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Abstract
This work is devoted to investigating the local well-posedness for an integrable
evolution equation and behaviors of its solutions, which possess blow-up criteria and
persistence property. The existence and uniqueness of analytic solutions with analytic
initial values are established. The solutions are analytic for both variables, globally in
space and locally in time. The effects of coefficients λ and β on the solutions are
given.
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1 Introduction
We focus on investigating the following Cauchy problem:

⎧
⎪⎪⎨

⎪⎪⎩

wt – wxxt + β(wx – wxxx) + λ(w – wxx) – 16wwx

= 2w2
xx – 8wxwxx + 2wxwxxx – 4wwxxx,

w(0, x) = w0(x).

(1.1)

Here, (t, x) ∈ R
+ × R, λ ∈ R

+, β ∈ R, w is the fluid velocity, β(wx – wxxx) is the dispersive
term, λ(w – wxx) is the dissipative term, w0 ∈ Bs

p,r(R)(s > max( 5
2 , 2 + 1

p )).
Problem (1.1) is viewed as a member of the integrable model

(
1 – ∂2

x
)
wt = F(w, wx, wxx, wxxx),

which has been investigated in [24]. The famous integrable Camassa–Holm (CH) equation
is

(
1 – ∂2

x
)
wt + 3wwx = –βwx + 2wxwxx + wwxxx, (1.2)

which admits peakon solutions and wave breaking mechanisms. By replacing w with w + k
in Eq. (1.2), Zhou and Chen [33] establish that a solution w to Eq. (1.2) may be regarded as
a perturbation around the coefficient β . The wave breaking phenomena and infinite prop-
agation speed of solutions are investigated. The behaviors of solutions to the CH equation
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with dissipative term and dispersion term are studied in [25]. The local well-posedness for
the Cauchy problem of the CH type equations [6, 15, 20, 26, 28–31], asymptotic stability
[17, 22], solitons solutions [14], and regularity of conservative solutions [18] are consid-
ered. The readers may refer to [8–10, 18, 20–22] for the related results.

Other two famous integrable models are the Degasperis–Procesi (DP) equation

wt – wxxt + 4wwx = 3wxwxx + wwxxx

and the Novikov equation

wt – wxxt + 4w2wx = 3wwxwxx + w2wxxx. (1.3)

Molinet [23] considers the peakon solutions of the DP equation. The Novikov equation
has N-peakon solutions. It is worth noticing that the first explicit 2-peakon solutions of
the Novikov equation are investigated in [13]. Cai et al. [2] study the Lipschitz metric of
Eq. (1.3) which possesses cubic nonlinearity. Himonas et al. [11] illustrate the construction
of 2-peakon solutions and ill-posedness for the Novikov equation. The blow-up criteria
of solutions to a Novikov type equation are presented in [7, 32]. The formation of singu-
larities for solutions to problem (1.1) when λ = β = 0 is established (see [27]). The schol-
ars focus much attention on the CH equation and similar equations with weakly dissipa-
tive term. It is shown in [16] that some models (i.e., CH equation, DP equation, Novikov
equation, and Hunter–Saxton equation) which contain weakly dissipative term can be re-
duced to their non-dissipative versions by applying an exponentially time-dependent scal-
ing u(t, x) → e–λtu( 1–e–λt

λ
, x).

To our knowledge, the influence of coefficients and properties of solutions to problem
(1.1) have not been considered yet. Our study mainly focuses on investigating the influence
of dissipative coefficient λ and dispersive coefficient β on the solutions to problem (1.1).
We establish the blow-up criteria and blow-up rate of solutions, which are related to n =
(1 – ∂2

x )w and dissipative coefficient λ. Moreover, the persistence properties and analytic
properties of solutions are analyzed.

We define

Es
p,r(T) =

⎧
⎨

⎩

C([0, T]; Bs
p,r(R)) ∩ C1([0, T]; Bs–1

p,r (R)), 1 ≤ r < ∞,

L∞([0, T]; Bs
p,∞(R)) ∩ Lip([0, T]; Bs–1

p,∞(R)), r = ∞,

where T > 0, s ∈R, p ∈ [1,∞], r ∈ [1,∞]. Problem (1.1) is written as
⎧
⎨

⎩

wt – 4wwx = –w2
x + P1(D)[2w2

x + 6w2] + P2(D)[w2
x] – λw – βwx,

w(0, x) = w0(x),
(1.4)

where P1(D) = ∂x(1 – ∂2
x )–1, P2(D) = (1 – ∂2

x )–1.
Let n0 = (1 – ∂2

x )w0 and n = (1 – ∂2
x )w. Then problem (1.1) is reformulated as

⎧
⎨

⎩

nt + (2wx – 4w + β)nx = 2n2 + (8wx – 4w)n + 2(w + wx)2 – λn,

n(0, x) = n0(x).
(1.5)

We are in the position to summarize the main results.



Ming et al. Boundary Value Problems        (2020) 2020:165 Page 3 of 22

Theorem 1.1 Let 1 ≤ p, r ≤ ∞, w0 ∈ Bs
p,r(R)(s > max( 5

2 , 2+ 1
p )). Then a solution w ∈ Es

p,r(T)
to problem (1.1) is unique for certain T > 0.

Theorem 1.2 Let 1 ≤ p, r ≤ ∞, w0 ∈ Bs
p,r(R)(max( 5

2 , 2 + 1
p ) < s < 3), t ∈ [0, T]. Then a so-

lution w to problem (1.1) blows up in finite time if and only if

∫ t

0

(∥
∥n(τ )

∥
∥

L∞ – λ
)

dτ = +∞.

Theorem 1.3 Let 1 ≤ p, r ≤ ∞, w0 ∈ Hs(R)(s > 5
2 ), t ∈ [0, T]. Then a solution w to problem

(1.1) blows up in finite time if and only if

∫ t

0

(∥
∥n(τ )

∥
∥

L∞ – λ
)

dτ = +∞. (1.6)

Theorem 1.4 Let 1 ≤ p, r ≤ ∞, w0 ∈ Hs(R)(s > 5
2 ), n0 = w0 – w0,xx. Assume that n0(x)

satisfies n0(x0) > λ
2 +

√
K , where the point x0 is defined by n0(x0) = supx∈R n0(x), K = λ2

4 +
18‖w0‖2

H1 . Let t ∈ [0, T]. Then a solution w to problem (1.1) blows up in finite time if and
only if

lim
t→T–

[

sup
x∈R

(

n(t, x) –
λ

2

)]

= +∞. (1.7)

Theorem 1.5 Let 1 ≤ p, r ≤ ∞, w0 ∈ Hs(R)(s > 5
2 ), n0 = w0 – w0,xx, t ∈ [0, T]. Suppose that

[n0 + 2w0,x – w0](x0) > λ
4 + 1

2
√

K1, where the point x0 is defined by

[n0 + 2w0,x – w0](x0) = sup
x∈R

[n0 + 2w0,x – w0](x),

K1 = 2(C4‖w0‖2
H1 + C5‖w0‖H1 + C6) and C4, C5, C6 are certain positive constants. Let w be

a solution to problem (1.1). Then it holds that

lim
t→T–

[

sup
x∈R

(

n(t, x) –
λ

4

)

(T – t)
]

=
1
2

.

Theorem 1.6 Assume w0 ∈ Hs(R)(s > 5
2 ), t ∈ [0, T] and θ ∈ (0, 1). Let w0 satisfy

∣
∣w0(x)

∣
∣,

∣
∣∂xw0(x)

∣
∣,

∣
∣∂2

x w0(x)
∣
∣∼ O

(
e–θx) as x → ∞.

Then a solution w to problem (1.1) satisfies

∣
∣w(t, x)

∣
∣,

∣
∣∂xw(t, x)

∣
∣,

∣
∣∂2

x w(t, x)
∣
∣∼ O

(
e–θx) as x → ∞

uniformly on [0, T].

Theorem 1.7 Let w0 be analytic on R and t ∈ R in problem (1.1). Then problem (1.1)
admits a unique analytic solution w on (–δ, δ) ×R for certain constant δ ∈ (0, 1].
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Remark 1.1 We deduce the local well-posedness for problem (1.1) in Bs
p,r(R)(s > max( 5

2 ,
1 + 2

p )). For presence of term w2
x in (1.4), the regularity index of solutions is s > max( 5

2 ,
1 + 2

p ), which is different from the regularity index s > max( 3
2 , 1 + 1

p ) of solutions to the CH
equation, DP equation, and Novikov equation.

Remark 1.2 We derive blow-up criterion of solutions in the Besov space in Theorem 1.2.
This result is new. From Theorems 1.2, 1.3, and 1.4, we conclude that dissipative coefficient
λ is related to blow-up mechanisms of solutions. From Theorem 1.4, we recognize that the
blow-up phenomenon of solution w occurs if n is unbounded. From Theorem 1.5, we es-
tablish that dissipative coefficient λ is related to the precise blow-up rate of solution w.
From Theorem 1.6, we observe that if initial value w0 with its derivatives exponentially
decays at infinity, then the solution w with its derivatives also exponentially decays at in-
finity. The existence and uniqueness of analytic solution w with analytic initial value are
illustrated in Theorem 1.7. The solution w is analytic in both variables, globally in space
and locally in time.

Remark 1.3 We extend parts of results in [27]. In the case λ = β = 0 in problem (1.1), the
local well-posedness for the Cauchy problem and formation of singularities of solutions
are investigated in [27]. However, we mainly focus on the influence of the dispersive term
and dissipative term in problem (1.1). Theorems 1.1, 1.4, and 1.5 contain the results in [27]
as special cases when λ = β = 0. In addition, for problem (1.1), we also establish blow-up
criteria of solutions in the Besov space and persistence property of solutions. The exis-
tence and uniqueness of analytic solutions with analytic initial values are also studied (see
detailed illustration in Remarks 1.1–1.2).

2 Proof of Theorem 1.1
2.1 Several lemmas
We review several basic facts in the Besov space. One may check [1] for more details.

Lemma 2.1 ([1]) There exists a couple of smooth functions (χ (ξ ),ϕ(ξ )) valued in [0, 1]
such that χ is supported in the ball B = {ξ ∈R||ξ | ≤ 4

3 }, ϕ is supported in the ring C = {ξ ∈
R| 3

4 ≤ |ξ | ≤ 8
3 }. Moreover, it satisfies that

χ (ξ ) +
∑

q∈N
ϕ
(
2–qξ

)
= 1, ∀ξ ∈R

and

suppϕ
(
2–q·) ∩ suppϕ

(
2–q′ ·) = ∅, if

∣
∣q – q′∣∣ ≥ 2,

suppχ (·) ∩ suppϕ
(
2–q·) = ∅, if q ≥ 1.

Then, for all u ∈ S′(R), the non-homogeneous dyadic blocks are defined as follows. Let

�qu = 0, if q ≤ –2,

�–1u =
∫

R

χ (ξ )̂u(ξ )eixξ dξ , if q = –1,
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�qu =
∫

R

ϕ
(
2–qξ

)
û(ξ )eixξ dξ , if q ≥ 0.

Then u =
∑∞

q=–1 �qu is called the non-homogeneous Littlewood–Paley decomposition of u.
Assume s ∈ R, 1 ≤ p, r ≤ ∞. The non-homogeneous Besov space is defined by Bs

p,r = {f ∈
S′(R) | ‖f ‖Bs

p,r < ∞}, where

‖f ‖Bs
p,r =

⎧
⎨

⎩

(
∑∞

j=–1 2jrs‖�jf ‖r
Lp ) 1

r , r < ∞,

supj≥–1 2js‖�jf ‖Lp , r = ∞.

In addition, Sjf =
∑j–1

q=–1 �qf .

Lemma 2.2 ([1, 5, 27]) Assume s ∈R, 1 ≤ p, r, pj, rj ≤ ∞, j = 1, 2. Then

1) Embedding properties: Bs
p1,r1 ↪→ B

s–( 1
p1

– 1
p2

)
p2,r2 for p1 ≤ p2, r1 ≤ r2. Bs2

p,r2 ↪→ Bs1
p,r1 is locally

compact if s1 ≤ s2.
2) Algebraic properties: For all s > 0, Bs

p,r ∩ L∞ is an algebra. Bs
p,r is an algebra ⇔ Bs

p,r ↪→
L∞⇔ s > 1

p or s = 1
p , r = 1.

3) Morse type estimates:
(i) Let s > 0 and f , g ∈ Bs

p,r ∩ L∞. Then there exists a positive constant C such that

‖fg‖Bs
p,r ≤ C

(‖f ‖Bs
p,r ‖g‖L∞ + ‖f ‖L∞‖g‖Bs

p,r

)
.

(ii) For s1 ≤ 1
p , s2 > 1

p (s2 ≥ 1
p if r = 1) and s1 + s2 > 0, then

‖fg‖Bs1
p,r

≤ C‖f ‖Bs1
p,r

‖g‖Bs2
p,r

.

4) Fatou’s lemma: If a sequence (fn)n∈N is bounded in Bs
p,r and fn → f in S′(R), then it

holds that f ∈ Bs
p,r and

‖f ‖Bs
p,r ≤ lim

n→∞ inf‖fn‖Bs
p,r .

5) Multiplier properties: Let m ∈ R. Assume that f is an Sm-multiplier (i.e., f : R → R

is smooth and it satisfies that, for all α ∈ N, there exists a positive constant Cα such that
|∂α f (ξ )| ≤ Cα(1 + |ξ |)m–|α| for all ξ ∈R). Then the operator f (D) is continuous from Bs

p,r to
Bs–m

p,r .
6) Density: C∞

c is dense in Bs
p,r ⇔ 1 ≤ p, r < ∞.

We present two lemmas which are related to the transport equation

⎧
⎨

⎩

ft + d∂xf = F ,

f |t=0 = f0,
(2.1)

where d : R ×R → R represents a given time-dependent scalar function, f0 : R → R and
F : R×R →R are the known data.
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Lemma 2.3 ([1]) Assume 1 ≤ p ≤ p1 ≤ ∞, 1 ≤ r ≤ ∞, p′ = p
p–1 . Suppose that s >

– min( 1
p1

, 1
p′ ) or s > –1–min( 1

p1
, 1

p′ ) when ∂xd = 0. Then there exists a constant C1 depending
only on p, p1, r, s such that the following estimate holds:

‖f ‖L∞
t ([0,t];Bs

p,r)

≤ eC1
∫ t

0 Z(τ ) dτ

[

‖f0‖Bs
p,r +

∫ t

0
e–C1

∫ τ
0 Z(ξ ) dξ

∥
∥F(τ )

∥
∥

Bs
p,r

dτ

]

, (2.2)

where

Z(t) =

⎧
⎪⎨

⎪⎩

‖∂xd(t)‖
B

1
p1
p1,∞∩L∞

, s < 1 + 1
p1

,

‖∂xd(t)‖Bs–1
p1,r

, s > 1 + 1
p1

or s = 1 + 1
p1

, r = 1.

If f = d, then for all s > 0 (s > –1 if ∂xd = 0), (2.2) holds with Z(t) = ‖∂xd(t)‖L∞ .

We present an existence result for the transport equation with initial value in the Besov
space.

Lemma 2.4 ([1]) Let p, p1, r, s be in the statement of Lemma 2.3 and f0 ∈ Bs
p,r . F ∈

L1([0, T]; Bs
p,r), d ∈ Lρ([0, T]; B–M∞,∞) is a time-dependent vector field for some ρ > 1, M > 0

such that if s < 1 + 1
p1

, then ∂xd ∈ L1([0, T]; B
1

p1
p1,∞ ∩ L∞); if s > 1 + 1

p1
or s = 1 + 1

p1
, r = 1, then

∂xd ∈ L1([0, T]; Bs–1
p1,r). Therefore, problem (2.1) has a unique solution f ∈ L∞([0, T]; Bs

p,r) ∩
(∩s′<sC([0, T]; Bs′

p,1)) and (2.2) holds true. If r < ∞, it holds that f ∈ C([0, T]; Bs
p,r).

Lemma 2.5 ([19]) Let 1 ≤ p ≤ ∞, 1 ≤ r ≤ ∞, s > max( 1
2 , 1

p ). f0 ∈ Bs–1
p,r , F ∈ L1([0, t]; Bs–1

p,r ),
d ∈ L1([0, t]; Bs+1

p,r ). Then a solution f to problem (2.1) satisfies f ∈ L∞([0, T]; Bs–1
p,r ) and

‖f ‖L∞
t ([0,t];Bs–1

p,r )

≤ eC1
∫ t

0 Z(τ ) dτ

[

‖f0‖Bs–1
p,r

+
∫ t

0
e–C1

∫ τ
0 Z(ξ ) dξ

∥
∥F(τ )

∥
∥

Bs–1
p,r

dτ

]

,

where Z(t) =
∫ t

0 ‖d(τ )‖Bs+1
p,r

dτ , the constant C1 depends only on s, p, and r.

2.2 Proof of Theorem 1.1
We show the framework of proof with n0 ∈ Bs

p,r(s > max( 1
p , 1

2 )).
Step 1: Set n0 = 0. The smooth functions (ni)i∈N ∈ C(R+; B∞

p,r) solve the problem

⎧
⎨

⎩

(∂t + (2wi
x – 4wi + β)∂x)ni+1 = G(t, x),

ni+1(0, x) = ni+1
0 (x) = Si+1n0,

(2.3)

where

G(t, x) = 2
(
ni)2 +

(
8wi

x – 4wi)ni + 2
(
wi + wi

x
)2 – λni. (2.4)

Let Si+1n0 ∈ B∞
p,r . In view of Lemma 2.4, we establish that ni+1 ∈ C(R+; B∞

p,r) to problem
(2.3) is global with i ∈N.
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Step 2: If s > max{1 + 1
p , 1 + 1

2 } or s = max{1 + 1
p , 1 + 1

2 }, r = 1, we have

Z(t) =
∫ t

0

∥
∥
∥
∥∂x

[

2
(

wi
x – 2wi +

1
2
β

)]

(τ )
∥
∥
∥
∥

Bs–1
p,r

dτ

=
∫ t

0

∥
∥∂x

[
2
(
wi

x – 2wi)](τ )
∥
∥

Bs–1
p,r

dτ

≤ C0

∫ t

0

∥
∥
(
wi

x – 2wi)(τ )
∥
∥

Bs
p,r

dτ

≤ C0

∫ t

0

(
1 + λ +

∥
∥ni(τ )

∥
∥

Bs
p,r

)
dτ .

Using Lemma 2.3, we arrive at

∥
∥ni+1(t)

∥
∥

Bs
p,r

≤ e
C1

∫ t
0 ‖∂x2(wi

x–2wi+ 1
2 β)(τ )‖Bs–1p,r

dτ ×
[

‖n0‖Bs
p,r

+
∫ t

0
e

–C1
∫ τ

0 ‖∂x2(wi
x–2wi+ 1

2 β)(τ )‖Bs–1p,r
dξ∥

∥G(τ , ·)∥∥Bs
p,r

dτ

]

. (2.5)

Let a � b mean a ≤ Cb for a certain constant C > 0. Bearing in mind the embedding prop-
erty Bs

p,r ↪→ L∞(s > max( 1
p , 1

2 )), the algebra property in the Besov space and the Morse type
estimate (i) in Lemma 2.2 (see [5] for more details), we acquire

∥
∥2

(
ni)2∥∥

Bs
p,r

�
∥
∥ni∥∥

L∞
∥
∥ni∥∥

Bs
p,r

�
∥
∥ni∥∥2

Bs
p,r

,
∥
∥
(
8wi

x – 4wi)ni∥∥
Bs

p,r

�
∥
∥8wi

x – 4wi∥∥
Bs

p,r

∥
∥ni∥∥

Bs
p,r

+
∥
∥8wi

x – 4wi∥∥
Bs

p,r

∥
∥ni∥∥

Bs
p,r

�
∥
∥ni∥∥2

Bs
p,r

,
∥
∥2

(
wi + wi

x
)2∥∥

Bs
p,r

�
∥
∥wi + wi

x
∥
∥2

Bs
p,r

�
∥
∥ni∥∥2

Bs
p,r

,
∥
∥λni∥∥

Bs
p,r

� λ
∥
∥ni∥∥

Bs
p,r

.

Thus, we obtain

∥
∥G(t)

∥
∥

Bs
p,r

�
∥
∥ni∥∥

Bs
p,r

(
1 + λ +

∥
∥ni(t)

∥
∥

Bs
p,r

)
. (2.6)

It is worth noticing that

∥
∥∂x

(
wi

x – 2wi)(τ )
∥
∥

Bs–1
p,r

� 1 + λ +
∥
∥ni(τ )

∥
∥

Bs
p,r

. (2.7)

Combining (2.5) with (2.7), we deduce

∥
∥ni+1(t)

∥
∥

Bs
p,r

� e
C1

∫ t
0 ‖∂x(wi

x–2wi)(τ )‖Bs–1p,r
dτ‖n0‖Bs

p,r

+
∫ t

0
e

C1
∫ t
τ ‖∂x(wi

x–2wi)(ξ )‖Bs–1p,r
dξ∥

∥G(τ , ·)∥∥Bs
p,r

dτ
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� e
C2

∫ t
0 (1+λ+‖ni(τ )‖Bsp,r

) dτ‖n0‖Bs
p,r

+
∫ t

0
e

C2
∫ t
τ (1+λ+‖ni(ξ )‖Bsp,r

) dξ∥∥G(τ , ·)∥∥Bs
p,r

dτ . (2.8)

Plugging (2.6) into (2.8) leads to the inequality

∥
∥ni+1(t)

∥
∥

Bs
p,r

≤ C2 · e
C2

∫ t
0 (1+λ+‖ni(τ )‖Bsp,r

) dτ
[

‖n0‖Bs
p,r

+
∫ t

0
e

–C2
∫ τ

0 (1+λ+‖ni(ξ )‖Bsp,r
) dξ

× (
1 + λ +

∥
∥ni(τ )

∥
∥

Bs
p,r

)∥
∥ni(τ )

∥
∥

Bs
p,r

dτ

]

. (2.9)

If max{ 1
p , 1

2 } < s < max{1 + 1
p , 1 + 1

2 }, applying the embedding property Bs
p,r ↪→ L∞, we

have

Z(t) =
∫ t

0

∥
∥
∥
∥∂x

[

2
(

wi
x – 2wi +

1
2
β

)]

(τ )
∥
∥
∥
∥

B
1
p
p,∞∩L∞

dτ

�
∫ t

0

∥
∥
[
∂x

(
wi

x – 2wi)](τ )
∥
∥

Bs
p,r

dτ

�
∫ t

0

∥
∥
(
wi

x – 2wi)(τ )
∥
∥

Bs+1
p,r

dτ �
∫ t

0

(
1 + λ +

∥
∥ni(τ )

∥
∥

Bs
p,r

)
dτ .

Similarly, we deduce that (2.9) holds true in this case.
Therefore, one can choose certain T > 0 to satisfy 2C2

2(1 + λ + ‖n0‖Bs
p,r )T < 1 and

1 + λ +
∥
∥ni(t)

∥
∥

Bs
p,r

≤ C2(1 + λ + ‖n0‖Bs
p,r )

1 – 2C2
2(1 + λ + ‖n0‖Bs

p,r )t
, (2.10)

which combined with (2.9) results in

1 + λ +
∥
∥ni+1(t)

∥
∥

Bs
p,r

≤ C2(1 + λ + ‖n0‖Bs
p,r )

1 – 2C2
2(1 + λ + ‖n0‖Bs

p,r )t
.

We achieve that (ni)i∈N is uniformly bounded in Es
p,r(T).

Step 3: Utilizing problem (2.3) gives rise to

(
∂t +

(
2wi+j

x – 4wi+j + β
)
∂x

)(
ni+j+1 – ni+1)

= –
[
2
(
wi+j

x – wi
x
)

– 4
(
wi+j – wi)]ni+1

x

+ 2
(
ni+j + ni)(ni+j – ni) +

(
8wi+j

x – 4wi+j)(ni+j – ni)

+
(
8
(
wi+j

x – wi
x
)

– 4
(
wi+j – wi))ni

+ 2
(
wi+j + vi+j

x + wi + wi
x
)(

wi+j – wi + wi+j
x – wi

x
)

– λ
(
ni+j – ni). (2.11)
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Thanks to Lemma 2.5, we acquire

∥
∥ni+j+1 – ni+1∥∥

Bs–1
p,r

≤ e
C

∫ t
0 ‖ni+j‖Bsp,r

dτ
[
∥
∥ni+j+1

0 – ni+1
0

∥
∥

Bs–1
p,r

+ C
∫ t

0
e

–C
∫ τ

0 ‖ni+j‖Bsp,r
dξ∥∥ni+j – ni∥∥

Bs–1
p,r

× (
1 + λ +

∥
∥ni∥∥

Bs
p,r

+
∥
∥ni+j∥∥

Bs
p,r

+
∥
∥ni+1∥∥

Bs
p,r

)
dτ

]

.

Since

ni+j+1
0 – ni+1

0 =
i+j∑

q=i+1

�qw0,

we can choose a constant C1 > 0 to satisfy

∥
∥ni+j+1 – ni+1∥∥

L∞([0,T];Bs–1
p,r ) ≤ C12–i.

As a consequence, we derive that (ni)i∈N is a Cauchy sequence in C([0, T]; Bs–1
p,r ).

Step 4: Existence of solutions.
Using the Fatou property in Lemma 2.2 yields that n ∈ L∞([0, T]; Bs

p,r). It is worth notic-
ing that (ni)i∈N is a Cauchy sequence in C([0, T]; Bs–1

p,r ) which converges to a limit function
n ∈ C([0, T]; Bs–1

p,r ). Making use of an interpolation argument yields that the convergence
holds in C([0, T]; Bs′

p,r) for all s′ < s. Sending i → ∞ in (2.3) yields that n is a solution to
(2.3). Then the right-hand side of the first equation in (2.3) belongs to L∞([0, T]; Bs

p,r). In
the case r < ∞, taking advantage of Lemma 2.4 gives rise to n ∈ C([0, T]; Bs′

p,r) for all s′ < s.
Applying (1.5) yields that nt ∈ C([0, T]; Bs–1

p,r ) if r < ∞, and nt ∈ L∞([0, T]; Bs–1
p,r ) other-

wise. Thus, n ∈ Es
p,r(T). Employing a sequence of viscosity approximate solutions (nε)ε>0

to problem (1.5) which converges uniformly in C([0, T]; Bs
p,r) ∩ C1([0, T]; Bs–1

p,r ), we achieve
the continuity of solution n ∈ Es

p,r(T).
Step 5: Uniqueness and continuity with respect to initial data.
We assume that n1 and n2 are two given solutions to problem (1.5) with initial values

n1
0, n2

0 ∈ Bs
p,r . n1, n2 ∈ L∞([0, T]; Bs

p,r) ∩ C([0, T]; Bs–1
p,r ) and n12 = n1 – n2. Then it holds that

⎧
⎨

⎩

(∂t + (2w1
x – 4w1 + β)∂x)n12 = –(2w12

x – 4w12)n1
x + G1(t, x),

n12(0, x) = n12
0 = n1

0 – n2
0,

(2.12)

where

G1(t, x) = 2
(
n1 + n2)n12 +

(
8w1

x – 4w1)n12 +
(
8w12

x – 4w12)n2

+ 2
(
w1 + w1

x + w2 + w2
x
)(

w12 + w12
x

)
– λn12.
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In view of Lemma 2.5, we deduce

e
–C

∫ t
0 ‖2w1

x–4w1‖Bs+1p,r
dτ∥

∥n12(t)
∥
∥

Bs–1
p,r

≤ ∥
∥n12

0
∥
∥

Bs–1
p,r

+ C
∫ t

0
e

–C
∫ τ

0 ‖2w1
x–4w1‖Bs+1p,r

dξ

× (∥
∥–

(
2w12

x – 4w12)n1
x
∥
∥

Bs–1
p,r

+
∥
∥G1(τ )

∥
∥

Bs–1
p,r

)
dτ . (2.13)

Taking advantage of the Morse type estimates in Lemma 2.2 and applying s > max( 1
p , 1

2 ),
we have

∥
∥–

(
2w12

x – 4w12)n1
x
∥
∥

Bs–1
p,r

�
∥
∥–

(
2w12

x – 4w12)∥∥
Bs

p,r

∥
∥n1

x
∥
∥

Bs–1
p,r

�
∥
∥n12∥∥

Bs–1
p,r

∥
∥n1∥∥

Bs
p,r

.

Similarly, we acquire

∥
∥G1(t)

∥
∥

Bs–1
p,r

�
∥
∥n12∥∥

Bs–1
p,r

(
1 + λ +

∥
∥n1∥∥

Bs
p,r

+
∥
∥n2∥∥

Bs
p,r

)
.

Direct computation shows that

e
–C

∫ t
0 ‖n1‖Bsp,r

dτ∥∥n12∥∥
Bs–1

p,r

≤ ∥
∥n12

0
∥
∥

Bs–1
p,r

+ C
∫ t

0
e

–C
∫ τ

0 ‖n1‖Bsp,r
dξ∥∥n12∥∥

Bs–1
p,r

× (
1 + λ +

∥
∥n1∥∥

Bs
p,r

+
∥
∥n2∥∥

Bs
p,r

)
dτ .

Making use of the Gronwall inequality yields

e
–C

∫ t
0 ‖n1‖Bsp,r

dτ∥∥n12∥∥
Bs–1

p,r
≤ ∥

∥n12
0

∥
∥

Bs–1
p,r

e
∫ t

0 (1+λ+‖n1‖Bsp,r
+‖n2‖Bsp,r

) dτ
.

It follows that

∥
∥n12∥∥

Bs–1
p,r

≤ ∥
∥n12

0
∥
∥

Bs–1
p,r

e
C

∫ t
0 ‖n1‖Bsp,r

dτ
e
∫ t

0 (1+λ+‖n1‖Bsp,r
+‖n2‖Bsp,r

) dτ
. (2.14)

From step 2 in this section, we observe that ‖n1‖Bs
p,r and ‖n2‖Bs

p,r are uniformly bounded
for all t ∈ (0, T].

Therefore, e
C

∫ t
0 ‖n1‖Bsp,r

dτ
and e

∫ t
0 (1+λ+‖n1‖Bsp,r

+‖n2‖Bsp,r
) dτ

in (2.14) are bounded for all t ∈
(0, T]. In particular, if n1

0 = n2
0, we have n12

0 (x) = n1
0 – n2

0 = 0 for x ∈ R. It is deduced from
(2.14) that ‖n12‖Bs–1

p,r
≤ 0 for all t ∈ (0, T]. It follows that n12(t, x) = n1 – n2 = 0 for all t ∈

(0, T], x ∈R.
Thus, we arrive at the desired results.

Remark 2.1 When p = r = 2, the Besov space Bs
p,r(R) coincides with the Sobolev space

Hs(R). It is worth noticing that (1 – ∂2
x )–1 is an S–2 multiplier. Then it holds that

‖w‖Bs+2
p,r

=
∥
∥
(
1 – ∂2

x
)–1(1 – ∂2

x
)
w

∥
∥

Bs+2
p,r

�
∥
∥
(
1 – ∂2

x
)–1n

∥
∥

Bs+2
p,r

� ‖n‖Bs
p,r .
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Theorem 1.1 indicates that under the assumption w0 ∈ Hs(R)(s > 5
2 ), we establish the

local well-posedness for problem (1.1) and the solution satisfies w ∈ C([0, T]; Hs(R)) ∩
C1([0, T]; Hs–1(R)).

Remark 2.2 Let 1 ≤ p, r ≤ ∞ and w0 ∈ Bs
p,r(R)(s > max( 5

2 , 2 + 1
p )). Then a solution w to

problem (1.1) satisfies the inequality

∥
∥w(t)

∥
∥

H1 ≤ ‖w0‖H1 , t ∈ [0, T]. (2.15)

3 Proofs of Theorems 1.2, 1.3, 1.4, and 1.5
We recall a lemma which is related to the commutator estimates.

Lemma 3.1 ([1]) Assume s > 0, 1 ≤ p ≤ p1 ≤ ∞, 1 ≤ r ≤ ∞, 1
p2

= 1
p – 1

p1
. f and g are scalar

functions on R. Then

∥
∥[�j, f ∂x]g

∥
∥

Bs
p,r

� ‖∂xf ‖L∞‖g‖Bs
p,r + ‖∂xf ‖Bs–1

p1,r
‖∂xg‖Lp2

and

∥
∥[�j, f ∂x]g

∥
∥

Bs
p,r

≤ C‖∂xf ‖L∞‖g‖Bs
p,r with 0 < s < 1.

3.1 Proof of Theorem 1.2
Applying the operator �q to problem (1.5) leads to

(
∂t + (2wx – 4w + β)∂x

)
�qn = [2wx – 4w,�q]∂xn + �qG2(t, x) – λ�qn, (3.1)

where

G2(t, x) = 2n2 + (8wx – 4w)n + 2(w + wx)2.

Utilizing n0 ∈ Bs
p,r(R)(max( 1

2 , 1
p ) < s < 1) and Lemma 3.1, it yields

∥
∥
[
�q, (2wx – 4w)∂x

]
n
∥
∥

Bs
p,r

�
∥
∥∂x(2wx – 4w)

∥
∥

L∞‖n‖Bs
p,r

� ‖n‖L∞‖n‖Bs
p,r

and

∥
∥G2(t, x)

∥
∥

Bs
p,r

�
∥
∥2n2 + (8wx – 4w)n + 2(w + wx)2 – λn

∥
∥

Bs
p,r

� ‖n‖L∞‖n‖Bs
p,r

+ ‖8wx – 4w‖L∞‖n‖Bs
p,r + ‖8wx – 4w‖Bs

p,r ‖n‖L∞

+ ‖wx + w‖L∞‖wx + w‖Bs
p,r

� ‖n‖L∞‖n‖Bs
p,r .
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Multiplying (3.1) by (�qn)p–1 and integrating on R, we acquire

1
p

d
dt

‖�qn‖p
Lp �

∥
∥∂x(2wx – 4w + β)

∥
∥

L∞‖�qn‖p
Lp

+
∥
∥[2wx – 4w,�q]∂xn

∥
∥

Lp‖�qn‖p–1
Lp

+
∥
∥�qG2(t, x)

∥
∥

Lp‖�qn‖p–1
Lp – λ‖�qn‖p

Lp .

Consequently, we obtain

d
dt

‖�qn‖Lp �
∥
∥∂x(2wx – 4w + β)

∥
∥

L∞‖�qn‖Lp

+
∥
∥[2wx – 4w,�q]∂xn

∥
∥

Lp +
∥
∥�qG2(t, x)

∥
∥

Lp – λ‖�qn‖Lp .

Making use of Lemma 2.1 gives rise to

∥
∥n(t)

∥
∥

Bs
p,r

� ‖n0‖Bs
p,r +

∫ t

0

(∥
∥n(τ )

∥
∥

L∞ – λ
)∥
∥n(τ )

∥
∥

Bs
p,r

dτ .

Applying the Gronwall inequality, we conclude

∥
∥n(t)

∥
∥

Bs
p,r

� ‖n0‖Bs
p,r e

∫ t
0 (‖n(τ )‖L∞ –λ) dτ . (3.2)

Suppose that T∗ < ∞ is the maximal existence time of solutions to problem (1.5). If

∫ t

0

(∥
∥n(τ )

∥
∥

L∞ – λ
)

dτ < ∞, (3.3)

we acquire that ‖n(T∗)‖Bs
p,r is bounded in view of (3.2). The proof of Theorem 1.2 is com-

pleted.

3.2 Proof of Theorem 1.3
We illustrate the proof with density argument in the case s = 3. Due to problem (1.5), we
acquire the identity

1
2

d
dt

∫

R

n2 dx =
∫

R

[
(n + 6wx – 3w)n2 + 2(w + wx)2n – (βnx + λn)n

]
dx. (3.4)

That is,

1
2

d
dt

‖n‖2
H1 =

1
2

d
dt

(‖n‖2
L2 + ‖nx‖2

L2
)

=
∫

R

[
(n + 6wx – 3w)n2 + 2(w + wx)2n – (βnx + λn)n

]
dx

+
∫

R

[
5(2wx + n – w)n2

x + 4(w – 2wx)nnx
]

dx

–
∫

R

8
[
(w + wx)2n – (w + uwx)n2]dx +

∫

R

[
–(βnxx + λnx)nx

]
dx

� ‖n + 6wx – 3w‖L∞‖n‖2
L2 + ‖w + wx‖2

L∞‖n‖L1
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+ ‖2wx + n – w‖L∞‖nx‖2
L2 + ‖w – 2wx‖L∞‖n‖L∞‖nx‖L1

+ ‖w + wx‖2
L∞‖n‖L1 + ‖w + wx‖L∞‖n‖2

L2 – λ‖n‖2
H1

�
(‖n‖L∞ – λ

)‖n‖2
H1 . (3.5)

Eventually, we deduce

∥
∥n(t)

∥
∥

H1 � ‖n0‖H1 e
∫ t

0 (‖n(τ )‖L∞ –λ) dτ , (3.6)

which yields a contradiction.

3.3 Proof of Theorem 1.4
Lemma 3.2 ([4]) Let T > 0, w ∈ C1([0, T); H3(R)) and n = (1 –∂2

x )w. Then, for all t ∈ [0, T),
there exists one point ξ (t) ∈R such that

n1(t) = sup
x∈R

n(t, x) = n
(
t, ξ (t)

)
(3.7)

and

d
dt

n1(t) = n1,t
(
t, ξ (t)

)
,

where n1(t) is absolutely continuous on (0, T).
Consider the problem

⎧
⎨

⎩

d
dt p(t, x) = (2wx – 4w)(t, p(t, x)) + β ,

p(0, x) = x.
(3.8)

Lemma 3.3 ([3]) Let w ∈ C([0, T]; Hs(R)) ∩ C1([0, T]; Hs–1(R))(s ≥ 3), n = w – wxx. Then
problem (3.8) admits a unique solution p(t, x) ∈ C1([0, T]×R,R). Moreover, the map p(t, ·)
is an increasing diffeomorphism of R for all t ∈ [0, T) and p(t, x) satisfies the equality

px(t, x) = e
∫ t

0 (2w–2n–4wx)(τ ,p(τ ,x)) dτ . (3.9)

Lemma 3.4 Let w0 ∈ Hs(R)(s ≥ 3), n0 = w0 – w0,xx, (t, x) ∈ [0, T] ×R. Then

n
(
t, p(t, x)

)
p2

x(t, x) ≥ n0(x)e
∫ t

0 (–2n(τ ,p(τ ,x))–λ) dτ . (3.10)

Proof of Lemma 3.4 Utilizing (3.8) and Lemma 3.3 gives rise to

d
dt

[
n
(
t, p(t, x)

)
p2

x(t, x)
]

= (nt + nxpt)p2
x + 2npxpxt

= p2
x
[
2(w + wx)2 – 2n2] – λnp2

x

≥ (–2n – λ)np2
x.

Making use of the Gronwall inequality, we complete the proof of Lemma 3.4. �
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Proof of Theorem 1.4 We present the proof by using Lemmas 3.2–3.4 with density argu-
ment in the case s = 3. Taking advantage of the assumption n0(x) > 0 and Lemma 3.4 yields
n(t, x) > 0. In view of w(t, x) = g ∗ n and g(x) = 1

2 e–|x|, it satisfies

w(t, x) =
1
2

∫

R

e–|x–ξ |n(t, ξ ) dξ ≥ 0.

It follows that

w(t, x) =
1
2

e–x
∫ x

–∞
eξ n(t, ξ ) dξ +

1
2

ex
∫ +∞

x
e–ξ n(t, ξ ) dξ (3.11)

and

wx(t, x) = –
1
2

e–x
∫ x

–∞
eξ n(t, ξ ) dξ +

1
2

ex
∫ +∞

x
e–ξ n(t, ξ ) dξ . (3.12)

Thus we conclude |wx| ≤ w and

nt + (2wx – 4w + β)nx ≥ n2 – λn – 18‖w0‖2
H1 , (3.13)

where we have used Remark 2.2 and

(4wx – 2w)2 ≤ 36w2 ≤ 36
(

1√
2
‖w‖H1

)2

≤ 18‖w0‖2
H1 .

Set n1(t) = supx∈R[n(t, x)]. Applying Lemma 3.2, we deduce that there exists ξ (t), t ∈
[0, T) such that

n1(t) = sup
x∈R

n(t, x) = n
(
t, ξ (t)

)
.

Thus, we come to nx(t, ξ (t)) = 0.
We recall that p(t, ·) : R →R is a diffeomorphism for all t ∈ [0, T). There exists x1(t) ∈R

such that p(t, x1(t)) = ξ (t). From (3.13), we acquire

d
dt

n1(t) ≥ n2
1 – λn1 – 18‖w0‖2

H1 . (3.14)

Setting

n2(t) = –
[

n1(t) –
λ

2

]

and K =
λ2

4
+ 18‖w0‖2

H1 , (3.15)

we have

d
dt

[
n2(t)

] ≤ –
[
n2(t)

]2 + K . (3.16)

Then n2(t) is strictly decreasing on [0, T).
Recalling the condition n0(x0) > λ

2 +
√

K with x0 defined by n(x0) = supx∈R n0(x) in
Theorem 1.4 and letting ξ (0) = x0, we deduce n2(0) = –(n1(0) – λ

2 ) = –(n0(ξ (0)) – λ
2 ) =

–(n0(x0) – λ
2 ) < –

√
K . We choose δ ∈ (0, 1) to satisfy –

√
δn2(0) =

√
K .
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Utilizing (3.16), we observe

d
dt

(
1

n2(t)

)

= –
1

n2
2(t)

dn2(t)
dt

≥ 1 – δ. (3.17)

That is,

–
1

n2(t)
+

1
n2(0)

≤ –(1 – δ)t. (3.18)

Bearing in mind n2(t) < 0, t ∈ [0, T], we come to the estimate T ≤ –1
(1–δ)n2(0) < ∞, where

n2(0) = –(n0(x0) – λ
2 ) < 0. It turns out that

–
[

n
(
t, ξ (t)

)
–

λ

2

]

≤ n0(x0) – λ
2

–1 + t(1 – δ)(n0(x0) – λ
2 )

→ –∞

as t → 1
(1 – δ)(n0(x0) – λ

2 )
. (3.19)

The proof of Theorem 1.4 is finished. �

3.4 Proof of Theorem 1.5
Differentiating the first equation in (1.4) with x, we acquire

∂twx + (2wx – 4w + β)wxx = 2w2
x – 6w2 + P1(D)

[
w2

x
]

+ P2(D)
[
2w2

x + 6w2] – λwx. (3.20)

Making use of Remark 2.2 leads to

∣
∣
∣
∣

d
dt

w
(
t, p(t, x)

)
∣
∣
∣
∣ =

∣
∣wt + (2wx – 4w + β)wx

∣
∣

� ‖w0‖2
H1 + ‖w0‖H1 (3.21)

and
∣
∣
∣
∣

d
dt

wx
(
t, p(t, x)

)
∣
∣
∣
∣ =

∣
∣2w2

x – 6w2 + P1(D)
[
w2

x
]

+ P2(D)
[
2w2

x + 6w2] – λwx
∣
∣

� ‖w0‖2
H1 + ‖w0‖H1 . (3.22)

Eventually, we come to the identity

d
dt

n
(
t, p(t, x)

)
= 2(n + 2wx – w)2 + 2(w + wx)2 – 2(2wx – w)2 – λn. (3.23)

That is,

d
dt

[

n + 2wx – w –
λ

4

]
(
t, p(t, x)

) ≥ 2
[

n + 2wx – w –
λ

4

]2(
t, p(t, x)

)

–
[
C4‖w0‖2

H1 + C5‖w0‖H1 + C6
]
,
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where we use the inequality

∣
∣
∣
∣–2(w + wx)2 + 2(2wx – w)2 – 2λwx + λw +

1
8
λ2

∣
∣
∣
∣

≤ C4‖w0‖2
H1 + C5‖w0‖H1 + C6. (3.24)

Setting

n3(t, x) = –
[

2
(

n + 2wx – w –
λ

4

)
(
t, p(t, x)

)
]

,

K1 = 2
(
C4‖w0‖2

H1 + C5‖w0‖H1 + C6
)

(3.25)

gives rise to

dn3(t)
dt

≤ –n2
3(t) + K1. (3.26)

Let ε ∈ (0, 1
2 ). Similar to the proof of Theorem 1.4, we choose certain t0 ∈ (0, T) to satisfy

n3(t0) < –
√

K1 + K1
ε

. Utilizing (3.26) gives rise to

n3(t) < –
√

K1 +
K1

ε
< –

√
K1

ε
.

We check

1 – ε ≤ d
dt

(
1

n3(t)

)

≤ 1 + ε. (3.27)

Applying limt→T– n3(t) = –∞, |wx| ≤ |w| � ‖v0‖H1 and (3.24), we conclude

lim
t→T–

[
sup
x∈R

(2wx – w)(T – t)
]

= 0.

Thus, we have

lim
t→T–

[

sup
x∈R

(

n(t, x) –
λ

4

)

(T – t)
]

=
1
2

, (3.28)

which finishes the proof of Theorem 1.5.

4 Proof of Theorem 1.6
Setting M = supt∈[0,T] ‖v(t)‖Hs > 0, s > 5

2 , we acquire ‖vxx(t)‖L∞ ≤ ‖v(t)‖Hs ≤ M. The func-
tion

ϕN (x) =

⎧
⎪⎪⎨

⎪⎪⎩

1, x ≤ 0,

eθx, x ∈ (0, N),

eθN , x ≥ N
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satisfies 0 ≤ (ϕN (x))x ≤ ϕN (x), where N ∈ N
∗, θ ∈ (0, 1). There exists a constant M0 =

M0(θ ) > 0 such that

ϕN (x)
∫

R

e–|x–y| 1
ϕN (y)

dy ≤ M0.

The first equation in (1.1) is written as

wt + (–4w + β)wx = ∂xg ∗ [
2w2

x + 6w2 + ∂x
(
w2

x
)]

– λw. (4.1)

Then we acquire

1
2n

d
dt

‖wϕN‖2n
L2n

= 4
∫

R

|wϕN |2nwx dx – β

∫

R

[
∂x(wϕN ) – w(ϕN )x

]
(wϕN )2n–1 dx

+
∫

R

(wϕN )2n–1ϕN∂xg ∗ [
2w2

x + 6w2 + ∂x
(
w2

x
)]

dx – λ

∫

R

(wϕN )2n dx

≤ 4‖wx‖L∞‖wϕN‖2n
L2n + β‖wϕN‖2n

L2n – λ‖wϕN‖2n
L2n

+
∥
∥ϕN∂xg ∗ [

2w2
x + 6w2 + ∂x

(
w2

x
)]∥

∥
L2n‖wϕN‖2n–1

L2n . (4.2)

Utilizing the Gronwall inequality and sending n → ∞ in (4.2), we obtain

‖wϕN‖L∞ ≤ e(4M+β–λ)t
[

‖w0ϕN‖L∞

+
∫ t

0

∥
∥ϕN∂xg ∗ [

2w2
x + 6w2 + ∂x

(
w2

x
)]∥

∥
L∞ dτ

]

. (4.3)

Direct computation gives rise to

‖wϕN‖L∞ ≤ e(4M+β–λ)t
[

‖w0ϕN‖L∞ + 6M0M
∫ t

0

(‖wϕN‖L∞ + ‖wxϕN‖L∞
)

dτ

]

. (4.4)

We arrive at

‖wxϕN‖L∞ ≤ e(6M+β–λ)t
[

‖w0,xϕN‖L∞ + (4M + 6M0M)
∫ t

0
‖wϕN‖L∞ dτ

+
5
2

M0M
∫ t

0
‖wxϕN‖L∞ dτ

]

(4.5)

and

‖wxxϕN‖L∞ ≤ e(16M+β–λ)t
[

‖w0,xϕN‖L∞ + 3M0M
∫ t

0
‖wϕN‖L∞ dτ

+ (12M + M0M)
∫ t

0
‖wxϕN‖L∞ dτ

+ M0M
∫ t

0
‖wxxϕN‖L∞ dτ

]

. (4.6)
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Combining (4.4), (4.5) with (4.6), we achieve

‖wϕN‖L∞ + ‖wxϕN‖L∞ + ‖wxxϕN‖L∞

≤ C4
(‖w0ϕN‖L∞ + ‖w0,xϕN‖L∞ + ‖w0,xxϕN‖L∞

)

+ C4

∫ t

0

(‖wϕN‖L∞ + ‖wxϕN‖L∞ + ‖wxxϕN‖L∞
)

dτ , (4.7)

which leads to the estimate

sup
t∈[0,T]

(∥
∥eθxw

∥
∥

L∞ +
∥
∥eθxwx

∥
∥

L∞ +
∥
∥eθxwxx

∥
∥

L∞
)

�
∥
∥eθxw0

∥
∥

L∞ +
∥
∥eθxw0,x

∥
∥

L∞ +
∥
∥eθxw0,xx

∥
∥

L∞ .

Thus, we acquire

|w|, |∂xw|, ∣∣∂2
x w

∣
∣ ∼ O

(
e–θx) as x → ∞

uniformly on [0, T].

5 Proof of Theorem 1.7
Let s > 0. We give a scale of Banach spaces

Es =
{

w ∈ C∞(R) | |||w|||s = sup
k∈N∗

sk‖∂k
x w‖H2

k!(k + 1)–2 < +∞
}

.

Here, we denote ||| · |||Es by ||| · |||s for simplicity. Es is continuously embedded in Es′ with
0 < s′ < s and |||w|||s′ ≤ |||w|||s. A function w in Es is a real analytic function on R.

We present several related lemmas.

Lemma 5.1 ([12]) Assume s > 0. Then, for all u, v ∈ Es, it holds that

|||uv|||s ≤ C|||u|||s|||v|||s,

where C > 0 is independent of s.

Lemma 5.2 ([12]) There exists a positive constant C, for all 0 < s′ < s ≤ 1, such that

|||∂xu|||s′ ≤ C
s – s′ |||u|||s,

∣
∣
∣
∣
∣
∣P1(D)u

∣
∣
∣
∣
∣
∣
s′ ≤ |||u|||s,

∣
∣
∣
∣
∣
∣P2(D)u

∣
∣
∣
∣
∣
∣
s′ ≤ |||u|||s.

Lemma 5.3 ([12]) Let {Xs}0<s<1 be a scale of decreasing Banach spaces. Xs ↪→ Xs′ for all
s′ < s. T , R, and C are positive constants. Consider the Cauchy problem

du
dt

= F
(
t, u(t)

)
, u(0) = 0. (5.1)

F(t, u) satisfies the following conditions:
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(1) Let 0 < s′ < s < 1. u(t) is holomorphic for |t| < T and continuous on |t| < T with values
in Xs. u(t) satisfies sup|t|<T |||u(t)|||s < R. Then t → F(t, u(t)) is holomorphic on |t| < T with
values in Xs′ .

(2) For 0 < s′ < s ≤ 1 and u, v ∈ Xs with |||u|||s < R and |||v|||s < R, it holds that

sup
|t|≤T

∣
∣
∣
∣
∣
∣F(t, u) – F(t, v)

∣
∣
∣
∣
∣
∣
s′ ≤ C

s – s′ |||u – v|||s.

(3) Let T0 ∈ (0, T). There exists M > 0, for all 0 < s < 1, such that

sup
|t|<T

∣
∣
∣
∣
∣
∣F(t, 0)

∣
∣
∣
∣
∣
∣
s <

M
1 – s

.

Then problem (5.1) admits a unique solution u(t) which is holomorphic for |t| < (1 – s)T0

with values in Xs for all s ∈ (0, 1).

Let u1 = w, u2 = wx. The pair (u1, u2) satisfies the problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u1,t = 4u1u2 – u2
2 + F1(u1, u2),

u2,t = 4∂x(u1u2) – ∂x(u2
2) + F2(u1, u2),

u1(0, x) = u10(x) = w0(x),

u2(0, x) = u20(x) = w0,x(x),

(5.2)

where

F1(u1, u2) = P1(D)
[
2u2

2 + 6u2
1
]

+ P2(D)
[
u2

2
]

– λu1 – βu2,

F2(u1, u2) = ∂xP1(D)
[
2u2

2 + 6u2
1
]

+ ∂xP2(D)
[
u2

2
]

– λ∂x(u1) – β∂x(u2).

Proof of Theorem 1.7 We acquire that F1(u1, u2) and F2(u1, u2) do not depend on t explic-
itly. We only need to verify conditions (1) and (2) in Lemma 5.3 for F1(u1, u2) and F2(u1, u2).
Making use of Lemmas 5.1 and 5.2 gives rise to

∣
∣
∣
∣
∣
∣F1(u1, u2)

∣
∣
∣
∣
∣
∣
s′ ≤ C|||u1|||s|||u2|||s + |||u2|||2s +

C
s – s′

(
2|||u2|||2s + 6|||u1|||2s

)

+ λ|||u1|||s + β|||u2|||s, (5.3)
∣
∣
∣
∣
∣
∣F2(u1, u2)

∣
∣
∣
∣
∣
∣
s′ ≤ C

s – s′ |||u1|||s|||u2|||s +
C

s – s′ |||u2|||2s

+
C

s – s′
(
2|||u2|||2s + 6|||u1|||2s

)
+

C
s – s′ λ|||u1|||s +

C
s – s′ β|||u2|||s, (5.4)

where C is a positive constant. Then condition (1) in Lemma 5.3 holds.
In order to verify condition (2) in Lemma 5.3, we obtain

∣
∣
∣
∣
∣
∣F1(u1, u2) – F1(ū1, ū2)

∣
∣
∣
∣
∣
∣
s′

≤ ∣
∣
∣
∣
∣
∣F1(u1, u2) – F1(ū1, u2)

∣
∣
∣
∣
∣
∣
s′ +

∣
∣
∣
∣
∣
∣F1(ū1, u2) – F1(ū1, ū2)

∣
∣
∣
∣
∣
∣
s′ , (5.5)
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∣
∣
∣
∣
∣
∣F2(u1, u2) – F2(ū1, ū2)

∣
∣
∣
∣
∣
∣
s′

≤ ∣
∣
∣
∣
∣
∣F2(u1, u2) – F2(ū1, u2)

∣
∣
∣
∣
∣
∣
s′ +

∣
∣
∣
∣
∣
∣F2(ū1, u2) – F2(ū1, ū2)

∣
∣
∣
∣
∣
∣
s′ . (5.6)

Taking advantage of Lemmas 5.1, 5.2 and the assumptions |||u1|||s ≤ |||u10|||s +R and |||u2|||s ≤
|||u20|||s + R yields

∣
∣
∣
∣
∣
∣F1(u1, u2) – F1(ū1, u2)

∣
∣
∣
∣
∣
∣
s′

≤ C|||u1 – ū1|||s|||u2|||s +
C

s – s′
∣
∣
∣
∣
∣
∣u2

1 – ū2
1
∣
∣
∣
∣
∣
∣
s + λ|||u1 – ū1|||s

≤ C(|||u20|||s + R)|||u1 – ū1|||s + C(|||u10|||s + R + λ)|||u1 – ū1|||s, (5.7)
∣
∣
∣
∣
∣
∣F1(ū1, u2) – F1(ū1, ū2)

∣
∣
∣
∣
∣
∣
s′

≤ |||ū1|||s|||u2 – ū2|||s +
∣
∣
∣
∣
∣
∣u2

2 – ū2
2
∣
∣
∣
∣
∣
∣
s +

C
s – s′

∣
∣
∣
∣
∣
∣u2

2 – ū2
2
∣
∣
∣
∣
∣
∣
s + β|||u2 – ū2|||s

≤ C(|||u10|||s + R)|||u1 – ū1|||s + C(|||u20|||s + R + β)|||u1 – ū1|||s, (5.8)
∣
∣
∣
∣
∣
∣F2(u1, u2) – F2(ū1, u2)

∣
∣
∣
∣
∣
∣
s′

≤ C
s – s′ |||u1 – ū1|||s|||u2|||s +

C
s – s′

∣
∣
∣
∣
∣
∣u2

1 – ū2
1
∣
∣
∣
∣
∣
∣
s +

C
s – s′ λ|||u1 – ū1|||s

≤ C(|||u20|||s + R)|||u1 – ū1|||s + C(|||u10|||s + R + λ)|||u1 – ū1|||s, (5.9)
∣
∣
∣
∣
∣
∣F2(ū1, u2) – F2(ū1, ū2)

∣
∣
∣
∣
∣
∣
s′

≤ C
s – s′ |||ū1|||s|||u2 – ū2|||s +

C
s – s′

∣
∣
∣
∣
∣
∣u2

2 – ū2
2
∣
∣
∣
∣
∣
∣
s

+
C

s – s′
∣
∣
∣
∣
∣
∣u2

1 – ū2
1
∣
∣
∣
∣
∣
∣
s +

C
s – s′ β|||u2 – ū2|||s

≤ C(|||u10|||s + R)|||u2 – ū2|||s + (|||u20|||s + R + β)|||u2 – ū2|||s. (5.10)

From (5.5)–(5.10), we check that condition (2) in Lemma 5.3 holds. Replacing s′ with s
and s with 1 and applying condition (2) in Lemma 5.3 give rise to that condition (3) in
Lemma 5.3 holds. This finishes the proof of Theorem 1.7. �
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