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Abstract
In this paper, the existence of positive periodic solutions is studied for super-linear
neutral Liénard equation with a singularity of attractive type

(x(t) – cx(t – σ ))′′ + f (x(t))x′(t) – ϕ(t)xμ(t) +
α(t)
xγ (t)

= e(t),

where f : (0, +∞) → R, ϕ(t) > 0 and α(t) > 0 are continuous functions with
T -periodicity in the t variable, c, γ are constants with |c| < 1, γ ≥ 1. Many authors
obtained the existence of periodic solutions under the condition 0 <μ ≤ 1, and we
extend the result to μ > 1 by using Mawhin’s continuation theorem as well as the
techniques of a priori estimates. At last, an example is given to show applications of
the theorem.

Keywords: Periodic solution; Neutral equation; Mawhin’s continuation theorem;
Attractive singularity

1 Introduction
The second order differential equations with singularities have a wide range of applications
in many subjects, such as physics, engineering, mechanics, and so on (see [1–5]). After the
pioneering paper [6] came out, many scholars put their attention to the periodic problems
of second order singular differential equations without friction term (see [7–13] and the
references therein). Beginning with the paper of Habets–Sanchez in [14], the interest in the
problem of periodic solution for second order singular differential equations with friction
term has increased [15–21]. Hakl, Torres, and Zamora considered the periodic problem
for the singular equation of attractive type

x′′(t) + f
(
x(t)

)
x′(t) – ϕ(t)xμ(t) +

g1

xγ (t)
= 0, (1.1)

where μ ∈ (0, 1] is a constant, ϕ is a T-periodic function with ϕ ∈ L1([0, T], R), f ∈
C((0, +∞), R). By using Schauder’s fixed point theorem, as well as upper and lower func-
tions method, they obtained the following result (Theorem 3.16, [22]).
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Theorem 1.1 Let μ = 1 and g1 > 0. If
∫ T

0 ϕ(s) ds > 0 and

T
4

∫ T

0
ϕ+(s) ds

∫ T

0
ϕ–(s) ds <

∫ T

0
ϕ+(s) ds –

∫ T

0
ϕ–(s) ds, (1.2)

where ϕ+(t) = max{ϕ(t), 0} and ϕ–(t) = min{ϕ(t), 0}, then there exists at least one positive
periodic solution to Eq. (1.1). However, the study of periodic solutions for delay functional
differential equation with a singularity is relatively infrequent [23–25]. For example, Wang
in [23] studied the problem of periodic solutions for the singular delay Liénard equation of
repulsive type

x′′(t) + f
(
x(t)

)
x′(t) + ϕ(t)xμ(t – τ ) –

1
xγ (t – τ )

= e(t), (1.3)

and the periodic problem for neutral Liénard equation of repulsive type

(
x(t) – cx(t – σ )

)′′ + f
(
x(t)

)
x′(t) + ϕ(t)xμ(t – τ ) –

α(t)
xγ (t)

= h(t) (1.4)

has been investigated in [24] and [25], where ϕ(t) and e(t) are T-periodic with ϕ, e ∈
L1[0, T], γ and μ are positive constants. We notice that the degree associated with the term
ϕ(t)xμ is required μ ∈ (0, 1).

Motivated by these, in this paper, we continue to study the periodic problem for neutral
Liénard equation with a singularity of attractive type

(
x(t) – cx(t – σ )

)′′ + f
(
x(t)

)
x′(t) – ϕ(t)xμ(t) +

α(t)
xγ (t)

= e(t), (1.5)

where f , ϕ are the same as the ones of Eq. (1.4). e is a T-periodic function with e ∈
L1([0, T], R) and

∫ T
0 e(s) ds = 0. By means of a continuation theorem of the coincidence

degree principle developed by Manásevich and Mawhin, as well as the techniques of a
priori estimates, some new results on the existence of positive periodic solutions are ob-
tained. The interesting point in this paper is that the constant μ is allowed μ ∈ (0, 2]. It
is easy to see that if μ ∈ (1, 2], the restoring force term ϕ(t)xμ is super-linear with respect
to x.

The rest of this paper is organized as follows. In Sect. 2, we state some necessary defini-
tions and lemmas. In Sect. 3, we prove the main result. At last, we give an example of an
application in Sect. 4.

2 Essential definitions and lemmas
In this section, we define X = C1

T = {x ∈ C1(R, R) : x(t + T) = x(t),∀t ∈ [0, T]} with the norm
‖x‖C1

T
= max{‖x‖∞,‖x′‖∞} and Y = CT = {x ∈ C(R, R) : x(t + T) = x(t),∀t ∈ [0, T]} with the

norm ‖x‖∞ = maxt∈[0,T] |x(t)|. For y ∈ CT , ym is denoted by mint∈[0,T] y(t). Clearly, CT and
C1

T are Banach spaces. Denote the operator L as follows:

Lx = (Ax)′′, L := D(L) ⊂ C1
T → CT ,
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where A : CT → CT , (Ax)(t) = x(t) – cx(t – σ ), and D(L) = {x ∈ C1
T : Ax ∈ C2(R, R)}, and

(Ax)′′(t) + f
(
x(t)

)
x′(t) – ϕ(t)xμ(t) +

α(t)
xγ (t)

= e(t),

(Nx)(t) = –f
(
x(t)

)
x′(t) + ϕ(t)xμ(t) –

α(t)
xγ (t)

+ e(t), N : � → CT ,
(2.1)

where � = {x ∈ C1
T : x(t) > 0,∀t ∈ [0, T]}. Then Eq. (1.5) (or Eq. (2.1)) can be rewritten as

Lx = Nx.

Lemma 2.1 ([27]) If |c| < 1, then A has continuous inverse on CT and
(1) ‖A–1x‖∞ ≤ ‖x‖∞

|1–|c|| for all x ∈ CT ;
(2)

∫ T
0 |(A–1f )(t)|dt ≤ 1

|1–|c||
∫ T

0 |f (t)|dt for all f ∈ CT ;
(3)

∫ T
0 |(A–1f )|2(t)|dt ≤ 1

(1–|c|)2

∫ T
0 f 2(t) dt for all f ∈ CT .

Lemma 2.2 ([23]) Let x(t) be a continuously differentiable T-periodic function. Then there
is a point ξ ∈ [0, T]

(∫ T

0
x2(t) dt

) 1
2 ≤ T 1

2

2

(∫ T

0
x′2(t) dt

) 1
2

+ x(ξ ). (2.2)

Lemma 2.3 ([22]) Let u(t) : [0,ω] → R be an arbitrary absolutely continuous function with
u(0) = u(ω). Then the inequality

(
max

t∈[0,ω]
u(t) – min

t∈[0,ω]
u(t)

)2 ≤ ω

4

∫ ω

4

∣∣u′(s)
∣∣2 ds

holds.

Lemma 2.4 ([26]) Let X and Y be two real Banach spaces, let 	 be an open and bounded
set of X, and let L: D(L) ⊂ X → Y be a Fredholm operator of index zero, and the operator
N : 	 ⊂ X → Y is said to be L-compact in 	. In addition, if the following conditions hold:

(1) Lx �= λNx for all (x,λ) ∈ ∂	 × (0, 1);
(2) QNx �= 0 for all x ∈ ker L

⋂
∂	;

(3) deg{JQN ,	
⋂

ker L, 0}, where J : Im Q → ker L is a homeomorphism.

Then Lx = Nx has at least one solution in D(L)
⋂

	.

Remark 2.5 If ϕ > 0, e = 0, then there are constants C1 and C2 with 0 < C1 < C2 such that

ϕxμ –
1

xγ
> 0, ∀x ∈ (0, C1),

and

ϕxμ –
1

xγ
< 0, ∀x ∈ (C2, +∞).

Now, we list the following assumptions, which will be used in Sect. 3 for investigating
the existence of positive T-periodic solution to Eq. (2.1):
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(H1) 1 – |c| > 0,

(H2) 1 –
√

TN2
2 > 0, where N2 =

Tϕ( 1
|ϕ|∞ )

1
μ+γ

1–|c| .

3 Main results
Now, we embed Eq. (1.3) into the following equations family with a parameter λ ∈ (0, 1]:

(
x(t) – cx(t – σ )

)′′ + λf
(
x(t)

)
x′(t) – λϕ(t)xμ(t) + λ

α(t)
xγ (t)

= λe(t). (3.1)

Let

D =
{

x ∈ C1
T : Lx = λNx,λ ∈ (0, 1]

}
. (3.2)

Theorem 3.1 Assume ϕ > 0, α(t) > 0, and e = 0, then there are two constants τ0, τ1 ∈ [0, T]
for each u ∈ D such that

u(τ0) ≤ max

{
1,

(
α

ϕ

) 1
μ
}

:= A0 (3.3)

and

u(τ1) ≥ min

{
1,

(
α

ϕ

) 1
μ
}

:= A1. (3.4)

Proof Let u ∈ D, then

(Au)′′(t) + λf
(
u(t)

)
u′(t) – λϕ(t)uμ(t) +

λα(t)
uγ (t)

= λe(t). (3.5)

Integrating both sides of Eq. (3.5) over the interval [0, T], we obtain that

∫ T

0
ϕ(t)uμ(t) dt =

∫ T

0

α(t)
uγ (t)

dt. (3.6)

If u(t) > 1, combine with the mean value theorem of integrals and ϕ(t) > 0, then

uμ(τ )Tϕ =
∫ T

0
ϕ(t)uμ(t) dt =

Tα

uγ (ξ )
< T ,

which yields

u(τ ) <
(

α

ϕ

) 1
μ

.

So there exists a point τ0 ∈ [0, T] such that

u(τ0) ≤ max

{
1,

(
α

ϕ

) 1
μ
}

:= A0. (3.7)
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On the other hand, when ϕ(t) > 0 for every μ ∈ D, there always exists a point τ1 ∈ [0, T]
such that

u(τ1) ≥ min

{
1,

(
α

ϕ

) 1
μ
}

:= A1. (3.8)�

Theorem 3.2 Suppose that assumptions of [H1] and [H2] hold, and ϕ > 0, e = 0, then
Eq. (2.1) has at least one positive T-periodic solution.

Proof Suppose u ∈ D, then Eq. (3.5) holds. By multiplying both sides of Eq. (3.5) by u(t)
and integrating it over the interval [0, T], we get

∫ T

0
(Au)′′(t)u(t) dt = λ

∫ T

0
ϕ(t)uμ(t)u(t) dt – λ

∫ T

0

u(t)α(t)
uγ (t)

dt + λ

∫ T

0
e(t)u(t) dt.

Since

∫ T

0
(Au)′′(t)u(t) dt = –

∫ T

0

∣∣u′(t)
∣∣2 dt + c

∫ T

0
u′(t)u′(t – σ ) dt,

it is easy to verify that

∫ T

0

∣∣u′(t)
∣∣2 dt = c

∫ T

0
u′(t)u′(t – σ ) dt

+ λ

∫ T

0

(
α(t)
uγ (t)

– ϕ(t)uμ(t)
)

u(t) dt – λ

∫ T

0
e(t)u(t) dt.

Let A2 = ( αm
|ϕ|∞ )

1
μ+γ and A3 = ( |α|∞

ϕm
)

1
μ+γ . Set E1 = {t ∈ [0, T] : 0 < u(t) < A2}, E2 = {t ∈

[0, T] : A2 ≤ u(t) ≤ A3}, E3 = {t ∈ [0, T] : u(t) > A3}, and E1
⋃

E2
⋃

E3 = [0, T]. We can
obtain

∫ T

0

∣
∣u′(t)

∣
∣2 dt = c

∫ T

0
u′(t)u′(t – σ ) dt + λ

∫

E1

(
α(t)
uγ (t)

– ϕ(t)uμ(t)
)

u(t) dt

+ λ

∫

E2

(
α(t)
uγ (t)

– ϕ(t)uμ(t)
)

u(t) dt + λ

∫

E3

(
α(t)
uγ (t)

– ϕ(t)uμ(t)
)

u(t) dt – λ

∫ T

0
e(t)u(t) dt

≤ |c|
∫ T

0

∣∣u′(t)
∣∣2 dt +

∣
∣∣
∣

∫

E1

(
α(t)
uγ (t)

– ϕ(t)uμ(t)
)

u(t) dt
∣
∣∣
∣

+
∫

E2

∣
∣∣
∣

(
α(t)
uγ (t)

– ϕ(t)uμ(t)
)

u(t)
∣
∣∣
∣dt + T‖u‖∞e–.

It follows that

(
1 – |c|)

∫ T

0

∣∣u′(t)
∣∣2 dt ≤ A2

∫

E1

(
α(t)
uγ (t)

– ϕ(t)uμ(t)
)

dt

+ A3N0 + T‖u‖∞e–, (3.9)
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where N0 = T maxA2<x<A3,t∈[0,T]{| α(t)
xγ – ϕ(t)xμ|}. On the other hand,

(∫

E1

+
∫

E2

+
∫

E3

)(
α(t)
uγ (t)

– ϕ(t)uμ(t)
)

dt) = 0.

Combining it with Eq. (3.9) we get that

(
1 – |c|)

∫ T

0

∣
∣u′(t)

∣
∣2 dt

≤ A2

(
–

∫

E2

(
α(t)
uγ (t)

– ϕ(t)uμ(t)
)

dt –
∫

E3

(
α(t)
uγ (t)

– ϕ(t)uμ(t)
)

dt
)

+ A3N0 + T‖u‖∞e–

≤ A2

∣
∣∣
∣

∫

E2

(
α(t)
uγ (t)

– ϕ(t)uμ(t)
)

dt
∣
∣∣
∣ + A2

∣
∣∣
∣

∫

E3

(
α(t)
uγ (t)

– ϕ(t)uμ(t)
)

dt
∣
∣∣
∣

+ A3N0 + T‖u‖∞e–

≤ A2N0 + A2

∫

E3

α(t)
uγ (t)

dt + A2

∫

E3

ϕ(t)uμ(t) dt

+ A3N0 + T‖u‖∞e–

≤ (A2 + A3)N0 +
A2Tα

Aγ
3

+ A2Tϕ‖u‖μ
∞ + T‖u‖∞e–. (3.10)

From the condition, we see that

∫ T

0

∣∣u′(t)
∣∣2 dt ≤ [(A2 + A3)N0 + A2Tα

A3
]

1 – |c| +
A2Tϕ‖u‖μ∞

1 – |c| +
T‖u‖∞e–

1 – |c| .

Let N1 =
[(A2+A3)N0+ A2Tα

A3
]

1–|c| , N2 = A2Tϕ

1–|c| , and N3 = Te–
1–|c| , we have

∫ T

0

∣∣u′(t)
∣∣2 dt ≤ N1 + N2‖u‖μ

∞ + N3‖u‖∞. (3.11)

By using Lemma 2.2, we obtain that

‖u‖∞ ≤ A0 +
√

T
2

(∫ T

0

∣∣u′(t)
∣∣2

) 1
2

≤ A0 +
√

T
2

(
N1 + N2‖u‖μ

∞ + N3‖u‖∞
) 1

2

≤ A0 +
√

T
2

N
1
2

1 +
√

T
2

N
1
2

2 ‖u‖
μ
2∞ +

√
T

2
N

1
2

3 ‖u‖ 1
2∞. (3.12)

Now, we begin to estimate a priori upper bounds of u(t). In order to do this, we divide the
estimation into two cases.

Case 1: 0 < μ < 2. From Eq. (3.12), it is easy to see that there exists a constant M1 > 0
such that

‖u‖∞ < M1.
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Case 2: μ = 2. For this case, Eq. (3.12) can be rewritten as

(
1 –

√
T

2
N

1
2

2

)
‖u‖∞ ≤ A0 +

√
T

2
N

1
2

1 +
√

T
2

N
1
2

3 ‖u‖ 1
2∞,

which together with assumption [H2] yields that there exists a constant M2 > 0 such that

‖u‖∞ < M2.

Thus, in either case 1 or case 2, we have

‖u‖∞ < max{M1, M2} := M3. (3.13)

Substituting Eq. (3.13) into Eq. (3.11), we have that there exists a constant M4 > 0 such
that

∫ T
0 |u′(t)|2 dt < M4. Since Au ∈ C1

T , there is t0 ∈ [0, T] such that (Au)′(t0) = 0. From
Eq. (3.5), we get

∣∣(Au)′(t)
∣∣ = λ

∣
∣∣
∣

∫ t

t0

[
–f

(
u(t)

)
u′(t) + ϕ(t)uμ(t) –

α(t)
uγ (t)

+ e(t)
]

dt
∣
∣∣
∣

≤
∫ T

0

∣
∣f

(
u(t)

)∣∣
∣
∣u′(t)

∣
∣dt +

∫ T

0

∣
∣ϕ(t)uμ(t)

∣
∣dt

+
∫ T

0

∣∣
∣∣

α(t)
uγ (t)

∣∣
∣∣dt +

∫ T

0

∣
∣e(t)

∣
∣dt

≤ |f |M3 T
1
2

(∫ T

0

∣∣u′(t)
∣∣2

) 1
2

+ 2T |ϕ|Mμ
3 + T |e|

≤ |f |M3 T
1
2 (M4)

1
2 + 2T |ϕ|Mμ

3 + T |e| := M5,

where |f |M3 := max0≤x≤M3 |f (x)|. By using Lemma 2.1, we get the inequality

∣∣u′∣∣∞ <
∣∣A–1Au′∣∣∞ ≤ |Au′|∞

1 – |c| ≤ M5

1 – |c| := M6. (3.14)

In what follows, we will show the estimation

min
t∈[0,T]

u(t) > γ0, uniformly for all u ∈ D, (3.15)

where γ0 > 0 is a constant, D is determined in Eq. (3.2).
Let τ1 be determined in Eq. (3.8). Multiplying both sides of Eq. (3.5) by u′(t) and inte-

grating it over the interval [t, τ1], we obtain that

∫ τ1

t

[
(Au)′′(s)u′(s) + λf

(
u(s)

)∣∣u′(s)
∣∣2 – λϕ(s)uμ(s)u′(s) +

λu′(s)α(s)
uγ (s)

]
ds

= λ

∫ τ1

t
e(s)u′(s) ds.
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Because of
∫ τ1

t
u′(s)α(s)

uγ (s) ds =
∫ τ1

t
α(s)du(s)

uγ (s) =
∫ u(τ1)

u(t)
α(s) dv

vγ , we can get from Eq. (3.13) and
Eq. (3.14) that

λ

∣
∣∣
∣

∫ u(τ1)

u(t)

α(s) dv
vγ

∣
∣∣
∣

≤
∫ τ1

t

∣∣(Au)′′(s)
∣∣∣∣u′(s)

∣∣ds + λ

∫ τ1

t

∣∣f
(
u(s)

)∣∣∣∣u′(s)
∣∣2 ds

+ λ

∫ τ1

t

∣
∣ϕ(s)

∣
∣
∣
∣uμ(s)

∣
∣
∣
∣u′(s)

∣
∣ds + λ

∫ τ1

t

∣
∣e(s)

∣
∣
∣
∣u′(s)

∣
∣ds

≤ ∣
∣u′∣∣∞

∫ T

0

∣
∣(Au)′′(s)

∣
∣ds + λ

∣
∣u′∣∣2

∞

∫ T

0

∣
∣f

(
u(s)

)∣∣ds

+ λ
∣∣u′∣∣∞|u|μ∞

∫ T

0

∣∣ϕ(s)
∣∣ds + λ

∣∣u′∣∣∞

∫ T

0

∣∣e(s)
∣∣ds

≤ M6

∫ T

0

∣
∣(Au)′′(s)

∣
∣ds + λM2

6|f |M3 + λM6Mμ
3 T |ϕ| + λM6T |e|. (3.16)

Furthermore, integrating Eq. (3.5) over the interval [0, T],
i.e.,

∫ T

0
(Au)′′(t) dt = –λ

∫ T

0
f
(
u(t)

)
u′(t) dt + λ

∫ T

0
ϕ(t)uμ(t) dt

– λ

∫ T

0

α(t)
uγ (t)

dt + λ

∫ T

0
e(t) dt,

it is clear that
∫ T

0

∣∣(Au)′′(t)
∣∣dt ≤ λ

∫ T

0

∣∣f
(
u(t)

)
u′(t)

∣∣dt + λ

∫ T

0

∣∣ϕ(t)
∣∣∣∣uμ(t)

∣∣dt

+ λ

∫ T

0

∣
∣e(t)

∣
∣dt

≤ λ
(|f |M3 M6 + 2T |ϕ|Mμ

3 + 2T |e|). (3.17)

Now, substituting Eq. (3.17) into Eq. (3.16), we have

∣
∣∣
∣

∫ u(τ1)

u(t)

α(s) dv
vγ

∣
∣∣
∣ ≤ M6

[|f |M3 M6 + 2T |ϕ|Mμ
3 + 2T |e|]

+ M2
6|f |M3 + M6Mμ

3 T |ϕ| + M6T |e| := M7,

and so
∣∣∣
∣

∫ u(τ1)

u(t)

α(s) dv
vγ

∣∣∣
∣ ≤ M7 ∀t ∈ [τ1, τ1 + T]. (3.18)

On the other hand, when γ ≥ 1, we have
∫ A1

0
αm
vγ dv = +∞, then there exists γ0 ∈ (0, A1)

such that
∣∣
∣∣

∫ A1

ε

αm dv
vγ

∣∣
∣∣ > M7 ∀ε ∈ (0,γ0]. (3.19)
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And if t∗ ∈ [τ1, τ1 + T] such that u(t∗) ≤ γ0, from Eq. (3.19) we see that

∣
∣∣
∣

∫ u(τ1)

u(t∗)

α(s) dv
vγ

∣
∣∣
∣ >

∫ A1

u(t∗)

αm dv
vγ

> M7, (3.20)

which contradicts Eq. (3.18). This contradiction verifies Eq. (3.15). From Eq. (3.13),
Eq. (3.14), and Eq. (3.15), as well as the inequality in Remark 2.5, we can verify all the
conditions of Lemma 2.4. Thus, by using Lemma 2.4, we see that Eq. (3.5) has at least one
positive T-periodic solution. �

4 Example
In this section, we present an example to demonstrate the main results.

Example 4.1 Consider the following equation:

(
u(t) – 0.1u(t – σ )

)′′ + f
(
u(t)

)
u′(t) – a(1 + cos t)u

3
2 (t) +

1
u 3

2
= sin t. (4.1)

Corresponding to Eq. (3.5), in (4.1), c = 0.1, ϕ(t) = a(1+cos t), a > 0, e(t) = sin t, and T = 2π .

Obviously, ϕ = a and e = 0 for all t ∈ [0, T] with |ϕ|∞ = 2a, A2 = ( 1
2a ) 1

3 , and N2 = ( 1
2a )

1
3 2πa

1–0.1 =
1

3√2
2πa

2
3

0.9 . Since (4.1) satisfies (H2)
i.e.,

1 –
√

TN2

2
= 1 –

√
2π (

1
3√2

2πa
2
3

0.9 ) 1
2

2
> 0, (4.2)

we get that a <
√

2(0.9)
3
2

π3 . Thus, by using Theorem 3.1 and Theorem 3.2, when a <
√

2(0.9)
3
2

π3 ,
Eq. (4.1) has at least one positive 2π-periodic solution.

Remark 4.2 From the above example, we see that the degree μ associated with the restor-
ing force term ϕ(t)xμ is μ = 3

2 , which is different from the corresponding ones of μ ∈ (0, 1]
in [23–25]. Furthermore, since the degree μ in (1.1) is required μ ∈ (0, 1], even if c = 0, the
results of the present paper are different from Theorem 1.1.
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