ)∇ div u
∥∥2

L2 – 2
d
dt

∫

�

ρut · ∇ div u dx +
∥∥
√

p′(1)∇σt
∥∥2

L2

≤ η‖∇ div ut‖2
L2 + Cη‖ut‖2

L2 + C‖∇ div u‖2
L2

+ C
[‖σ‖2

H2

∥
∥(σt , ut)

∥
∥2

H1 + ‖u‖2
H3

(∥∥(u,σ )
∥
∥2

H2 +
∥
∥(σt , ut)

∥
∥2

H1
)]

, (28)

where 0 < η < 1 is a small positive constant which is to be determined.

Proof Differentiating (9) with respect to t, we have

ρ
(
utt + (u · ∇)ut

)
+

1
ε

p′(1)∇σt

=
(
2μ(ρ) + λ(ρ)

)∇ div ut – μ(ρ) curl curl ut

– ρt
(
ut + (u · ∇)u

)
– ρut · ∇u +

[
p′(1) – p′(1 + εσ )

ε
∇σ

]

t

+
(
2μ(ρ) + λ(ρ)

)
t∇ div u – μ(ρ)t curl curl u

+ 2∇μ(ρ) · D(ut) + div ut∇λ(ρ) + 2∇(
μ(ρ)

)
t · D(u) + div u∇(

λ(ρ)
)

t . (29)
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Multiplying (29) by ∇ div u and integrating in L2, we get

1
2

d
dt

∥∥
√

2μ(ρ) + λ(ρ)∇ div u
∥∥2

L2 –
d
dt

∫

�

ρut · ∇ div u dx –
p′(1)

ε

∫

�

∇σt · ∇ div u dx

=
∫

�

[(
p′(1 + εσ ) – p′(1)

ε
∇σ

)

t
+ εσtu · ∇u + ρ

(
(ut · ∇)u + (u · ∇)ut

)
]

· ∇ div u dx

–
∫

�

ρut · ∇ div ut dx

+
∫

�

[
–

1
2
(
2μ(ρ) + λ(ρ)

)
t∇ div u + μ(ρ)t curl curl u

]
· ∇ div u dx

+
∫

�

μ(ρ) curl curl ut · ∇ div u dx

–
∫

�

[
2∇μ(ρ) · D(ut) + ∇λ(ρ) · ∇ut + 2∇(

μ(ρ)
)

t · D(u) + ∇(
λ(ρ)

)
t · ∇u

]

· ∇ div u dx

≤ η
(∥∥(∇ div ut ,∇ div u,∇σt)

∥∥2
L2

)
+ Cη

(‖ut‖2
L2 + ‖∇ div u‖2

L2
)

+ Cη

[‖σ‖2
H2

∥∥(ut ,σt)
∥∥2

H1 + ‖u‖2
H3

(∥∥(ut ,σt)
∥∥2

H1 + ‖u‖2
H2

)]
,

where we have used the following estimate:

∫

�

μ(ρ) curl curl ut · ∇ div u dx

≤
∣
∣∣
∣

∫

∂�

μ(ρ)(n × curl ut) · ∇ div u dS
∣
∣∣
∣ +

∣
∣∣
∣

∫

�

∇μ(ρ) × curl ut · ∇ div u dx
∣
∣∣
∣

≤ η‖∇ div u‖2
L2 + Cη‖ut‖2

H1‖σ‖2
H2 .

Similarly, we take 〈∇(8), p′(1)∇σt〉 to infer that

∥∥
√

p′(1)∇σt
∥∥2

L2 +
p′(1)

ε

∫

�

∇σt · ∇ div u dx

= –p′(1)
∫

�

(
(u · ∇)∇σ + ∇u∇σ + ∇σ div u + σ∇ div u

) · ∇σt dx

≤ η‖∇σt‖2
L2 + Cη‖u‖2

H2‖σ‖2
H2 .

Summing up the above inequalities together and choosing η small, we get the above
estimate. �

Lemma 3.7 We have

1
2

d
dt

∥
∥∇2σ

∥
∥2

L2 +
∥
∥
√

p′(ρ)–1
√

2μ(ρ) + λ(ρ)∇2 div u
∥
∥2

L2

≤ η‖u‖2
H3 + Cη‖σ‖4

H2 + C
(∥∥∇2 curl u

∥∥2
L2 + ‖ut‖2

H1
)

+ C
(‖u‖4

H2 + ‖σ‖2
H2 (‖ut‖2

H1 + ‖u‖2
H3 )

)
, (30)

where 0 < η < 1 is a small positive constant which is to be determined.
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Proof We differentiate (8) twice with respect to x to have

∇2σt + u · ∇(∇2σ
)

+ 2∇u · ∇(∇σ ) + ∇2u · ∇σ + ∇2(σ div u) +
1
ε
∇2 div u = 0. (31)

Taking 〈(31), p′(1)∇2σ 〉, we obtain

1
2

d
dt

∥
∥
√

p′(1)∇2σ
∥
∥2

L2 +
p′(1)

ε

∫

�

∇2 div u∇2σ dx

= –p′(1)
∫

�

[(
u · ∇(∇2σ

)
+ 2∇u · ∇(∇σ ) + ∇2u · ∇σ + ∇2(σ div u)

)]∇2σ dx

≤ η‖u‖2
H3 + Cη‖σ‖4

H2 .

Then we apply ∇ to (9) to get

(
2μ(ρ) + λ(ρ)

)∇2 div u – μ(ρ)∇ curl curl u –
1
ε

p′(1)∇2σ

= ∇
[

p′(1 + εσ ) – p′(1)
ε

∇σ

]
+ ρ

(∇ut + ∇u · ∇u + u · ∇2u
)

+ ε∇σ (ut + u · ∇u)

– ∇[
2∇μ(ρ) · D(u) + ∇(

λ(ρ)
)

div u
]

– ∇(
2μ(ρ) + λ(ρ)

)∇ div u + ∇μ(ρ) curl curl u,

which, by multiplying ∇2 div u in L2, gives

∥∥
√

2μ(ρ) + λ(ρ)∇2 div u
∥∥2

L2 –
p′(1)

ε

∫

�

∇2 div u∇2σ dx

≤ η
∥∥∇2 div u

∥∥2
L2 + Cη

(∥∥∇2 curl u
∥∥2

L2 + ‖ut‖2
H1

)

+ Cη

[‖σ‖2
H2

(‖σ‖2
H2 + ‖u‖2

H3 + ‖ut‖2
H1

)
+ ‖u‖4

H2
]
,

where we have used the fact that ‖∇ curl curl u‖L2 ≤ ‖∇2 curl u‖L2 .
Summing up the above two inequalities together and choosing η suitably small, we get

the estimate (30). �

Lemma 3.8 For the solution to (8)–(11), we have

d
dt

(‖div ut‖2
L2 +

∥∥
√

ρ–1p′(1)∇σt
∥∥2

L2
)

+
∥∥
√

ρ–1
√

2μ(ρ) + λ(ρ)∇ div ut
∥∥2

L2

≤ η
(‖ut‖2

H2 + ‖u‖2
H3

)
+ C‖∇ curl ut‖2

L2 + Cη

(‖σ‖2
H2‖ut‖2

H2 + ‖ut‖2
H1‖u‖2

H2

+ ‖u‖4
H2 + ‖σt‖2

H1 (‖ut‖2
H2 + ‖u‖2

H3 + ‖σ‖2
H2 + ‖σt‖2

H1 )
)
, 0 < η < 1,

where η is a small positive constant which is to be determined.

Proof It is obvious that utt · n|∂� = 0, thus

∫

�

utt∇ div ut dx = –
1
2

d
dt

∫

�

|div ut|2 dx.
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We take 〈(29),ρ–1∇ div ut〉 and 〈∂t∇(8),ρ–1p′(1)∇σt〉, summing up the resulting equations
to obtain the above lemma. Here we use the following estimate:

1
2

∫

�

∂t
(
ρ–1p′(1)

)|∇σt|2 dx –
∫

�

ρ–1p′(1)∇σt · u · ∇2σt dx

=
1
2

∫

�

∂t
(
ρ–1p′(1)

)|∇σt|2 dx +
1
2

∫

�

div
(
ρ–1p′(1)u

)|∇σt|2 dx

= –
1
2

∫

�

ρtρ
–2p′(1)|∇σt|2 dx +

1
2

∫

�

ρ–2p′(1) div(ρu)|∇σt|2 dx

= –
1
2

∫

�

[
ρt + div(ρu)

]
ρ–2p′(1)|∇σt|2 dx

= 0. �

Next, we estimate the derivatives of curl u.

Lemma 3.9

d
dt

‖√ρωt‖2
L2 + γ3‖ curlωt‖2

L2

≤ η‖ωt‖2
L2 + Cη

((‖σt‖2
H1 + ‖σ‖2

H2
)(‖ut‖2

H1 + ‖u‖2
H3

)
+ ‖ut‖2

H1‖u‖2
H3

)

+ C‖σ‖4
H2‖u‖2

H2 .

where γ3 > 0 is a positive constant and 0 < η < 1 is a small positive constant which is to be
determined.

Proof Firstly, we apply ∂t to (23)1 to see that

ρ(ωtt + u · ∇ωt) – μ(ρ)�ωt = h, (32)

where

h := –εσt(ωt + u · ∇ω) – ρut∇ω + ∂t
(
μ(ρ)

)�ω + gt ,

with

|gt| ≤ C
(
ε|σt||∇u|2 + |∇ut||∇u| + ε2|σt||∇σ |(|∇σ ||∇u| +

∣∣∇2u
∣∣)

+ |∇σt|
(|∇σ ||∇u| +

∣∣∇2u
∣∣) + ε|∇σ |(|∇σt||∇u| + ε|∇σ ||∇ut| +

∣∣∇2ut
∣∣)

+ ε
(|∇σt|

∣∣∇2u
∣∣ + |∇σ |∣∣∇2ut

∣∣)).

Obviously, the boundary condition for (32) reads

ωt × n = 0 on ∂�. (33)
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Therefore, by virtue of (33) and integration by parts,

–
∫

�

μ(ρ)	ωt · ωt dx

=
∫

�

μ(ρ) curl curlωt · ωt dx

=
∫

�

μ(ρ)| curlωt|2 dx +
∫

�

∇μ(ρ) × curlωt · ωt dx +
∫

∂�

μ(ρ) curlωt(ωt × n) dS.

Multiplying (32) by ωt in L2, we obtain

1
2

d
dt

‖√ρωt‖2
L2 +

∥∥
√

μ(ρ) curlωt
∥∥2

L2

=
∫

�

h · ωt dx –
∫

�

∇μ(ρ) × ∇ωt · ωt dx

≤ ‖ωt‖H1
[‖gt‖L2 + ‖σt‖H1

(‖ut‖H2 + ‖u‖H2‖u‖H3
)

+ ‖ut‖H1‖u‖H3 + ‖σt‖H1‖u‖H3 + ‖σ‖H2‖ut‖H2
]
. (34)

�

With the aid of Lemma 2.2 and (33), we have

‖ωt‖2
H1 ≤ C

(‖ curlωt‖2
L2 + ‖ωt‖2

L2
)
.

Using Young’s inequality and the above equality, we obtain the following lemma.

Lemma 3.10 For the solution to (8)–(11), we have

d
dt

∥
∥
√

μ(ρ)∇ω
∥
∥2

L2 + ‖√ρωt‖2
L2 +

1
20

∥
∥
√

μ(ρ)�ω
∥
∥2

L2

≤ η
(‖ωt‖2

L2 + ‖ curlω‖2
L2

)
+ Cη

(‖u‖2
H3

(‖u‖2
H2 + ‖σ‖2

H2 + ‖σt‖2
H1

)
+ ‖ut‖2

H2‖σ‖2
H2

)
,

where 0 < η < 1 is a small positive constant which is to be determined.

Proof We take 〈(23)1,ωt – δ�ω〉 (in which δ is a positive constant to be determined later)
to get

1
2

d
dt

∥
∥
√

δρ + μ(ρ) curlω
∥
∥2

L2 + ‖√ρωt‖2
L2 + δ

∥
∥
√

μ(ρ)�ω
∥
∥2

L2

=
∫

�

g · (ωt – δ�ω) dx +
1
2

∫

�

∂t
(
δρ + μ(ρ)

)| curlω|2 dx

+
∫

�

∇(
δρ + μ(ρ)

) × curlω · ωt dx +
∫

�

ρu · ∇ω · (ωt – δ�ω) dx

≤ η
(‖ωt‖2

L2 + ‖�ω‖2
L2

)
+ Cη

(‖u‖4
H2 + ‖σ‖2

H2
(‖u‖2

H3 + ‖ut‖2
H1

))

+ η‖ curlω‖2
L2 + Cη

(‖σt‖2
H1‖u‖2

H3 + ‖σ‖2
H2‖ut‖2

H2
)
,
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where we use the following estimate:

–
∫

�

(
δρ + μ(ρ)

)
	ω · ωt dx

=
∫

�

(
δρ + μ(ρ)

)
curl curlω · ωt dx

=
∫

�

(
δρ + μ(ρ)

)
curlω · curlωt dx +

∫

�

∇(
δρ + μ(ρ)

) × curlω · ωt dx

+
∫

∂�

(
δρ + μ(ρ)

)
curlω · (ωt × n) dS

=
1
2

d
dt

∥∥
√

δρ + μ(ρ) curlω
∥∥2

L2 –
1
2

∫

�

∂t
(
δρ + μ(ρ)

)| curlω|2 dx

+
∫

�

∇(
δρ + μ(ρ)

) × curlω · ωt dx.

Thus, we choose δ and η suitably small to conclude the lemma.
In order to close the estimates, we have to estimate ‖σ‖H2 . To this end, we obtain from

the continuity equation (8) and the boundary condition u · n|∂�
= 0

d
dt

∫

�

σ dx = –
∫

∂�

(
σ +

1
ε

)
u · n dS = 0,

thus

∫

�

σ dx =
∫

�

σ0 dx = 0.

From Eqs. (9) and Poincare’s inequality, we have

‖σ‖2
H2 ≤ C‖∇σ‖2

H1

≤ Cε2(‖ut‖2
H1 + ‖u‖2

H3
)

+ Cε
[‖σ‖2

H2
(‖ut‖2

H1 + ‖u‖2
H3 + ‖u‖4

H2
)

+ ‖u‖4
H2

]
. (35)

In addition, in order to control the terms ‖ut‖H2 and ‖u‖H3 , we use the following fact
which is obtained from Lemmas 2.1–2.2 and the boundary condition (11):

‖u‖H3 ≤ C
(‖div u‖H2 + ‖ curl u‖H2 + ‖u‖H2

)
,

‖ curl u‖H2 ≤ C
(‖ curl curl u‖H1 + ‖ curl u‖H1

)
,

‖ curl curl u‖H1 ≤ C
(‖� curl u‖L2 + ‖ curl curl u × n‖H1/2(∂�) + ‖ curl u‖L2

)
, (36)

‖ut‖H2 ≤ C
(‖div ut‖H1 + ‖ curl ut‖H1 + ‖ut‖H1

)
,

‖ curl ut‖H1 ≤ C
(‖ curl curl ut‖L2 + ‖ curl ut‖L2

)
,

where the estimate of the term ‖ curl curl u×n‖H1/2(∂�) is crucial for the proof. We can esti-
mate it by the strategy in [22] as follows: In order to derive an estimate near the boundary,
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we firstly construct the local coordinates by the isothermal coordinates λ(ψ ,ϕ), where
λ(ψ ,ϕ) satisfies

λψ · λψ > 0, λϕ · λϕ > 0 and λψ · λϕ = 0.

We cover the boundary ∂� by a finite number of bounded open sets W k ⊂ R3, k =
1, 2, . . . , L, such that, for any x ∈ W k ∩ �,

x = λk(ψ ,ϕ) + rn
(
λk(ψ ,ϕ)

)
= �k(ψ ,ϕ, r),

where λk(ψ ,ϕ) is the isothermal coordinate and n is the unit outer normal to ∂�. For
simplicity, we will omit the superscript k in each W k . Then we construct the orthonormal
system corresponding to the local coordinates by

e1 =
λψ

|λψ | , e2 =
λϕ

|λϕ | , e3 = n(λ) = e1 × e2.

By direct calculations, we can use the fact that J ∈ C2 and

J = det Jac� = (�ψ × �ϕ) · e3

= |λψ ||λϕ | + r
(|λψ |nϕ · e2 + |λϕ |nψ · e1

)
+ r2[(nψ · e1)(nϕ · e2) – (nψ · e2)(nϕ · e1)

]
> 0,

for sufficiently small r > 0. Furthermore, we can derive some other relations:

Jac
(
�–1) = (Jac�)–1,

[∇(
�–1)1] ◦ � =

1
J

(�ψ × e3),

[∇(
�–1)2] ◦ � =

1
J

(e3 × �ϕ),

[∇(
�–1)3] ◦ � =

1
J

(�ϕ × �ψ ),

where the notation ‘◦’ is the composite of operators. Set y := (y1, y2, y3) := (ψ ,ϕ, r), aij =
((Jac�)–1)ij. Then n = (a31, a32, a33), the tangential directions τi = (ai1, ai2, ai3) (i = 1, 2),
and

aija3j = 0, for i = 1, 2.

We denote by Di the partial derivative with respect to yi in local coordinates. To be precise,
D3 is the normal derivative and Di for i = 1, 2 are the tangential derivatives in the original
coordinates. Moreover, we have

∂xj = akjDk .
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Next, we denote the vorticity near the boundary as w̃ := (w̃1, w̃2, w̃3)t := w(t,�(y)). So we
get

curl w · n = (ak2Dkw̃3 – ak3Dkw̃2, ak3Dkw̃1 – ak1Dkw̃3, ak1Dkw̃2 – ak2Dkw̃1)

· (a31, a32, a33)

=
[
(a32a13 – a33a12)D1 + (a32a23 – a33a22)D2

]
w̃1

+
[
(a33a11 – a31a13)D1 + (a33a21 – a31a23)D2

]
w̃2

+
[
(a31a12 – a32a11)D1 + (a31a22 – a32a21)D2

]
w̃3

=
2∑

i=1

(n × τi) · Diw̃

=
2∑

i=1

(
Di

(
(n × τi) · w̃

)
– Di(n × τi) · w̃

)

=
2∑

i=1

(
Di

(
(n × w̃) · τi

)
– Di(n × τi) · w̃

)
.

Thus, with the boundary condition (11) we get the estimate

‖ curl w · n‖
H

1
2 (∂�)

≤ C
3∑

i=1

‖wj‖
H

1
2 (∂�)

≤ C‖u‖H2 . (37)
�

Definition 3.2 We define

� =
2∑

i=1

�i(t), � =
2∑

i=1

�i(t), (38)

where �1(t) and �1(t) are defined by (26), and

�2(t) = ‖∇ div u‖2
L2 – 2

∫

�

ρut · ∇ div u dx +
∥
∥∇2σ

∥
∥2

L2 + ‖div ut‖2
L2

+ ‖∇σt‖2
L2 + ‖∇ curl u‖2

L2 + ‖ curl ut‖2
L2 ,

�2(t) =
(∥∥∇2 div u

∥∥2
L2 + ‖∇ div ut‖2

L2
)

+ ‖∇σt‖2
L2 + ‖∇ curl ut‖2

L2

+
∥∥∇2 curl u

∥∥2
L2 + ‖σ‖2

H2 .

Combining Lemmas 3.1–3.10 with the estimates (35)–(37) and choosing a suitable con-
stant C, and small enough constants ε and η, we finally conclude that

d
dt

�(t) + �(t) ≤ c0�(t)
(
�(t) + �2(t)

)
, (39)

where c0 ≥ 1 is a constant independent of ε.
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Now, employing (39), and following the analysis in [25], we obtain the following uniform
estimate.

Lemma 3.11 (Uniform estimate) Let � ⊂ R3 be a simply connected, bounded domain
with smooth boundary ∂�. Let (u,σ ) be a solution to (8)–(11) in � × (0, T) with c–1 ≤
1 + εσ ≤ c for some c > 1, ∀(x, t) ∈ � × (0, T), ε ∈ (0, ε1]. Suppose that

�(0) ≤ β/(2c0), β ∈
(

0,
1
2

]
.

Then we have

�(t) ≤ β/(2c0), t ∈ [0, T].

4 Proof of Theorems 1.1 and 1.2
Now, recalling the definition (38) of (�(t),�(t)), we can use the uniform a priori estimate
established in Lemma 3.11 to continue the local solution (σ , u) globally in time by applying
the standard extension techniques (see, for example, [27]), and obtain therefore a global
solution. Furthermore, we can employ the uniform estimate given in Lemma 3.11 and the
Arzelà–Ascoli theorem to easily show the strong convergence of (σ , u) to the solution of
the corresponding incompressible Navier–Stokes equation as ε → 0. This completes the
proof of Theorems 1.1 and 1.2.
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