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Abstract
This paper considered the spectral meshless radial point interpolation (SMRPI)
method to unravel for the nonlinear p-Laplacian equation with mixed Dirichlet and
Neumann boundary conditions. Through this assessment, which includes meshless
methods and collocation techniques based on radial point interpolation, we
construct the shape functions, with the Kronecker delta function property, as basis
functions in the framework of spectral collocation methods. Studies in this regard
require one to evaluate the high-order derivatives without any kind of integration
locally over the small quadrature domains. Finally, some examples are given to
illustrate the low computing costs and high enough accuracy and efficiency of this
method to solve a p-Laplacian equation and it would be of great help to fulfill the
implementation related to the element-free Galerkin (EFG) method. Both the SMRPI
and the EFG methods have been compared by similar numerical examples to show
their application in strongly nonlinear problems.

Keywords: Collocation method; Meshless method; p-Laplacian equation; Radial
point interpolation technique; Dirichlet and Neumann boundary conditions

1 Introduction
We are concerned for the numerical solution of the following nonlinear p-Laplacian equa-
tion:

– div
(∣∣∇u(x)

∣∣p–2∇u(x)
)

= f (x), x = (x1, x2) ∈ �, (1)

with the Dirichlet and Neumann boundary conditions

u(x) = g1(x), x = (x1, x2) ∈ �1, (2)

n.∇u(x) = g2(x), x = (x1, x2) ∈ �2, (3)

respectively. Furthermore, f , g1 and g2 are given functions, p ∈ (1,∞)\{2} is a given pa-
rameter, div and ∇ are the gradient and divergence operator. Also, � is a two-dimensional
bounded domain with boundary � = �1 ∪ �2, n = (n1, n2)T is the unit outward normal to
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� and u is the unknown function with the following scalar product in R
2:

∣∣∇u(x)
∣∣ =

√∇u(x).∇u(x).

When p = 2, Eq. (1) degenerates to the linear Poisson equation. This issue has been used
through modeling many nonlinear physical applications evidently. More specifically, p-
Laplacian problem used to illustrate the mechanics and dynamic systems [1, 3, 5, 9, 11, 12].
Nonetheless it should be noted that, due to the high complexity of strongly nonlinear terms
in partial differential equations (PDEs), the analytically handling of equations described by
this nonlinearity is utterly difficult or even impossible. To prevail through this challenge,
practical numerical/approximate methods have been presented to solve them [10, 15, 19].
The authors in [20], utilized the variational method and limiting approach to solving the
minimization problems of the Dirichlet/Neumann eigenvalues of the one-dimensional p-
Laplacian equation in which the existence of positive solutions of this problem had already
been interrogated by Jankowski [13]. Liu and Yan [18] have used the quasi-norm tech-
niques in order to perform an improved a posteriori error analysis for the p-Laplacian
with only Dirichlet condition. Also, a nonlocal p-Laplacian-type diffusion equation with
Dirichlet boundary condition has been investigated in [2]. An investigation on the Fucik
spectrum of the negative p-Laplacian with different boundary conditions has been pro-
posed in [22]. Other methods used to solve different types of this problems include the
finite volume method [14], the finite element method [6], and the finite difference method
[24]. Many meshless methods, as a special class of spectral methods, have been used for
solving the p-Laplacian equation such as the Petrov–Galerkin method [21], the radial ba-
sis functions (RBFs)-based [4] and the WEB-spline-based mesh-free method [7]. On the
contrary of easy implementation of these methods, the challenge of these methods is their
low accuracy and high cost of computing in discretization. With an overview you will no-
tice that in these references, the authors have tried to use the interpolate approximate
basis functions to reformulated the p-Laplacian problem as an equivalent minimization
problems. Since it is difficult to achieve satisfactory performance in these methods, the
EFG method is expanded by Li and Dong in [16] for solving the problem (1)–(3) directly.
Because of the high efficiency of nonlinear term in the p-Laplacian equation, the EFG dis-
cretization results in highly nonlinear algebraic systems. To overcome this challenge, the
researcher used a linearized iterative process that vividly cause the much computational
error in numerical results. Through the next year, they developed the EFG method and
used the IEFG method [17] for this problem and show that the IEFG method can have a
higher computational efficiency than the previous method.

The aforementioned properties of meshless methods have encouraged some researchers
to develop new computing architectures and techniques where the primary focus was on
hardware simplicity. In spite of great benefits in using the meshless weak form meth-
ods, the challenge of these methods is their limited accuracy, locality, complexity and
high cost of computing in discretization. Unfortunately, because linear polynomials or
linear elements have been used in all these methods, the use of a higher interpolation
shows more complex dynamic characteristics in them. Furthermore, the complicated na-
ture of the non-polynomial shape functions, which play an important role in the accuracy
of these methods, is computationally expensive in the numerical integration scheme. To
overcome these challenges, we invoke a new spectral collocation method (also called a
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pseudo-spectral method) to expand a numerical solution of the p-Laplacian equations
(1)–(3). The SMRPI method, comprised of meshless radial point interpolation and collo-
cation techniques, has been assigned and applied to the 2-D and 3-D diffusion equations
by Shivanian in [25–28]. Through this technique, the point interpolation method with the
help of RBFs is proposed to construct shape functions which have the Kronecker delta
function property and are used as basis functions in the framework of the SMRPI. The
given method either utilizes any global basis functions for interpolating technique or uses
arbitrary points for discretization, giving us a very flexible chart for solving the p-Laplacian
equation. Using SMRPI as a meshless collocation method bears some advantages such as
a simple evaluation of high-order derivatives of a given differential equation and being less
expensive of computational costs. In addition, to implement this method we are not re-
quired to use any local integration in small quadrature domains, shape parameterization
or refinement techniques as is essential in Galerkin weak form meshless methods such as
the EFG method.

The overall organization of this paper is as follows. The next section presents SMRPI
method briefly. Understanding functions in terms of the SMRPI approach can be a ma-
jor challenge in this study. Then the third section shows our methodology. In this sec-
tion, Eqs. (1)–(3) could be performed by the SMRPI method. The numerical results and
comparison have been set in Sect. 4 and the conclusions as regards the results in the last
section.

2 SMRPI scheme
To perform the continuous function u(x) of p-Laplacian equations (1)–(3) via the SMRPI
method, we have to outline it in this section. The continuous function u(x) can be repre-
sented via RBF Ri(x) and monomials in the point of interest x ∈ �l . So, the coefficients ai

and bj can be considered as

u(x) =
n∑

i=1

Ri(x)ai +
m∑

j=1

Pj(x)bj = RT (x)a + PT (x)b, (4)

in which �l is a disk centered at xl with radius rs, n is the number of point in �l and m
is the number of polynomial basis functions. When m = 0, only RBFs are used, otherwise,
the RBF is augmented with m polynomial basis functions. In the point of interest xl , we
enforce Eq. (4) to be satisfied at those n nodes surrounding it. Then the linear algebraic
system of equations (4) is represented as follows:

Us = RT
n a + PT

mb, (5)

in which Us is the vector of function values defined as

Us = {u1, u2, u3, . . . , un}T , (6)

Rn denotes the RBFs moment matrix as follows:

Rn =

⎛

⎜⎜
⎝

R1,1 R1,2 · · · R1,n
...

...
. . .

...
Rn,1 Rn,2 · · · Rn,n

⎞

⎟⎟
⎠ , (7)
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and Pm represents the polynomial moment matrix defined by

Pm =

⎛

⎜
⎜
⎝

p1(x1) p1(x2) · · · , p1(xN )
...

...
. . .

...
pm(x1) pm(x2) · · · , pm(xN )

⎞

⎟
⎟
⎠ . (8)

Also, the vector of unknown coefficients for RBFs is

a = {a1, a2, a3, . . . , an}T , (9)

and the vector of unknown coefficients for the basis polynomial is

b = {b1, b2, b3, . . . , bm}T . (10)

Assume that rk , k = 1, 2, . . . , n, being the distance between nodes in the support domain,
Rk,i = Ri(rk) are the RBFs in (7). We added the following m equations in (5) to make a
square matrix:

PT
ma = 0. (11)

So, the following system of equations is obtained from (5) and (11):

Ûs =

(
Us

0

)

=

(
Rn Pm

PT
m 0

)(
a
b

)

= Gâs, (12)

in which the matrix G is theoretically non-singular [29] and

âs =

(
a
b

)

. (13)

Now from (12) we have

âs = G–1Ûs. (14)

By rewriting Eq. (4) we obtain

u(x) = �̂(x)Ûs, (15)

such that

�̂(x) =
[
Rn(x), Pm(x)

]
G–1. (16)

The shape functions corresponding to the nodal displacements of radial point interpola-
tion method (RPIM), are the first n functions of the above vector and we show them by
the vector �T (x):

�(x) =
{
φ1(x),φ2(x), . . . ,φn(x)

}
. (17)
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Now Eq. (15) converts to the following form:

u(x) = �(x)Us =
n∑

i=1

φi(x)ui. (18)

Also it is well known that the Kronecker delta function property is attached to the RPIM
shape functions by (16), which is explicitly written thus:

φi(xj) =

⎧
⎨

⎩
1, i = j, i, j = 1, 2, . . . , n,

0, i �= j, i, j = 1, 2, . . . , n,
(19)

and lead to a sparse global collocation system. We assume that the total number of nodes
that cover the �̄ = � ∩ ∂� is N . By rewriting Eq. (18), we have

u(x) = �(x)Us =
N∑

i=1

φi(x)ui. (20)

Since corresponding to node xj there is a shape function φi(x), i = 1, 2, . . . , N , obviously we
have from Eq. (19)

∀xj ∈ �c
x, φi(xj) = 0, (21)

where �c
x = {xj : xj /∈ �x}. Now the derivatives of u(x) respect to xi, ith component of x =

{x1, . . . , xi, . . . , xN }, determined as

∂u
∂xi

(x) =
N∑

j=1

∂φj

∂xi
(x)uj, (22)

and for high derivatives of u(x) we have

∂ su
∂(xi)s (x) =

N∑

j=1

∂ sφj

∂(xi)s (x)uj, (23)

where ∂s

∂(xi)s is for the sth derivatives with respect to xi implying that due to Eq. (21), ∀xj ∈
�c

x, ∂sφj
∂(xi)s (x) = 0, s = 1, 2, . . . . Denoting u(s)

xi (·) = ∂su(·)
∂(xi)s and setting x = xi in Eq. (20). Then the

following matrix form is given:

⎛

⎜
⎜
⎝

u(s)
xi (x1)

...
u(s)

xi (xN )

⎞

⎟
⎟
⎠ =

Ds
xi︷ ︸︸ ︷⎛

⎜
⎜
⎝

∂sφ1
∂(xi)s (x1) · · · ∂sφN

∂(xi)s (x1)
...

. . .
...

∂sφ1
∂(xi)s (xN ) · · · ∂sφN

∂(xi)s (xN )

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

u1
...

uN

⎞

⎟
⎟
⎠ . (24)

This matrix-vector form for high-order derivatives is as follows:

Us
xi

= Ds
xi

U , (25)
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where

Us
xi

=
{

u(s)
xi

(x1), . . . , u(s)
xi

(xN )
}

. (26)

3 Implementation of the SMRPI for p-Laplacian equation
By using (20) and (23), the following form is obtained for Eq. (1):

– div

(∣
∣∣∣
∣

N∑

j=1

∇φj(x)uj

∣
∣∣∣
∣

p–2 N∑

j=1

∇φj(x)uj

)

= f (x). (27)

For simplicity of computation, we replace the term |∑N
j=1 ∇φi(x)uj|p–2 by a linear combi-

nation of the basis functions φj(x),

∣
∣∣
∣∣

N∑

j=1

∇φj(x)uj

∣
∣∣
∣∣

p–2

=
N∑

j=1

φj(x)κj(u), (28)

where u = {u1, . . . , uN }T . Let x = xi, i = 1, 2, . . . , N� (N� is the number of nodes in �), so
with respect to (19) we have

∣
∣∣
∣∣

N∑

j=1

∇φj(xi)uj

∣
∣∣
∣∣

p–2

= κj(u), i = 1, 2, . . . , N�. (29)

Applying Eq. (28) to Eq. (27) implies

– div

( N∑

j=1

φj(x)κj(u)
N∑

j=1

∇φj(xi)uj

)

= f (xi), i = 1, 2, . . . , N�, (30)

and equivalently

N∑

k=1

– div

( N∑

j=1

φj(xi)∇φk(xi)κj(u)

)

uk = f (xi), i = 1, 2, . . . , N�. (31)

By using Eqs. (2) and (3) for the nodes which are located, respectively, on the boundary �1

and �2, we have the following equivalent relations:

N∑

j=1

φj(xi)uj = g1(xi), i = 1, 2, . . . , N�1 , (32)

N∑

j=1

∇φj(xi).nuj = g2(xi), i = 1, 2, . . . , N�2 . (33)

According to the above discussions, problem (1)–(3) is equivalent to the following system
of algebraic equations:

K(u)u = F, (34)
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where

[
K(u)

]
i,j = – div

( N∑

j=1

φj(xi)∇φk(xi)κj(u)

)

,

Fi = f (xi), i = 1, . . . , N�, j = 1, . . . , N ,

(35)

[
K(u)

]
i,j = φj(xi),

Fi = g1(xi), i = N� + 1, . . . , N� + N�1 , j = 1, . . . , N ,
(36)

and also

[
K(u)

]
i,j = ∇φj(xi).n,

Fi = g2(xi), i = N� + N�1 + 1, . . . , N , j = 1, . . . , N .
(37)

An iterative method with an initial guess u0 is applied to obtain an approximate solution
of (34). For comparable results between our results and other literature, we can solve the
nonlinear system (34) by invoking the Matlab function fsolve.

4 Numerical results
In this section, four numerical examples are solved to demonstrate the efficiency and accu-
racy of the present SMRPI method. These examples were solved by other methods such
as EFG method [16], IEFG method [17], FVM [14], the DG method [8] and the MFEM
[7, 23]. Since the best results of these methods are obtained using the EFG method, the
comparison in this paper has been done between our results with those obtained in [16]
and we omit any other attempts. Also, we need to recall the following Sobolev norms to
analyze the error of our method:

|u – uh|0,p =
[∫

�

|u – uh|pd�

] 1
p

, (38)

|u – uh|1,p =
[∫

�

∣∣
∣∣

∂

∂x1
(u – uh)

∣∣
∣∣

p

+
∣∣
∣∣

∂

∂x2
(u – uh)

∣∣
∣∣

p

d�

] 1
p

, (39)

‖σ – σh‖0,q =
[∫

�

|σ – σh|qd�

] 1
q

, (40)

and quasi-norms as

|u – uh|(u,p) =
[∫

�

(∣∣∇(u – uh)
∣
∣ +

∣
∣∇(u – uh)

∣
∣)p–2∣∣∇(u – uh)

∣
∣2d�

] 1
2

, (41)

|σ – σh|(σ ,q) =
[∫

�

(∣∣∇(σ – σh)
∣∣ +

∣∣∇(σ – σh)
∣∣)q–2∣∣∇(σ – σh)

∣∣2d�

] 1
2

, (42)

where σ = |∇u|p–2∇u is the flux associated to u and q = p
p–1 denotes the dual of p. Obvi-

ously, the norms in Eqs. (39)–(42) are equivalent when p = 2. To apply the SMRPI method
on all examples, let rs = 4.5h, which is significant enough to have a sufficient number of
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Figure 1 The domain � and distribution of points

Figure 2 Graphs of the SMRPI solution and the error with h = 1/32 for Example 1

nodes for any support domain in which the radius of disks of the support domain is used
to construct the basis functions. The location of central nodes in the region of the test
problem is shown in Fig. 1. In Eq. (4) we use the thin plate spline (TPS) for RBF with three
order φ(x) = ‖x‖6 log‖x‖ where ‖ · ‖ is the Euclidean norm in R

2 and x = (x1, x2). Also, let
m = 21, leading to the polynomial basis functions

PT
m(x) =

{
1, x1, x2, x2

1, x1x2, x2
2, x3

1, x2
1x2, x1x2

2, x3
2, x4

1, x3
1x2, x2

1x2
2, x1x3

2, x4
2, x5

1,

x4
1x2, x3

1x2
2, x2

1x3
2, x1x4

2, x5
2
}

.

Example 1 For the first example, we solved the radially symmetric problem in � = [0, 1]2

with Dirichlet boundary condition. This problem has an analytical solution as follows:

u(x1, x2) =
p – 1
p – s

(
1

2 – s

) 1
p–1 (

1 – r
p–s
p–1

)
, r =

√
(x1 + 1)2 + (x2 + 1)2,

in which p and s are two parameters, u and σ are infinitely smooth and the right-hand func-
tion in Eq. (1) is f (x1, x2) = r–s. We take p = 4.0 and s = 0.6 for the solution of this problem.
Figure 2 gives the SMRPI solution uh and the associated error u – uh with h = 1/32. The
error results have been computed with different types of norms and quasi-norms as pre-
sented in Table 1. From the results which we can see in this table that the SMRPI method
accurately provides approximate solutions. Moreover, the accuracy of the numerical re-
sults has been improved by decreasing the number of h. In addition, for evaluation of the
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Table 1 Comparing errors with different types of norms and quasi-norms for Example 1 with p = 4.0
and s = 0.6 for SMRPI and EFG methods

h 1
4

1
8

1
16

1
32

1
64

|u – uh|1,p EFG 4.024× 10–3 1.740× 10–3 8.403× 10–4 4.116× 10–4 2.049× 10–4

SMRPI 1.334× 10–1 9.632× 10–4 8.286× 10–6 4.583× 10–7 2.189× 10–8

|u – uh|u,p EFG 3.758× 10–3 1.657× 10–3 7.986× 10–4 3.924× 10–4 1.954× 10–4

SMRPI 1.004× 10–1 6.520× 10–4 7.601× 10–6 4.113× 10–7 1.398× 10–7

|σ – σh|0,q EFG 7.751× 10–3 3.239× 10–3 1.559× 10–3 7.678× 10–4 3.831× 10–4

SMRPI 3.335× 10–1 3.212× 10–3 7.256× 10–6 5.813× 10–6 3.459× 10–6

|σ – σh|σ ,q EFG 8.527× 10–3 3.573× 10–3 1.715× 10–3 8.422× 10–4 4.197× 10–4

SMRPI 3.884× 10–1 7.932× 10–3 9.886× 10–5 5.983× 10–6 3.289× 10–7

Figure 3 Comparison the errors of SMRPI (red line) and EFG (blue line) solutions with different choices of h
for Example 1

accuracy of the obtained results, we compared our results with the corresponding val-
ues of EFG in this table. Error comparison results for the EFG method and the SMRPI
are given in Fig. 3. Obviously, both methods converge monotonously but our suggested
approach is more effective.

Example 2 For the second case, we take p = 1.5 and s = 0.6 for the solution of Example 1.
Here, r =

√
x2

1 + x2
2 and u and σ have a limited regularity for the performance of the SM-

RPI method. Figure 4 gives the SMRPI solution uh and the associated error u – uh with
h = 1/32. Table 2 shows the values of computed errors with different types of norms and
quasi-norms obtained by the EFG method and our present method. In addition, this ta-
ble states the effect of various values of the nodal spacing h on the results. As seen in
this table, the accuracy of the SMRPI method can be easily investigated by comparing
the error values improved by our introduced method with those obtained by the other
methods.
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Figure 4 Graphs of the SMRPI solution and the error with h = 1/32 for Example 2

Table 2 Comparing the errors with different types of norms and quasi-norms for Example 2 with
p = 1.5 and s = 0.6 for SMRPI and EFG methods

h 1
4

1
8

1
16

1
32

1
64

|u – uh|1,p EFG 7.135× 10–3 3.352× 10–3 1.612× 10–3 7.856× 10–4 3.908× 10–4

SMRPI 3.321× 10–1 6.632× 10–4 8.286× 10–6 4.151× 10–6 7.194× 10–7

|u – uh|u,p EFG 9.129× 10–3 4.456× 10–3 2.125× 10–3 1.010× 10–4 4.915× 10–4

SMRPI 4.225× 10–1 2.025× 10–4 7.887× 10–6 9.301× 10–7 1.811× 10–7

|σ – σh|0,q EFG 1.094× 10–2 6.371× 10–3 3.518× 10–3 1.825× 10–4 9.108× 10–4

SMRPI 4.521× 10–1 2.012× 10–3 8.986× 10–5 9.103× 10–6 1.129× 10–6

|σ – σh|σ ,q EFG 7.023× 10–3 3.527× 10–3 1.704× 10–3 8.150× 10–4 3.971× 10–4

SMRPI 3.884× 10–1 1.938× 10–3 6.416× 10–5 5.553× 10–6 1.112× 10–6

Example 3 In the third example, we consider a Dirichlet problem with

f (x, y) =

⎧
⎨

⎩
0, r =

√
x2

1 + x2
2 < a,

4p–1(r – a)3p–4(2 – 3p + a
r ), r ≥ a,

in which (x1, x2)T ∈ � = [0, 1]2 and a = 0.3. The analytical solution of this problem has the
following form:

u(x1, x2) =

⎧
⎨

⎩
0, r < a,

(r – a)4, r ≥ a.

Figure 5 gives the SMRPI solution uh and the associated error u – uh with h = 1/32. Ta-
ble 3 gives the computed errors for EFG and SMRPI methods with p = 1.5, 4.0. Comparing
these values reveals that the SMRPI method has a good convergence characteristic and the
accuracy of the present method is higher than other methods.

Example 4 In the last example we solved a torsional creep problem by the SMRPI
method in which the behavior of this problem was introduced in [16], so we ignore
the details. Figure 6 gives the SMRPI solution uh with h = 1/32 for p = 1.1, 2.0, re-
spectively. Figure 7 gives the SMRPI solution uh and the associated error u – uh with
h = 1/32 and p = 11. The convergence rates of both the SMRPI and the EFG meth-
ods are compared for different parameters p in Table 4. Error comparison results for
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Figure 5 Graphs of the SMRPI solution and the error with h = 1/32 and p = 1.5 for Example 3

Table 3 Comparing typical errors for Example 3 for SMRPI and EFG methods

h 1
8

1
16

EFG SMRPI EFG SMRPI

p = 1.5 |u – uh|0,p 1.582× 10–3 5.595× 10–4 2.509× 10–4 1.411× 10–6

|u – uh|1,p 5.491× 10–2 4.427× 10–3 2.193× 10–2 5.125× 10–5

|u – uh|u,p 4.232× 10–2 1.011× 10–3 1.674× 10–2 2.514× 10–4

p = 4.0 |u – uh|0,p 5.514× 10–3 1.144× 10–5 1.407× 10–3 5.985× 10–6

|u – uh|1,p 8.098× 10–2 1.402× 10–4 2.656× 10–2 9.948× 10–6

|u – uh|u,p 1.151× 10–1 2.221× 10–2 4.856× 10–2 5.552× 10–4

Figure 6 Graphs of the SMRPI solution and the error with h = 1/32 and p = 1.1, 2 for Example 4

Figure 7 Graphs of the SMRPI solution and the error with h = 1/32 and p = 11 for Example 4

different choices of p are given in Fig. 8. The numerical results clearly show the im-
provement of accuracy using the SMRPI method. So, our suggested approach is more
effective.
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Table 4 Comparing typical errors for Example 4 for SMRPI and EFG methods

h 1
8

1
16

1
32

EFG SMRPI EFG SMRPI EFG SMRPI

p = 1.1 |u – uh|0,p 1.570× 10–1 1.775× 10–3 4.557× 10–3 1.572× 10–5 2.155× 10–3 5.141× 10–6

|u – uh|1,p 2.949× 10–1 4.448× 10–3 8.557× 10–2 1.225× 10–5 4.047× 10–3 4.311× 10–6

|u – uh|u,p 2.237× 10–2 3.971× 10–3 1.162× 10–2 1.588× 10–4 1.936× 10–2 1.685× 10–5

p = 2 |u – uh|0,p 1.582× 10–3 5.595× 10–4 2.509× 10–4 1.411× 10–6 2.509× 10–4 1.411× 10–6

|u – uh|1,p 3.163× 10–2 1.658× 10–3 1.643× 10–2 5.125× 10–5 2.738× 10–3 1.091× 10–6

p = 11.0 |u – uh|0,p 3.681× 10–2 5.849× 10–3 2.038× 10–2 5.985× 10–5 6.523× 10–3 1.258× 10–6

|u – uh|1,p 3.921× 10–2 1.582× 10–4 2.171× 10–2 5.781× 10–6 7.164× 10–3 2.478× 10–6

|u – uh|u,p 2.775× 10–2 8.520× 10–3 7.711× 10–3 4.112× 10–4 3.487× 10–3 6.632× 10–5

Figure 8 Graphs of the SMRPI solution with different values of p and h for Example 4

5 Conclusion
This paper is devoted to solving the p-Laplacian equation with mixed Dirichlet and Neu-
mann boundary conditions by the SMRPI method. In spite of easy implementation of
other methods for solving this problem, the challenge of these methods is their limited
accuracy, locality, complexity and high cost of computing in linearization of the nonlinear
terms. So, we propose an SMRPI scheme that, in addition, employs radial functions as a
means of local interpolation, offers a very flexible framework with a high accuracy for solv-
ing p-laplacian equation. Numerical examples show that our suggested approach is more
effective and accurate than the EFG method for various choices of norms and semi norms.
We show that the SMRPI method has a good convergence characteristic in comparison to
other methods. The interested reader is advised to apply this method for others strongly
nonlinear PDEs.
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