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Abstract
By defining the Banach spaces endowed with the appropriate norm, constructing a
suitable projection scheme, and using the coincidence degree theory due to Mawhin,
we study the existence of solutions for functional boundary value problems at
resonance on the half-line with dimKer L = 1. And an example is given to show that
our result here is valid.
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1 Introduction
In this article, we discuss the following functional boundary-value problems at resonance
on the half-line with dim Ker L = 1:

⎧
⎪⎪⎨

⎪⎪⎩

ϕ(n)(x) = f (x,ϕ(x),ϕ′(x), . . . ,ϕ(n–1)(x)), x ∈ [0, +∞),

ϕ(i)(0) = 0, ϕ(n–1)(+∞) = 0, 1 ≤ i ≤ n – 3,

�1(ϕ(x)) = 0, �2(ϕ(x)) = 0,

(1.1)

where n ≥ 3, �1,�2 : Cn–1[0, +∞) →R are two linear bounded functionals with resonance
condition �1(1)�2(xn–2) – �2(1)�1(xn–2) = 0.

In the last few years, considerable motivation has been provided to the subject of differ-
ential equations on the finite interval with specific boundary conditions and resonance
scenarios (see [1–6] and the references cited therein). Very recently, the attention has
shifted to problems on the infinite interval with linear functional conditions. There are
a few papers to investigate the functional boundary value problems on the finite interval
(see [7–11]). For example, in [8], Kosmatov and Jiang investigated second order functional
problems with resonance of dimension one

⎧
⎨

⎩

x′′(t) = f (t, x(t), x′(t)), 0 < t < 1,

�1(x) = 0, �2(x) = 0,
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which improves the results of [6] and [7] in that respect as well and generalizes a number
of recent works about two-point, three-point, multi-point, and integral boundary value
problems. In addition, it clearly can also be used for higher order problems with functional
conditions.

Higher order boundary value problems for ordinary differential equations arise naturally
in technical applications [12–23]. For example, in [22], the authors discussed some higher
order boundary value problems at resonance with integral boundary conditions:

⎧
⎨

⎩

x(n)(t) = f (t, x(t), x′(t), . . . , x(n–1)(t)) + e(t), 0 < t < 1,

x(n–1)(0) = αx(ξ ), x′(0) = x′′(0) = · · · = x(n–2)(0) = 0, x(1) =
∫ 1

0 x(s) dg(s).

As far as we know, this is the first paper to study the higher order functional boundary
value problems at resonance on the half-line.

2 Preliminaries
We give some theoretical foundations which will be used in what follows.

Definition 2.1 Let X, Y be real Banach spaces, L : dom L ⊂ X → Y be a linear operator.
L is said to be the Fredholm operator of index zero provided that:

(i) Im L is a closed subset of Y ;
(ii) dim Ker L = codim Im L < +∞.

Let P : X → X, Q : Y → Y be continuous projectors such that Im P = Ker L, Ker Q = Im L,
X = Ker L ⊕ Ker P, and Y = Im L ⊕ Im Q. It follows that L|dom L∩Ker P : dom L ∩ Ker P → Im L
is reversible. We denote the inverse of the mapping L|dom L∩Ker P by KP . Let � be an open
bounded subset of X such that dom L ∩ � �= ∅. The mapping N : X → Y will be called
L-compact on � if QN(�) is bounded and KP(I – Q)N : � → X is compact.

Theorem 2.2 (see [24] Mawhin continuation theorem) Let L : dom L ⊂ X → Y be a Fred-
holm operator of index zero and N : X → Y be L-compact on �. Assume that the following
conditions are satisfied:

(i) Lx �= λNx for every (x,λ) ∈ [(dom L \ Ker L) ∩ ∂�] × (0, 1);
(ii) Nx /∈ Im L for every x ∈ Ker L ∩ ∂�;

(iii) deg(QN |Ker L,� ∩ Ker L, 0) �= 0, where Q : Y → Y is a continuous projection such
that Im L = Ker Q.

Then the equation Lx = Nx has at least one solution in dom L ∩ �.

Lemma 2.3 (see [25]) Assume that V ⊂ X (X appearing in this article) is bounded. V is
compact if { ϕ(x)

ex : ϕ ∈ V } is equicontinuous on [0, T], ∀T < ∞, and equiconvergent at infin-
ity.

In this paper, we will always suppose that the following condition holds:
(H1) Let f : [0, +∞) × R

n → R be continuous. For any constant r > 0, there exists
hr(x) ∈ L[0, +∞) such that |f (x, exy1, exy2, . . . , exyn)| ≤ hr(x), x ∈ [0, +∞), |yi| ≤ r,
i = 1, 2, . . . , n.
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3 Main results
Let X = {ϕ : ϕ ∈ Cn–1[0, +∞), supx∈[0,+∞)

|ϕ(j)(x)|
ex < ∞,ϕ(i)(0) = 0, i = 1, 2, . . . , n – 3, j =

0, 1, 2, . . . , n – 1} with the norm ‖ϕ‖ = max{‖ ϕ(i)

ex ‖∞, i = 0, 1, 2, . . . , n – 1}, where ‖ϕ‖∞ =
supt∈[0,+∞) |ϕ(x)|, and Y = L[0, +∞) with the norm ‖u‖1 =

∫ +∞
0 |u(x)|dx.

It is easy to prove that (X,‖ · ‖) and (Y ,‖ · ‖1) are Banach spaces.
We define an operator L as follows:

Lϕ(x) = ϕ(n)(x)

with dom L = {ϕ ∈ X : ϕ(n)(x) ∈ Y ,ϕ(n–1)(+∞) = 0,�1(ϕ(x)) = 0,�2(ϕ(x)) = 0}.
An operator N : X → Y is defined as follows:

(Nϕ)(x) = f
(
x,ϕ(x),ϕ′(x), . . . ,ϕ(n–1)(x)

)
, ϕ ∈ X, x ∈ [0, +∞).

So, problem (1.1) becomes Lϕ = Nϕ.
For convenience, we denote
(H2) The linear functionals �1,�2 : X → R satisfy �2(1) = b, �2(xn–2) = a, �1(1) = αb,

�1(xn–2) = αa, (�1 – α�2)(xne–x) �= 0, where a2 + b2 �= 0, α, a, b ∈R.
(H3) The functionals �1,�2 : X →R are linear continuous with the respective norms β1,

β2, that is, |�i(ϕ)| ≤ βi‖ϕ‖, i = 1, 2.

Lemma 3.1 There must exist g ∈ Y such that

(�1 – α�2)
(∫ +∞

0
k(x, y)g(y) dy

)

= 1,

where

k(x, y) =

⎧
⎨

⎩

– xn–1

(n–1)! , 0 ≤ x ≤ y < +∞;

– xn–1–(x–y)n–1

(n–1)! , 0 ≤ y ≤ x < +∞.
(3.1)

Proof Since we just need to find a specific g satisfying the equation, in particular, let x =
xne–x ∈ X, h(x) = (xne–x)(n) ∈ Y , x ∈ [0, +∞), we have

∫ +∞

0
k(x, y)h(y) dy =

1
(n – 1)!

∫ x

0
(x – y)n–1h(y) dy –

∫ +∞

0

xn–1

(n – 1)!
h(y) dy

= x(x) – x(0) –
x(n–1)(+∞)

(n – 1)!
xn–1 –

x(n–2)(0)
(n – 2)!

xn–2

= x(x).

Now, considering condition (H2), take

g(y) =
h(y)

(�1 – α�2)(
∫ +∞

0 k(x, y)x(n)(y) dy)
,

thus,

�

(∫ +∞

0
k(x, y)g(y) dy

)

= 1. �
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Lemma 3.2 L is a Fredholm operator of index zero.

Proof From ϕ(n)(x) = u(x) and ϕ(i)(0) = 0, 1 ≤ i ≤ n – 3, we have

ϕ(x) =
1

(n – 1)!

∫ x

0
(x – y)n–1u(y) dy + ϕ(0) +

ϕ(n–1)(0)
(n – 1)!

xn–1 +
ϕ(n–2)(0)
(n – 2)!

xn–2. (3.2)

Now we will give Ker L and Im L.
Taking ϕ ∈ dom L with Lϕ = 0, we obtain ϕ(x) = ϕ(0) + ϕ(n–1)(0)

(n–1)! xn–1 + ϕ(n–2)(0)
(n–2)! xn–2. This,

together with ϕ(n–1)(+∞) = 0, �1(ϕ(x)) = 0 and �2(ϕ(x)) = 0, implies that

�1
(
ϕ(x)

)
= ϕ(0)�1(1) +

ϕ(n–2)(0)
(n – 2)!

�1
(
xn–2) = 0,

�2
(
ϕ(x)

)
= ϕ(0)�2(1) +

ϕ(n–2)(0)
(n – 2)!

�2
(
xn–2) = 0.

Based on condition (H2), we have

ϕ(x) = c
(
a – bxn–2), c ∈ R.

So,

Ker L =
{

c
(
a – bxn–2)|a2 + b2 �= 0, c ∈R

}
, dim Ker L = 1.

In order to prove

Im L =
{

u ∈ Y : (�1 – α�2)
(∫ ∞

0
k(x, y)u(y) dy

)

= 0
}

. (3.3)

To see this, let us suppose that u ∈ Im L, then there exists ϕ ∈ dom L such that u = Lϕ ∈ Y .
From (3.1) and ϕ(n–1)(+∞) = 0, we have

ϕ(x) =
1

(n – 1)!

∫ x

0
(x – y)n–1u(y) dy –

1
(n – 1)!

∫ +∞

0
xn–1u(y) dy

+ ϕ(0) +
ϕ(n–2)(0)
(n – 2)!

xn–2. (3.4)

It follows from �1(ϕ(x)) = 0, �2(ϕ(x)) = 0, and (H2) that

(�1 – α�2)
(∫ ∞

0
k(x, y)u(y) dy

)

= 0.

That is,

Im L ⊆
{

u ∈ Y : (�1 – α�2)
(∫ ∞

0
k(x, y)u(y) dy

)

= 0
}

.

If u ∈ {u ∈ Y : (�1 – α�2)(
∫ ∞

0 k(x, y)u(y) dy) = 0}, take

ϕ(x) = –
axn–2 + b
a2 + b2 �2

(∫ ∞

0
k(x, y)u(y) dy

)

+
∫ ∞

0
k(x, y)u(y) dy.
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In view of (H2), it is easy to deduce that Lϕ = ϕ(n)(x) = u(x), ϕ(i)(0) = 0, 1 ≤ i ≤ n – 3,
ϕ(n–1)(+∞) = 0, and �i(ϕ(x)) = 0, i = 1, 2. That is, u ∈ Im L, i.e.,

{

u ∈ Y : (�1 – α�2)
(∫ ∞

0
k(x, y)u(y) dy

)

= 0
}

⊆ Im L.

Combining the above, we obtain (3.3).
Define Q : Y → Y by

Qu = (�1 – α�2)
(∫ ∞

0
k(x, y)u(y) dy

)

g(x),

where g(x) is introduced in Lemma 3.1.
Clearly, Ker Q = Im L, Im Q = {u|u = cg(x), x ≥ 0, c ∈ R}, and Q : Y → Y is a linear pro-

jector. In fact, for u ∈ Y , we have

(
Q2u

)
(x) = (�1 – α�2)

(∫ ∞

0
k(x, y)u(y) dy

)

(�1 – α�2)
(∫ ∞

0
k(x, y)g(y) dy

)

g(x) = Qu.

For u ∈ Y , we have u = (u – Qu) + Qu, Qu ∈ Im Q, (I – Q)u ∈ Ker Q = Im L. So, we obtain
Y = Im Q + Im L. Take u0 ∈ Im Q means that u0 can be written u0 = cg(x), c ∈ R. At the
same time, by u0 ∈ Im L and Lemma 3.1, we get c = 0. This implies that u0 = 0. Thus, Y =
Im Q ⊕ Im L and dim Ker L = codim Im L < +∞. Observing that Im L is a closed subspace of
Y ; L is a Fredholm operator of index zero. �

Define P : X → X as

(Pϕ)(x) =
1

a2 + b2

(

aϕ(0) –
bϕ(n–2)(0)

(n – 2)!

)
(
a – bxn–2), ϕ ∈ X.

Clearly, P : X → X is a linear continuous projector and Im P = {u|u(x) = c(a – bxn–2), x ≥
0, c ∈R} = Ker L. Thus, X = Im P ⊕ Ker P = Ker L ⊕ Ker P.

Define KP : Im L → dom L ∩ Ker P by

(KPu)(x) = –
axn–2 + b
a2 + b2 �2

(∫ ∞

0
k(x, y)u(y) dy

)

+
∫ ∞

0
k(x, y)u(y) dy, u ∈ Im L.

By simple calculations, for ϕ ∈ dom L ∩ Ker P,

(KPLP)ϕ = –
axn–2 + b
a2 + b2 �2

(∫ ∞

0
k(x, y)ϕ(n)(y) dy

)

+
∫ ∞

0
k(x, y)ϕ(n)(y) dy

= –
axn–2 + b
a2 + b2 �2

(

ϕ(x) – ϕ(0) –
ϕ(n–2)(0)xn–2

(n – 2)!

)

+ ϕ(x) – ϕ(0) –
ϕ(n–2)(0)xn–2

(n – 2)!

= ϕ(x) –
axn–2 + b
a2 + b2

(

–bϕ(0) –
aϕ(n–2)(0)

(n – 2)!

)

– ϕ(0) –
ϕ(n–2)(0)xn–2

(n – 2)!

= ϕ(x) –
1

a2 + b2

(

aϕ(0) –
bϕ(n–2)(0)

(n – 2)!

)
(
a – bxn–2)
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= ϕ(x) – Pϕ(x) = ϕ(x)

and (LPKP)u = u, ∀u ∈ Im L. So, KP = (LP)–1, where LP = L|dom L∩Ker P : dom L ∩ Ker P →
Im L.

Define the linear isomorphism J : Ker L → Im Q as J(c(a – bxn–2)) = cg(x), c ∈ R, where
g(x) is also introduced in Lemma 3.1.

The next lemma provides norm estimates needed for the following result.

Lemma 3.3 For u ∈ Y , ‖KPu‖ ≤ B‖u‖1, where

B =
(

1 +
(|a|(n – 2)! + |b|)

a2 + b2 β2

)

.

Proof Observe that due to |�2(ϕ(x))| ≤ β2‖ϕ‖,

∣
∣
∣
∣�2

(∫ ∞

0
k(x, y)u(y) dy

)∣
∣
∣
∣ ≤ β2

∥
∥
∥
∥

∫ ∞

0
k(x, y)u(y) dy

∥
∥
∥
∥

≤ β2

∥
∥
∥
∥

1
(n – 1)!

∫ x

0
(x – y)n–1u(y) dy –

∫ ∞

0

xn–1

(n – 1)!
u(y) dy

∥
∥
∥
∥

≤ β2

∥
∥
∥
∥

1
(n – 1)!

∫ ∞

0
(x – y)n–1u(y) dy –

∫ ∞

0

xn–1

(n – 1)!
u(y) dy

∥
∥
∥
∥

≤ β2

∥
∥
∥
∥

∫ ∞

0

xn–1

(n – 1)!
u(y)

∥
∥
∥
∥

≤ β2

∫ ∞

0

∣
∣u(y)

∣
∣dy

∥
∥
∥
∥

xn–1

(n – 1)!

∥
∥
∥
∥

≤ β2‖u‖1.

Then

‖KPu‖ =
∥
∥
∥
∥–

axn–2 + b
a2 + b2 �2

(∫ ∞

0
k(x, y)u(y) dy

)

+
∫ ∞

0
k(x, y)u(y) dy

∥
∥
∥
∥

≤ |�2(
∫ ∞

0 k(x, y)u(y) dy)|
a2 + b2

∥
∥axn–2 + b

∥
∥ +

∥
∥
∥
∥

∫ ∞

0
k(x, y)u(y) dy

∥
∥
∥
∥

≤ (|a|(n – 2)! + |b|)
a2 + b2 β2‖u‖1 + ‖u‖1

=
(

1 +
(|a|(n – 2)! + |b|)

a2 + b2 β2

)

‖u‖1 = B‖u‖1. �

Lemma 3.4 N is L-compact on � if dom L ∩ � �= ∅, where � is a bounded open subset
of X.

Proof For convenience, denote Mr :=
∫ +∞

0 |hr(y)|dy.
We will prove that QN : X → Y is continuous and bounded.
Since � ⊂ X is bounded, for ϕ ∈ �, there exists a constant r > 0 such that ‖ϕ‖ < r.

‖QNϕ‖1 =
∫ +∞

0

∣
∣
∣
∣(�1 – α�2)

(∫ +∞

0
k(x, y)Nϕ(y) dy

)

g(x)
∣
∣
∣
∣dx
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≤
∣
∣
∣
∣(�1 – α�2)

(∫ +∞

0
k(x, y)Nϕ(y) dy

)∣
∣
∣
∣

∫ +∞

0

∣
∣g(x)

∣
∣dx

≤ (
β1 + |α|β2

)
∥
∥
∥
∥

∫ +∞

0
k(x, y)Nϕ(y) dy

∥
∥
∥
∥

∫ +∞

0

∣
∣g(x)

∣
∣dx.

It is not difficult to verify that supx∈[0,+∞)
|(∫ +∞

0 k(x,y)Nϕ(y) dy)(i)|
ex ≤ ∫ +∞

0 |Nϕ(y)|dy, i =
0, 1, 2, . . . , n – 1.

By condition (H1), we have

∥
∥
∥
∥

∫ +∞

0
k(x, y)Nϕ(y) dy

∥
∥
∥
∥ = sup

x∈[0,+∞)

|(∫ +∞
0 k(x, y)Nϕ(y) dy)(i)|

ex

≤
∫ +∞

0

∣
∣Nϕ(y)

∣
∣dy ≤

∫ +∞

0
hr(y) dy = Mr .

So, QN : X → Y is bounded. By (H1) and the Lebesgue dominated convergence theorem,
we see that QN : X → Y is continuous.

Now, we will prove that KP(I – Q)N : � → X is compact.

∣
∣
∣
∣
KP(I – Q)Nϕ(x)

ex

∣
∣
∣
∣

=
∣
∣
∣
∣–

axn–2 + b
ex

1
a2 + b2 �2

(∫ +∞

0
k(x, y)(I – Q)Nϕ(y) dy

)

+
∫ +∞

0 k(x, y)(I – Q)Nϕ(y) dy
ex

∣
∣
∣
∣

≤ β2

a2 + b2

∣
∣
∣
∣
axn–2 + b

ex

∣
∣
∣
∣

∥
∥(I – Q)Nϕ

∥
∥

1 +
∣
∣
∣
∣

∫ +∞
0 k(x, y)(I – Q)Nϕ(y) dy

ex

∣
∣
∣
∣

≤ Mr

( |a| + |b|
a2 + b2 β2 + 1

)(

1 +
(
β1 + |α|β2

)
∫ +∞

0

∣
∣g(x)

∣
∣dx

)

< +∞,
∣
∣
∣
∣
(KP(I – Q)Nϕ(x))′

ex

∣
∣
∣
∣

=
∣
∣
∣
∣–

a(n – 2)xn–3

ex
1

a2 + b2 �2

(∫ +∞

0
k(x, y)(I – Q)Nϕ(y) dy

)

+
(
∫ +∞

0 k(x, y)(I – Q)Nϕ(y) dy)′

ex

∣
∣
∣
∣

≤ β2

a2 + b2

∣
∣
∣
∣
a(n – 2)xn–3

ex

∣
∣
∣
∣

∥
∥
∥
∥

∫ +∞

0
k(x, y)(I – Q)Nϕ(y) dy

∥
∥
∥
∥

+
∥
∥
∥
∥

∫ +∞

0
k(x, y)(I – Q)Nϕ(y) dy

∥
∥
∥
∥

≤ Mr

( |a|(n – 2)
a2 + b2 β2 + 1

)(

1 +
(
β1 + |α|β2

)
∫ +∞

0

∣
∣g(x)

∣
∣dx

)

< +∞.

Similarly, { |(KP(I–Q)Nϕ)(i)|
ex < +∞ : ϕ ∈ �, i = 2, 3, . . . , n – 1}, i.e., KP(I – Q)N : � → X is

bounded.
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Secondly, for ϕ ∈ �, 0 < x1 < x2 < T < +∞,

∣
∣
∣
∣
KP(I – Q)Nϕ(x2)

ex2
–

KP(I – Q)Nϕ(x1)
ex1

∣
∣
∣
∣

=
∣
∣
∣
∣–

ax2
n–2 + b
ex2

1
a2 + b2 �2

(∫ +∞

0
k(x, y)(I – Q)Nϕ(y) dy

)

+
∫ +∞

0 k(x2, y)(I – Q)Nϕ(y) dy
ex2

+
ax1

n–2 + b
ex1

1
a2 + b2 �2

(∫ +∞

0
k(x, y)(I – Q)Nϕ(y) dy

)

–
∫ +∞

0 k(x1, y)(I – Q)Nϕ(y) dy
ex1

∣
∣
∣
∣

≤
∣
∣
∣
∣

Ar

a2 + b2

(
ax1

n–2 + b
ex1

–
ax2

n–2 + b
ex2

)∣
∣
∣
∣

+
∫ +∞

0

∣
∣
∣
∣
k(x2, y)

ex2
–

k(x1, y)
ex1

∣
∣
∣
∣

∣
∣(I – Q)Nϕ(y) dy

∣
∣dy,

∣
∣
∣
∣
(KP(I – Q)Nϕ)′(x2)

ex2
–

(KP(I – Q)Nϕ)′(x1)
ex1

∣
∣
∣
∣

=
∣
∣
∣
∣–

a(n – 2)x2
n–3

ex2

�2(
∫ +∞

0 k(x, y)(I – Q)Nϕ(y) dy)
a2 + b2

+
(
∫ +∞

0 k(x, y)(I – Q)Nϕ(y) dy)′|x=x2

ex2

+
a(n – 2)x1

n–3

ex1

�2(
∫ +∞

0 k(x, y)(I – Q)Nϕ(y) dy)
a2 + b2

–
(
∫ +∞

0 k(x, y)(I – Q)Nϕ(y) dy)′|x=x1

ex1

∣
∣
∣
∣

≤
∣
∣
∣
∣
a(n – 2)Ar

a2 + b2

(
x1

n–3

ex1
–

x2
n–3

ex2

)∣
∣
∣
∣ +

∣
∣
∣
∣
(
∫ +∞

0 k(x, y)(I – Q)Nϕ(y) dy)′|x=x2

ex2

–
(
∫ +∞

0 k(x, y)(I – Q)Nϕ(y) dy)′|x=x1

ex1

∣
∣
∣
∣,

where

∥
∥
∥
∥�2

(∫ +∞

0
k(x, y)(I – Q)Nϕ(y) dy

)∥
∥
∥
∥ ≤ Mrβ2

(

1 + (β1 + αβ2)
∫ +∞

0
|g(x)|dx

)

:= Ar .

Define F1(x) =
∫ +∞

0 k(x, y)(I – Q)Nϕ(y) dy, x ∈ (0, T), T < ∞. Obviously,

∣
∣
∣
∣
F1(x2)

ex2
–

F1(x1)
ex1

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ +∞

0

(
k(x2, y)

ex2
–

k(x1, y)
ex1

)

(I – Q)Nϕ(y) dy
∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ x1

0

(
xn–1

1 – (x1 – y)n–1

ex1 (n – 1)!
–

xn–1
2 – (x2 – y)n–1

ex2 (n – 1)!

)

(I – Q)Nϕ(y) dy
∣
∣
∣
∣
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+
∣
∣
∣
∣

∫ x2

x1

(
xn–1

2 – (x2 – y)n–1

ex2 (n – 1)!
–

xn–1
1

ex1 (n – 1)!

)

(I – Q)Nϕ(y) dy
∣
∣
∣
∣

+
∣
∣
∣
∣

∫ +∞

T

(
xn–1

1
ex1 (n – 1)!

–
xn–1

2
ex2 (n – 1)!

)

(I – Q)Nϕ(y) dy
∣
∣
∣
∣,

∣
∣
∣
∣
F ′

1(x2)
ex2

–
F ′

1(x1)
ex1

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ x1

0

(
xn–2

1 – (x1 – y)n–2

ex1 (n – 2)!
–

xn–2
2 – (x2 – y)n–2

ex2 (n – 2)!

)

(I – Q)Nϕ(y) dy
∣
∣
∣
∣

+
∣
∣
∣
∣

∫ x2

x1

(
xn–2

2 – (x2 – y)n–2

ex2 (n – 2)!
–

xn–2
1

ex1 (n – 2)!

)

(I – Q)Nϕ(y) dy
∣
∣
∣
∣

+
∣
∣
∣
∣

∫ T

x2

(
xn–2

1
ex1 (n – 2)!

–
xn–2

2
ex2 (n – 2)!

)

(I – Q)Nϕ(y) dy
∣
∣
∣
∣

+
∣
∣
∣
∣

∫ +∞

T

(
xn–2

1
ex1 (n – 2)!

–
xn–2

2
ex2 (n – 2)!

)

(I – Q)Nϕ(y) dy
∣
∣
∣
∣.

By the uniform continuity of { xn–j

ex , j = 1, 2, 3, . . . , n} in [0, T] and the absolute continuity of
the integral, we see that { (KP(I–Q)Nϕ)(i)

ex : ϕ ∈ �, i = 0, 1, . . . , n – 1} is equicontinuous on [0, T],
∀T < ∞. Thirdly, for ε > 0, there exists a constant T1 > 0 such that if x > T1, then

∣
∣
∣
∣
xn–2

ex

∣
∣
∣
∣ <

a2 + b2

6|a|Ar
ε,

1
ex <

a2 + b2

6|b|Ar
ε.

For ε > 0, there exists a constant T2 > 0 such that if x > T2, then

∣
∣
∣
∣
k(x, y)

ex

∣
∣
∣
∣ <

xn–1

(n – 1)!ex <
β2

6Ar
ε.

Take T̃ = max{T1, T2}, for ϕ ∈ �, T̃ ≤ x1 < x2, we have

∣
∣
∣
∣
(KP(I – Q)Nϕ(x2)

ex2
–

(KP(I – Q)Nϕ(x1)
ex1

∣
∣
∣
∣

=
∣
∣
∣
∣–

ax2
n–2 + b
ex2

1
a2 + b2 �2

(∫ +∞

0
k(x2, y)(I – Q)Nϕ(y) dy

)

+
∫ +∞

0 k(x2, y)(I – Q)Nϕ(y) dy
ex2

+
ax1

n–2 + b
ex1

1
a2 + b2 �2

(∫ +∞

0
k(x1, y)(I – Q)Nϕ(y) dy

)

–
∫ +∞

0 k(x1, y)(I – Q)Nϕ(y) dy
ex1

∣
∣
∣
∣

≤ Ar

a2 + b2

∣
∣
∣
∣

(
ax1

n–2

ex1
–

ax2
n–2

ex2

)

+
(

b
ex1

–
b

ex2

)∣
∣
∣
∣

+
∫ +∞

0

∣
∣
∣
∣
k(x2, y)

ex2
–

k(x1, y)
ex1

∣
∣
∣
∣

∣
∣(I – Q)Nϕ(y)

∣
∣dy

≤ Ar

a2 + b2

(

2|a|a2 + b2

6|a|Ar
ε + 2|b|a2 + b2

6|b|Ar
ε

)

+ 2
Ar

β2

β2

6Ar
ε <

ε

3
+

ε

3
+

ε

3
= ε.
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For ε > 0, there exists a constant T3 > 0 such that if x > T3, then

∣
∣
∣
∣
xn–3

ex

∣
∣
∣
∣ <

a2 + b2

4|a|(n – 2)Ar
ε.

For ε > 0, there exists a constant T4 > 0 such that if x > T4, then

∣
∣
∣
∣

∂k(x,y)
∂x
ex

∣
∣
∣
∣ <

xn–2

(n – 2)!ex <
β2

4Ar
ε.

Take T∗ = max{T3, T4}, for ϕ ∈ �, T∗ ≤ x1 < x2, we have

∣
∣
∣
∣
(KP(I – Q)Nϕ)′(x2)

ex2
–

(KP(I – Q)Nϕ)′(x1)
ex1

∣
∣
∣
∣

=
∣
∣
∣
∣–

a(n – 2)x2
n–3

ex2

�2(
∫ +∞

0 k(x, y)(I – Q)Nϕ(y) dy)
a2 + b2

+
∫ +∞

0
∂k(x,y)

∂x |x=x2 (I – Q)Nϕ(y) dy
ex2

+
a(n – 2)x1

n–3

ex1

�2(
∫ +∞

0 k(x, y)(I – Q)Nϕ(y) dy)
a2 + b2

–
∫ +∞

0
∂k(x,y)

∂x |x=x1 (I – Q)Nϕ(y) dy
ex1

∣
∣
∣
∣

≤
∣
∣
∣
∣
a(n – 2)Ar

a2 + b2

(
x1

n–3

ex1
–

x2
n–3

ex2

)∣
∣
∣
∣

+
∫ +∞

0

∣
∣
∣
∣

∂k(x,y)
∂x |x=x2

ex2
–

∂k(x,y)
∂x |x=x1

ex1

∣
∣
∣
∣

∣
∣(I – Q)Nϕ(y)

∣
∣dy

<
2|a|(n – 2)Ar

a2 + b2
a2 + b2

4|a|(n – 2)Ar
ε + 2

Ar

β2

β2

4Ar
ε =

ε

2
+

ε

2
= ε.

For the above two arguments, take T = max{T̃ , T∗}, we hold that {(KP(I – Q)Nϕ)(i) : ϕ ∈
�, i = 0, 1} is equiconvergent for any x1, x2 ≥ T . Similarly, {(KP(I – Q)Nϕ)(i) : ϕ ∈ �, i =
2, 3, . . . , n – 1} is also equiconvergent at infinity. Therefore, by the Ascoli–Arzela theorem,
KP(I – Q)N : � → X is compact and QN(�) is bounded, i.e., N is L-compact. �

Theorem 3.5 Assume that (H1)–(H3) with b �= 0 and the following conditions hold:
(H4) There exist functions r, qi ∈ L[0, +∞) with (‖KP‖ + |a|+|b|

|b|(n–2)! )
∑n

i=1 ‖qi‖1 < 1 such that

∣
∣f (x, y1, y2, . . . , yn)

∣
∣ ≤

n∑

i=1

qi(x)e–x|yi| + r(x),

where x ∈ [0, +∞), yi ∈R.
(H5) There exists a constant M > 0 such that if |ϕ(n–2)(x)| > M for all x ∈ [0, +∞), then

(�1 – α�2)
(∫ +∞

0
k(x, y)f

(
y,ϕ(y),ϕ′(y),ϕ′′(y), . . . ,ϕ(n–1)(y)

)
dy

)

�= 0.
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(H6) There is a constant a0 > 0 such that if |c| > a0 either

c�
(∫ +∞

0
k(x, y)N

(
c
(
a – byn–2))dy

)

< 0 (3.5)

or

c�
(∫ +∞

0
k(x, y)N

(
c
(
a – byn–2))dy

)

> 0. (3.6)

Then boundary value problem (1.1) has at least one solution.

The following results will play a very important role in our subsequent analysis.

Lemma 3.6 The set

�1 =
{
ϕ ∈ dom L \ Ker L : Lϕ = λNϕ,λ ∈ [0, 1]

}

is bounded if (H1)–(H5) are satisfied.

Proof Take ϕ ∈ �1, then Nϕ ∈ Im L, thus we have

(�1 – α�2)
(∫ +∞

0
k(x, y)f

(
y,ϕ(y),ϕ′(y),ϕ′′(y), . . . ,ϕ(n–1)(y)

)
dy

)

= 0. (3.7)

This, together with (H5), means that there exists x0 ∈ [0,∞) such that |ϕ(n–2)(x0)| ≤ M.
Since ϕ(n–1)(x) = –

∫ +∞
x ϕ(n)(y) dy + ϕ(n–1)(+∞) and ϕ(n–2)(x) =

∫ x
x0

ϕ(n–1)(y) dy + ϕ(n–2)(x0),
we get |ϕ(n–1)(x)| ≤ ‖Nϕ‖1 and

|ϕ(n–2)(x)|
ex ≤ ‖Nϕ‖1 + M. (3.8)

Write ϕ(x) = ϕ1(x) + ϕ2(x), where ϕ1(x) = (I – P)ϕ(x) ∈ dom L ∩ Ker P and ϕ2(x) = Pϕ(x) ∈
Im P. Then since ϕ1(x) = (I – P)ϕ(x) ∈ dom L ∩ Ker P, we have

ϕ1(x) = KPLPϕ1(x) = KPLP(I – P)ϕ(x) = KPLPϕ(x) = λKPNϕ(x).

As is the proof of Lemma 3.3,

‖ϕ1‖ ≤ ‖KP‖‖Nϕ‖1. (3.9)

Now, ϕ2(x) = Pϕ(x) = c(ϕ)(a – bxn–2), where

c(ϕ) =
1

a2 + b2

(

aϕ(0) –
bϕ(n–2)(0)

(n – 2)!

)

is introduced for the sake of brevity. Hence

|ϕ(n–2)(x)|
ex =

| – b(n – 2)!c(ϕ)|
ex ≤ ‖Nϕ‖1 + M
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by (3.8). That is,

∣
∣c(ϕ)

∣
∣ ≤ ‖Nϕ‖1 + M

|b|(n – 2)!
ex.

Thus,

‖ϕ2‖ ≤ ∥
∥c(ϕ)

∥
∥ · ∥∥a – bxn–2∥∥ ≤ ‖Nϕ‖1 + M0

|b|(n – 2)!
(|a| + |b|). (3.10)

By (3.9) and (3.10), ‖ϕ‖ ≤ ‖ϕ1‖ + ‖ϕ2‖ ≤ C1‖Nϕ‖1 + C2, where

C1 = ‖KP‖ +
|a| + |b|

|b|(n – 2)!
, C2 =

M0

|b|(n – 2)!
(|a| + |b|).

Finally, it follows from (H4) that

‖ϕ‖ ≤ C1‖r‖1 + C2

1 – C1
∑n

i=1 ‖qi‖1
.

Therefore, �1 is bounded. �

Lemma 3.7 The set

�2 = {ϕ : ϕ ∈ Ker L, Nϕ ∈ Im L}

is bounded if (H1)–(H3), (H6) hold.

Proof Let ϕ ∈ �2, then ϕ(x) ≡ c(a – bxn–2), and Nϕ ∈ Im L. So, we can get

(�1 – α�2)�
(∫ +∞

0
k(x, y)f

(
y, c

(
a – byn–2), . . . , –bc(n – 2)!, 0

)
dy

)

= 0.

According to (H6), we have |c| ≤ a0, i.e., ‖ϕ‖ ≤ a0(|a|+ |b|(n – 2)!). The proof of Lemma 3.7
is completed. �

Lemma 3.8 The set

�3 =
{
ϕ ∈ Ker L : λJϕ + α(1 – λ)QNϕ = 0,λ ∈ [0, 1]

}

is bounded if conditions (H1)–(H3), (H6) are satisfied, where J : Ker L → Im Q is a linear
isomorphism given by J(c(a – bxn–2)) = cg(x), c ∈ R and

α =

⎧
⎨

⎩

–1, if (3.5) holds;

1, if (3.6) holds.
(3.11)

Proof Suppose that ϕ ∈ �3, we have ϕ(x) = c(a – bxn–2) and

λc = –α(1 – λ)(�1 – α�2)
(∫ +∞

0
k(x, y)f

(
y, c

(
a – byn–2), . . . , –bc(n – 2)!, 0

)
dy

)

.
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If λ = 0, by (H6), we have |c| ≤ a0. If λ = 1, then c = 0. If λ ∈ (0, 1), we suppose |c| > a0,
then

λc2 = –α(1 – λ)c(�1 – α�2)
(∫ +∞

0
k(x, y)f

(
y, c

(
a – byn–2), . . . , –bc(n – 2)!, 0

)
dy

)

< 0,

which contradicts λc2 > 0. So, Lemma 3.8 holds. �

Theorem 3.5 can be proved next.

Proof of Theorem 3.5 Let � be a bounded open subset of X such that {0} ∪ ⋃3
j=1 �j ⊂ �.

From Lemma 3.4, we know that N is L-compact on �. In view of Lemmas 3.6 and 3.7, we
can get:

(i) Lϕ �= λNϕ for every (ϕ,λ) ∈ [(dom L \ Ker L) ∩ ∂�] × (0, 1);
(ii) Nϕ /∈ Im L for every ϕ ∈ Ker L ∩ ∂�.
At last, we will prove that (iii) of Theorem 2.2 is satisfied.
Let H(ϕ,λ) = λJϕ + α(1 – λ)QNϕ. Noting �3 ⊂ �, we know H(ϕ,λ) �= 0 for every ϕ ∈

∂� ∩ Ker L. Thus, by the homotopic property of degree, we have

deg(QN |Ker L,� ∩ Ker L, 0) = deg(αJ ,� ∩ Ker L, 0) �= 0.

By Theorem 2.2, the functional boundary value problem (1.1) has at least one solution
in X. The proof of Theorem 3.5 is completed. �

Example Let us consider the following boundary value problem at resonance:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ϕ(3)(x) = f (x,ϕ(x),ϕ′(x),ϕ′′(x)),

ϕ′′(+∞) = 0,

�1(ϕ(x)) = ϕ(0) + 2ϕ′(1) = 0,

�2(ϕ(x)) = 2ϕ′(0) + 2ϕ(1) = 0,

where

f
(
x,ϕ(x),ϕ′(x),ϕ′′(x)

)

=

⎧
⎪⎪⎨

⎪⎪⎩

e–17x sinϕ(x) + e–17xϕ′(x) + e–17x sinϕ′′(x) + e–x; x ∈ [0, A],

sgn{ϕ′(x)}[e–17x sgn{ϕ(x)} sinϕ(x) + e–17x sgn{ϕ′′(x)}
× sinϕ′′(x) + e–x], x ∈ [A, +∞).

Corresponding to problem (1.1), we have that n = 3, �1(1) = 1, �1(x) = 2, �2(1) = 2,
�2(x) = 4. By simple calculation, we obtain α = 1

2 , a = 4, b = 2, and Ker L = {c(2 – x), c ∈R}.
It is not difficult to verify that (�1 – α�2)(x3e–x) = 3

e �= 0, (�1 – α�2)(
∫ +∞

0 k(x, y)g(y) dy) = 1,
where g(y) = 2e1–y

6–7e . Moreover,

∣
∣�2

(
ϕ(x)

)∣
∣ =

∣
∣2ϕ′(0) + 2ϕ(1)

∣
∣ ≤ 4‖ϕ‖,

that is, β2 = 4, and ‖Kp‖ = (1 + |a|+|b|
a2+b2 β2) = 11

5 .
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Take hr(x) = 2e–17x + e–x + re–16x, qi(x) = e–16x, i = 1, 2, 3, r(x) = e–x; moreover, (‖KP‖ +
|a|+|b|

|b| )
∑n

i=1 ‖qi‖1 = 39
40 < 1. Obviously, (H1) and (H4) are satisfied.

When A > 0 is fixed, we take M = 3e17A > 0. If ϕ′(x) > M, then f (x,ϕ(x),ϕ′(x),ϕ′′(x)) >
Me–17A –2 > 0, x ∈ [0, A], f (x,ϕ(x),ϕ′(x),ϕ′′(x)) > 0, x ∈ [A, +∞), i.e., f (x,ϕ(x),ϕ′(x),ϕ′′(x)) >
0, x ∈ [0, +∞).

If ϕ′(x) < –M, then f (x,ϕ(x),ϕ′(x),ϕ′′(x)) < 3 – Me–A < 0, x ∈ [0, A], f (x,ϕ(x),ϕ′(x),
ϕ′′(x)) < 0, x ∈ [A, +∞), i.e., f (x,ϕ(x),ϕ′(x),ϕ′′(x)) < 0, x ∈ [0, +∞).

For convenience, we denote F(x) = Nϕ(x). Hence

(

�1 –
1
2
�2

)(∫ ∞

0
k(x, y)F(y) dy

)

=
∫ 1

0

–(y2 + 2y)
2

F(y) +
∫ ∞

1
–

1
2

F(y) dy �= 0

provided ϕ(x) ∈ dom L \ Ker L satisfies |ϕ′(x)| > M. This means that condition (H5) is sat-
isfied.

Finally, take ϕ ∈ Ker L and ϕ(x) = c(2 – x); similarly, one can choose a0 = 2e17A > 0 such
that

c
(

�1 –
1
2
�2

)(∫ ∞

0
k(x, y)N

(
c(2 – y)

)
dy

)

= c
[∫ 1

0

–(y2 + 2y)
2

N
(
c(2 – y)

)
dy +

∫ ∞

1
–

1
2

N
(
c(2 – y)

)
dy

]

> 0

provided |c| > a0.
Since if A ≥ 1, cN(c(2 – y)) = ce–17y sin(c(2 – y)) + e–17y(–c2) + ce–y ≤ 2|c| – c2e–17 = |c|(2 –

|c|e–17) < 0, y ∈ [0, 1], cN(c(2 – y)) ≤ |c|e–17 – c2e–17 + |c|e–1 < 0, y ∈ [1, A], and cN(c(2 – y)) <
0, y ∈ [A, +∞).

Similarly, if A < 1, cN(c(2 – y)) < |c|(2 – |c|e–17) < 0, y ∈ [0, A], and cN(c(2 – y)) < 0, y ∈
[A, +∞).

So, condition (H6) holds. It follows from Theorem 3.5 that there must be at least one
solution in X.

4 Conclusion
In this paper, we study the subject of differential equations on the infinite interval with
functional boundary conditions at resonance. As far as we know, the resonance problem is
a difficult subject in the boundary value problem. Therefore, it is more meaningful to study
the high order resonance problem with functional conditions, and it is more difficult and
practical to solve this problem in infinite intervals. In the last section, we use an example
to illustrate the theoretical result we give.

Acknowledgements
The authors would like to thank the handling editors for the help in the processing of the paper.

Funding
This work was supported by the Natural Science Foundation of China (11775169), the Natural Science Foundation of
Hebei Province (A2018208171).

Abbreviations
Not applicable.

Availability of data and materials
Data sharing not applicable to this paper as no datasets were generated or analyzed during the current study.



Sun and Jiang Boundary Value Problems        (2020) 2020:163 Page 15 of 15

Ethics approval and consent to participate
All analyses were based on previous published studies, thus no ethical approval and patient consent are required.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Written informed consent for publication was obtained from all participants.

Authors’ contributions
All authors conceived of the study, participated in its design and coordination, drafted the manuscript, participated in the
sequence alignment, and read and approved the final manuscript.

Author details
1Department of Mathematics, China University of Mining and Technology, Beijing, P.R. China. 2College of Sciences, Hebei
University of Science and Technology, Shijiazhuang, Hebei, P.R. China.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 8 January 2020 Accepted: 6 October 2020

References
1. Ma, R.: Existence results of a m-point boundary value problem at resonance. J. Math. Anal. Appl. 294, 147–157 (2004)
2. Feng, W., Webb, J.R.L.: Solvability of m-point boundary value problems with nonlinear growth. J. Math. Anal. Appl.

212, 467–480 (1997)
3. Lin, X., Du, Z., Ge, W.: Solvability of multipoint boundary value problems at resonance for higher-order ordinary

differential equations. Comput. Math. Appl. 49(1), 1–11 (2005)
4. Lian, H., Pang, H., Ge, W.: Solvability for second-order three-point boundary value problems at resonance on a

half-line. J. Math. Anal. Appl. 337, 1171–1181 (2008)
5. Djafri, S., Moussaoui, T., O’Regan, D.: Existence of solutions for a nonlocal boundary value problem at resonance on

the half-line. Differ. Equ. Dyn. Syst. (2019). https://doi.org/10.1007/s12591-019-00490-y
6. Cui, Y.: Solvability of second-order boundary-value problems at resonance involving integral conditions. Electron. J.

Differ. Equ. 2012, 45, 1–9 (2012)
7. Zhao, Z., Liang, J.: Existence of solutions to functional boundary value problem of second- order nonlinear differential

equation. J. Math. Anal. Appl. 373, 614–634 (2011)
8. Kosmatov, N., Jiang, W.: Second-order functional problems with a resonance of dimension one. Differ. Equ. Appl. 8(3),

349–365 (2016)
9. Kosmatov, N., Jiang, W.: Resonant functional problems of fractional order. Chaos Solitons Fractals 91, 573–579 (2016)
10. Jiang, W., Sun, B.: Existence of solutions for functional boundary value problems of second-order nonlinear

differential equations system at resonance. Adv. Differ. Equ. 2017, 269 (2017)
11. Du, Z.: Solvability of functional differential equations with multi-point boundary value problems at resonance.

Comput. Math. Appl. 55(11), 2653–2661 (2008)
12. Coyle, J., Eloe, P.W.: Bifurcation from infinity and higher order ordinary differential equations. J. Math. Anal. Appl. 195,

32–43 (1995)
13. Eloe, P.W., Henderson, J.: Singular nonlinear (n – k, k) conjugate boundary value problems. J. Differ. Equ. 133, 136–151

(1997)
14. Agarwal, R.P., O’Regan, D.: Multiplicity results for singular conjugate, focal, and (N,P) problems. J. Differ. Equ. 170

142–156 (2001)
15. Gupta, C.P.: Existence and uniqueness results for some fourth order fully quasilinear boundary value problem. Appl.

Anal. 36, 15–169 (1990)
16. Guendouz, C., Haddouchi, F., Benaicha, S.: Existence of positive solutions for a nonlinear third-order integral boundary

value problem. Ann. Acad. Rom. Sci. Ser. Math. Appl. 10(2), 314–328 (2018)
17. Zhang, S.: Multiple solutions of Navier boundary value problem for fourth-order elliptic equation with variable

exponents. J. Shandong Univ. Nat. Sci. 53(2), 32–37 (2018)
18. Zhang, X., Zhong, Q.: Uniqueness of solution for higher-order fractional differential equations with conjugate type

integral conditions. Fract. Calc. Appl. Anal. 20(6), 1471–1484 (2018)
19. Wang, S., Li, Y.: Solvability of nonlinear second-order boundary value problems with nonlinearities which cross the

resonance points. J. Shandong Univ. Nat. Sci. 53(6), 53–56 (2018)
20. Liu, Y., Ge, W.: Solvability of nonlocal boundary value problems for ordinary differential equations of higher order.

Nonlinear Anal. 57, 435–458 (2004)
21. Liu, B., Li, J., Liu, L.: Existence and uniqueness for an m-point boundary value problem at resonance on infinite

intervals. Comput. Math. Appl. 64(6), 1677–1690 (2012)
22. Iyase, S.A., Adeleke, O.J.: On some higher order boundary value problems at resonance with integral boundary

conditions. Arab J. Math. Sci. 24(2), 225–234 (2018)
23. Sun, Q., Cui, Y.: Solvability of (k,n – k) conjugate boundary value problems with integral boundary conditions at

resonance. J. Funct. Spaces 2016, Article ID 3454879 (2016)
24. Mawhin, J.: Topological Degree Methods in Nonlinear Boundary Value Problems. NSFCBMS Regional Conference

Series in Mathematics. Am. Math. Soc., Providence (1979)
25. Kosmatov, N.: Multi-point boundary value problems on an unbounded domain at resonance. Nonlinear Anal. 68,

2158–2171 (2008)

https://doi.org/10.1007/s12591-019-00490-y

	Existence of solutions for functional boundary value problems at resonance on the half-line
	Abstract
	Keywords

	Introduction
	Preliminaries
	Main results
	Conclusion
	Acknowledgements
	Funding
	Abbreviations
	Availability of data and materials
	Ethics approval and consent to participate
	Competing interests
	Consent for publication
	Authors' contributions
	Author details
	Publisher's Note
	References


