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Abstract
Under investigation in this paper is the (2 + 1)-dimensional integrable coupling of the
KdV equation which has applications in wave propagation on the surface of shallow
water. Firstly, based on the Lie symmetry method, infinitesimal generators and an
optimal system of the obtained symmetries are presented. At the same time, new
analytical exact solutions are computed through the tanh method. In addition, based
on Ibragimov’s approach, conservation laws are established. In the end, the objective
figures of the solutions of the coupling of the KdV equation are performed.
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1 Introduction
It is well known that the Korteweg–de Vries (KdV) equation describes the propagation
of long waves on the surface of water with a small amplitude and is widely used to ex-
plain many complex science phenomena [1, 2]. Various forms of the expansion for the
KdV equation have been proposed because of its importance, such as the KdV-Burgers
equation [3], the KdV-BBM equation [4], the Rosenau–KdV equation [5], the modified
KdV equation [6], KdV-hierarchy [7], and the (2 + 1)-dimensional KdV equation [8]. In
this research article, we consider the following (2 + 1)-dimensional integrable coupling
of the KdV equation which has the bi-Hamiltonian structure for the (2 + 1)-dimensional
perturbation equations of the KdV hierarchy [9]:

⎧
⎨

⎩

ut = uxxx + 6uux,

vt = vxxx + 3uxxy + 6(uv)x + 6uuy,
(1)

where u = u(x, y, t), v = v(x, y, t) are the unknown real functions, the subscripts denote the
partial derivatives, and the variable y is called a slow variable. Equation (1) plays an im-
portant role in many analyses of physical phenomena such as stratified internal waves and
lattice dynamics [10, 11], and it has aroused worldwide interest. The (2 + 1)-dimensional
hereditary recursion operators were examined in [12], its integrability was verified by
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using Painlevé in [13], some traveling wave solutions were established in [14], the auto-
Bäcklund transformation, doubly periodic solutions and new non-traveling wave solutions
were analyzed in [15].

As is well known, some methods have been used to explore exact solutions for models
of nonlinear partial differential equations (PDEs) [16–18], the Lie group method is con-
sidered to be one of the most important methods to study the properties of solutions of
PDEs [19, 20]. The main idea of the symmetry method is to construct an invariance con-
dition and obtain reductions to differential equations [21–23]. Once reduction equations
have been given, one can get a large number of corresponding exact solutions. In order
to obtain the classification of all reduction equations, we require an optimal system of the
one-dimensional subalgebra of the Lie algebra constructed by the Lie group method [19].
Using a symmetry analysis, we will get an optimal system of (1), from which the fasci-
nating special solutions are inferred. Another important area is the conservation laws of
PDEs which have an important impact on constructing solutions of PDEs [24–26]. We will
obtain conservation laws of Eq. (1) by using Ibragimov’s approach [27].

The rest of this paper is organized as follows. In Sect. 2, symmetries of the (2 + 1)-
dimensional integrable coupling of the KdV equation are discussed; Sect. 3 considers the
reduced equations by means of similar variables; in Sect. 4, some new explicit solutions are
presented with the help of the tanh method, and some objective features of the solutions
are presented; in Sect. 5, the nonlinearly self-adjointness of Eq. (1) is proved and its con-
servation laws are established by using Ibragimov’s method. Finally, concluding remarks
are given at the end of the paper.

2 Lie point symmetry
In this section, we apply Lie’s theory of symmetries for Eq. (1), and get its infinitesimal
generators, commutator of Lie algebra.

First, let us consider a Lie algebra of infinitesimal symmetries of Eq. (1) of the form

X = ξ 1(x, y, t, u, v)∂x + ξ 2(x, y, t, u, v)∂y + ξ 3(x, y, t, u, v)∂t

+ φ(x, y, t, u, v)∂u + ϕ(x, y, t, u, v)∂v. (2)

According to the invariance conditions for Eq. (1) with respect to the transformation
(2), we have [19, 28]

pr(3) X(�1)|�1=0 = 0, pr(3) X(�2)|�2=0 = 0,

where pr(3) X is the third-order prolongation of X [19, 28] and �1 = ut – uxxx – 6uux, �2 =
vt – vxxx – 3uxxy – 6(uv)x – 6uuy, on this condition,

pr(3) X = X + φ(1)
x

∂

∂ux
+ φ(1)

y
∂

∂uy
+ φ

(1)
t

∂

∂ut
+ φ(3)

xxx
∂

∂uxxx
+ φ(3)

xxy
∂

∂uxxy

+ ϕ(1)
x

∂

∂vx
+ ϕ

(1)
t

∂

∂vt
+ ϕ(3)

xxx
∂

∂vxxx
,

where

φ(1)
x = Dxφ – uxDxξ

1 – uyDxξ
2 – utDxξ

3,
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φ(1)
y = Dyφ – uxDyξ

1 – uyDyξ
2 – utDyξ

3,

φ
(1)
t = Dtφ – uxDtξ

1 – uyDtξ
2 – utDtξ

3,

ϕ(1)
x = Dxϕ – vxDxξ

1 – vyDxξ
2 – vtDxξ

3,

ϕ
(1)
t = Dtϕ – vxDtξ

1 – vyDtξ
2 – vtDtξ

3,

φ(3)
xxx = D3

x
(
φ – ξ 1ux – ξ 2uy – ξ 3ut

)
+ ξ 1uxxxx + ξ 2uxxxy + ξ 3uxxxt ,

φ(3)
xxy = D2

xDy
(
φ – ξ 1ux – ξ 2uy – ξ 3ut

)
+ ξ 1uxxxy + ξ 2uxxyy + ξ 3uxxyt ,

ϕ(3)
xxx = D3

x
(
ϕ – ξ 1vx – ξ 2vy – ξ 3vt

)
+ ξ 1vxxxx + ξ 2vxxxy + ξ 3vxxxt ,

and Dx, Dy, Dt stand for the operators of the total differentiation, for instance,

Dt =
∂

∂t
+ ut

∂

∂u
+ vt

∂

∂v
+ utx

∂

∂ux
+ vtx

∂

∂vx
+ utt

∂

∂ut
+ vty

∂

∂vy
+ · · · .

Next, we get a system of over-determined linear equations of ξ 1, ξ 2, ξ 3, φ and ϕ,

ξ 1
x =

1
3
ξ 3

t , ξ 1
y = ξ 1

t = ξ 1
u = ξ 1

v = 0,

ξ 2
x = ξ 2

t = ξ 2
u = ξ 2

v = 0,

ξ 3
x = ξ 3

y = ξ 3
u = ξ 3

v = 0, ξ 3
tt = 0,

φ = –
2
3

uξ 3
t , ϕ = –

1
3

v
(
ξ 3

t + 3ξ 2
y
)
.

Solving these equations, one can get

ξ 1 =
1
3

c1x + c3, ξ 2 = F(y), ξ 3 = c1t + c2,

φ = –
2
3

c1u, ϕ = –
1
3

v(c1 + 3Fy),

where c1, c2, c3 are real constants, F(y) is an arbitrary function. To obtain physically crucial
solutions, we take F1(z) = c4y + c5, then on substituting the above obtaining

ξ 1 =
1
3

c1x + c3, ξ 2 = c4y + c5, ξ 3 = c1t + c2,

φ = –
2
3

c1u, ϕ = –
1
3

v(c1 + 3c4).

Therefore, the Lie algebra L5 of the transformations of Eq. (1) is spanned by the following
generators:

X1 =
1
3

x∂x + t∂t –
2
3

u∂u –
1
3

v∂v, X2 = ∂t ,

X3 = ∂x, X4 = y∂y – v∂v, X5 = ∂y.

In order to classify all the group-invariant solutions, we need an optimal system of
one-dimensional subalgebras. In this section, the optimal system of subgroups for Eq. (1)
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Table 1 Table of Lie brackets

[Xi ,Xj] X1 X2 X3 X4 X5

X1 0 –X2 – 1
3 X3 0 0

X2 X2 0 0 0 0
X3 1

3 X3 0 0 0 0
X4 0 0 0 0 –X5
X5 0 0 0 X5 0

is constructed by only using the commutator table [29]. First, using the commutator
[Xm, Xn] = XmXn – XnXm, we attained the commutation relations of X1, X2, X3, X4, X5

listed in Table 1.
An arbitrary operator X ∈ L5 is given as

X = l1X1 + l2X2 + l3X3 + l4X4 + l5X5.

To establish the linear transformations of the vector l = (l1, l2, l3, l4, l5), we denote

Ei = ck
ijlj∂lk , i = 1, 2, 3, 4, 5, (3)

where ck
ij is constructed by the formula [Xi, Xj] = ck

ijXk . Based on Eq. (3) and Table 1, E1,
E2, E3, E4, E5 can be written as

E1 = –l2∂l2 –
1
3

l3∂l3 ,

E2 = l1∂l2 ,

E3 =
1
3

l1∂l3 ,

E4 = –l5∂l5 ,

E5 = l4∂l5 .

For E1, E2, E3, E4, E5, the Lie equations with parameters a1, a2, a3, a4, a5 and the initial
condition l̃|ai=0 = l, i = 1, 2, 3, 4, 5 are given as

dl̃1

da1
= 0,

dl̃2

da1
= –l̃2,

dl̃3

da1
= –

1
3

l̃3,
dl̃4

da1
= 0,

dl̃5

da1
= 0,

dl̃1

da2
= 0,

dl̃2

da2
= l̃1,

dl̃3

da2
= 0,

dl̃4

da2
= 0,

dl̃5

da2
= 0,

dl̃1

da3
= 0,

dl̃2

da3
= 0,

dl̃3

da3
=

1
3

l̃1,
dl̃4

da3
= 0,

dl̃5

da3
= 0,

dl̃1

da4
= 0,

dl̃2

da4
= 0,

dl̃3

da4
= 0,

dl̃4

da4
= 0,

dl̃5

da4
= –l̃5,

dl̃1

da5
= 0,

dl̃2

da5
= 0,

dl̃3

da5
= 0,

dl̃4

da5
= 0,

dl̃5

da5
= l̃4.

The solutions of the above equations are associated with the transformations

T1: l̃1 = l1, l̃2 = e–a1 l2, l̃3 = e– 1
3 a1 l3, l̃4 = l4, l̃5 = l5,
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T2: l̃1 = l1, l̃2 = a2l1 + l2, l̃3 = l3, l̃4 = l4, l̃5 = l5,

T3: l̃1 = l1, l̃2 = l2, l̃3 =
1
3

a3l1 + l3, l̃4 = l4, l̃5 = l5,

T4: l̃1 = l1, l̃2 = l2, l̃3 = l3, l̃4 = l4, l̃5 = e–a4 l5,

T5: l̃1 = l1, l̃2 = l2, l̃3 = l3, l̃4 = l4, l̃5 = a5l4 + l5.

The establishment of the optimal system requires a simplification of the vector

l = (l1, l2, l3, l4, l5), (4)

by applying the transformations T1–T5. Our task is to construct a simplest representative
of each class of similar vectors (4). Two cases will be considered separately.

Case 2.1. l1 �= 0
By making a2 = – l2

l1
and a3 = – 3l3

l1
in T2 and T3, we enable l̃2, l̃3 = 0. The vector (4) be-

comes

(l1, 0, 0, l4, l5). (5)

2.1.1. l4 �= 0
By making a5 = – l5

l4
in T5, we can enable l̃5 = 0. The vector (5) is equivalent to

(l1, 0, 0, l4, 0).

We get the following representatives:

X1 ± X4. (6)

2.1.2. l4 = 0
The vector (5) is equivalent to

(l1, 0, 0, 0, l5). (7)

We get the following representatives:

X1, X1 ± X5. (8)

Case 2.2. l1 = 0
The vector (4) becomes

(0, l2, l3, l4, l5). (9)

2.2.1. l4 �= 0
By making a5 = – l5

l4
in T5, we can enable l̃5 = 0. The vector (9) is equivalent to

(0, l2, l3, l4, 0).
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Making all the possible combinations, we get the following representatives:

X4, X2 ± X4, X3 ± X4, X2 ± X3 ± X4. (10)

2.2.2. l4 = 0
The vector (9) becomes

(0, l2, l3, 0, l5).

We get the following representatives:

X2, X3, X5, X2 ± X3, X2 ± X5, X3 ± X5, X2 ± X3 ± X5. (11)

Finally, by gathering the operators (6, 8, 10 and 11), we obtain the following theorem.

Theorem 2.1 An optimal system of {X1, X2, X3, X4, X5} is generated by

X1 ± X4, X1, X1 ± X5, X4, X2 ± X4,

X3 ± X4, X2 ± X3 ± X4, X2, X3, X5,

X2 ± X3, X2 ± X5, X3 ± X5, X2 ± X3 ± X5.

3 Similarity reductions of the (2 + 1)-dimensional integrable coupling of the
KdV equation

In this section, based on Theorem 2.1, we will find some reduced equations of Eq. (1) by
using similarity variables.

Case 3.1. Reduction by X2 + X4.
Integrating the characteristic equation for X2 + X4, we get the invariance

x̃ = x, ỹ = t – ln y, ũ = u, ṽ = vy,

and the invariant solution takes the form ũ = f (x̃, t̃), ṽ = g(x̃, t̃), that is, u = f (x̃, ỹ), v = g(x̃,t̃)
y ,

Eq. (1) can be reduced to
⎧
⎨

⎩

fỹ = fx̃x̃x̃ + 6ffx̃,

gỹ = gx̃x̃x̃ – 3fx̃x̃ỹ + 6fx̃g + 6fgx̃ – 6ffỹ.
(12)

Case 3.2. Reduction by X2.
Similarly, we have x̃ = x, ỹ = y, u = f (x̃, ỹ), v = g(x̃, ỹ). Equation (1) is reduced to

⎧
⎨

⎩

fx̃x̃x̃ + 6ffx̃ = 0,

gx̃x̃x̃ + 3fx̃x̃ỹ + 6fx̃g + 6fgx̃ + 6ffỹ = 0.
(13)

Case 3.3. For the generator X2 + X3, we have ỹ = y, t̃ = x – t, u = f (ỹ, t̃), v = g(ỹ, t̃). Equation
(1) is reduced to

⎧
⎨

⎩

–ft̃ = ft̃t̃t̃ + 6fft̃ ,

–gt̃ = gt̃t̃t̃ + 3fỹt̃t̃ + 6ft̃g + 6fgt̃ + 6ffỹ.
(14)
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Case 3.4. For the generator X2 +X5, we have x̃ = x, ỹ = y–t, u = f (x̃, ỹ), v = g(x̃, ỹ). Equation
(1) can be reduced to

⎧
⎨

⎩

–fỹ = fx̃x̃x̃ + 6ffx̃,

–gỹ = gx̃x̃x̃ + 3fx̃x̃ỹ + 6fx̃g + 6fgx̃ + 6ffỹ.
(15)

Case 3.5. For the generator X2 + X3 + X5, we have x̃ = x – y, t̃ = x – t, u = f (x̃, t̃), v = g(x̃, t̃).
Equation (1) becomes

⎧
⎨

⎩

–ft̃ = fx̃x̃x̃ + 6ffx̃,

–gt̃ = gx̃x̃x̃ – 3fx̃x̃x̃ + 6fx̃g + 6fgx̃ – 6ffx̃.
(16)

Case 3.6. For the generator X4, we have x̃ = x, t̃ = t, u = f (x̃, t̃), v = g(x̃,t̃)
y . Equation (1) can

be reduced to
⎧
⎨

⎩

ft̃ = fx̃x̃x̃ + 6ffx̃,

gt̃ = gx̃x̃x̃ + 6fgx̃ + 6fx̃g.
(17)

Case 3.7. For the generator X3 +X5, we have x̃ = x–y, t̃ = t, u = f (x̃, t̃), v = g(x̃, t̃). Equation
(1) becomes

⎧
⎨

⎩

ft̃ = fx̃x̃x̃ + 6ffx̃,

gt̃ = gx̃x̃x̃ + 6fgx̃ + 6fx̃g.
(18)

Case 3.8. For the generator X1, we have ỹ = y, t̃ = t
x3 , u = f (ỹ,t̃)

x2 , v = g(ỹ,t̃)
x . Equation (1) can

be reduced to
⎧
⎨

⎩

ft̃ = –24f – 186t̃ft̃ – 162t̃2ft̃t̃ – 27t̃3ft̃t̃t̃ – 12f 2 – 18t̃fft̃ ,

gt̃ = –6g – 114t̃gt̃ – 135t̃2gt̃t̃ – 27t̃3gt̃t̃t̃ + 18fỹ + 84t̃ft̃ỹ.
(19)

4 The exact solutions of reduced equations
In the previous section, we have dealt with the similarity reductions and derived the cor-
responding reduced equations. In this section, we use the tanh method on reduced equa-
tions, obtaining some exact solutions of Eq. (1). With the help of exact solutions, we can
understand some motion rules of waves of the (2 + 1)-dimensional integrable coupling of
KdV equation.

The main steps of the tanh method [24, 25] are expressed as follows:
1. Consider the following nonlinear differential equations:

⎧
⎨

⎩

F1(u, v, ux, vx, uxx, vxx, . . . , uy, vy, . . . , ut , vt , . . .) = 0,

F2(u, v, ux, vx, uxx, vxx, . . . , uy, vy, . . . , ut , vt , . . .) = 0,
(20)

where F1, F2 are polynomials of the u, v and their derivatives.
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2. By using the wave transformations
⎧
⎨

⎩

u(x, y, t) = �(ξ ),

v(x, y, t) = �(ξ ),
(21)

where ξ = lx + ky+ ct, and l, k, c are unknown constants, and substituting (21) into Eq. (20),
we obtain the following nonlinear ordinary differential equations:

⎧
⎨

⎩

F1(�,� , l�′, l� ′, l2�′′, l2� ′′, . . . , k�′, k� ′, . . . , c�′, c� ′, . . .) = 0,

F2(�,� , l�′, l� ′, l2�′′, l2� ′′, . . . , k�′, k� ′, . . . , c�′, c� ′, . . .) = 0.
(22)

3. Next, we introduce the independent variable

Y = tanh(ξ ), (23)

which leads to the following changes:

d
dξ

=
(
1 – Y 2) d

dY
,

d2

dξ 2 =
(
1 – Y 2)

[

–2Y
d

dY
+

(
1 – Y 2) d2

dY 2

]

,

d3

dξ 3 =
(
1 – Y 2)

[
(
6Y 2 – 2

) d
dY

– 6Y
(
1 – Y 2) d2

dY 2 +
(
1 – Y 2)2 d3

dY 3

]

.

4. We assume that the solution of Eq. (22) is written as the following form:

�(Y ) =
n∑

i=0

aiY i, �(Y ) =
m∑

i=0

biY i, (24)

where n, m are positive integers, which are decided by balancing the highest order nonlin-
ear terms with the derivative terms in the resulting equations. After deciding n, m, taking
(23) and (24) into (22), we obtain a polynomial concerning Y i (i = 0, 1, 2, . . .). Then we
gather all terms of Y i (i = 0, 1, 2, . . .) and make all them equal to zero. Solving these alge-
braic equations, we get the values of the unknown numbers ai, bi (i = 0, 1, . . .), l, k and c.
Then, putting these values into the equations, we get exact solutions of equations.

Case 4.1. For Eq. (12), substituting Eq. (21) into (12), we get the following equations:
⎧
⎨

⎩

k�′ = l3�(3) + 6l��′,

k� ′ = l3� (3) – 3l2k�(3) + 6l�′� + 6l�� ′ – 6k��′.
(25)

Concerning (25), balancing �(3) with ��′, we have

2 × 3 + n – 3 = n + 2 × 1 + n – 1 �⇒ n = 2,

balancing �(3) with �′� , we have

2 × 3 + n – 3 = 2 × 1 + n – 1 + m �⇒ m = 2.
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Hence, according to Eq. (24), the solution of Eq. (12) is assumed to be

⎧
⎨

⎩

�(Y ) = a0 + a1Y + a2Y 2,

�(Y ) = b0 + b1Y + b2Y 2.
(26)

Then, substituting Eq. (23) and Eq. (26) into Eq. (25), we collect all terms of Y i and obtain
the algebraic equations including unknown numbers ai, bi (i = 0, 1, 2), l and k. By solving
these equations, we have the following solutions:

l = l, k = k, a0 =
8l3 + k

6l
, a1 = 0, a2 = –2l2,

b0 =
k(–16l3 + k)

6l2 , b1 = 0, b2 = 4lk.
(27)

Putting (27) into Eq. (12), we obtain the exact solution as follows:

⎧
⎨

⎩

u(x, y, t) = 8l3+k
6l – 2l2 tanh2(lx + k(t – ln y)),

v(x, y, t) =
k(–16l3+k)

6l2
+4lk tanh2(lx+k(t–ln y))

y ,
(28)

where l �= 0, k are arbitrary constants.
Figures 1 and 2 depict the exact solution of Eq. (12), which is obtained by taking l = 1,

k = 1 at t = 1.
Case 4.2. For Eq. (13), similarly, substituting Eq. (21) into (13), we have the following

ordinary differential equations:

⎧
⎨

⎩

l3�(3) + 6l��′ = 0,

l3� (3) + 3l2k�(3) + 6l�′� + 6l�� ′ + 6k��′ = 0.
(29)

Then, balancing �(3) and ��′, �(3) and �′� ′ for (29), we have n = m = 2.

Figure 1 u(x, y, t) for l = 1, k = 1 at t = 1
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Figure 2 v(x, y, t) for l = 1, k = 1 at t = 1

Therefore, on the basis of Eq. (24), the solution of Eq. (13) can be assumed to be

⎧
⎨

⎩

�(Y ) = a0 + a1Y + a2Y 2,

�(Y ) = b0 + b1Y + b2Y 2.
(30)

Next, substituting Eq. (23) and Eq. (30) into Eq. (29), we make all coefficients of Y i vanish
and obtain the algebraic equations including the unknown numbers ai, bi (i = 0, 1, 2), l
and k. Solving these equations, we have the following solutions:

l = l, k = k, a0 =
4l2

3
, a1 = 0, a2 = –2l2,

b0 =
8lk
3

, b1 = 0, b2 = –4lk.
(31)

So, the exact solution of Eq. (13) is

⎧
⎨

⎩

u(x, y, t) = 4l2
3 – 2l2 tanh2(lx + ky),

v(x, y, t) = 8lk
3 – 4lk tanh2(lx + ky),

(32)

where l, k are arbitrary constants. This solution is a static solution of Eq. (1).
When we take l = 1, k = 1, the values of u, v are illustrated in Figs. 3 and 4.
Case 4.3. For Eq. (14), equally, substituting Eq. (21) into (14), we get the following ordi-

nary differential equations:

⎧
⎨

⎩

–�′ = c2�(3) + 6��′,

–c� ′ = c3� (3) + 3kc2�(3) + 6c�′� + 6c�� ′ + 6k��′.
(33)

Furthermore, balancing �(3) and ��′, �(3) and �′� ′ for (33), we have n = m = 2.
Therefore, based on Eq. (24), the solution of Eq. (14) can be assumed to be

⎧
⎨

⎩

�(Y ) = a0 + a1Y + a2Y 2,

�(Y ) = b0 + b1Y + b2Y 2.
(34)
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Figure 3 u(x, y, t) for l = 1, k = 1 at t = 1

Figure 4 v(x, y, t) for l = 1, k = 1 at t = 1

Next, substituting Eq. (23) and Eq. (34) into Eq. (33), we make all coefficients of Y i vanish
and obtain the algebraic equations including unknown numbers ai, bi (i = 0, 1, 2), k and c.
Solving these equations, we have the following solutions:

k = k, c = c, a0 =
8c2 – 1

6
, a1 = 0, a2 = –2c2,

b0 =
k(16c2 + 1)

6c
, b1 = 0, b2 = –4kc.

(35)

So, the exact solution of Eq. (14) is

⎧
⎨

⎩

u(x, y, t) = 8c2–1
6 – 2c2 tanh2(ky + c(x – t)),

v(x, y, t) = k(16c2+1)
6c – 4kc tanh2(ky + c(x – t)),

(36)

where c �= 0 and k are arbitrary constants.
Figures 5 and 6 portray the solution of Eq. (14), which is obtained by taking k = –1, c = 1

at t = 1.
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Figure 5 u(x, y, t) fork = –1, c = 1 at t = 1

Figure 6 v(x, y, t) fork = –1, c = 1 at t = 1

Case 4.4. For Eq. (15), in the same way, substituting Eq. (21) into (15), we have the fol-
lowing ordinary differential equations:

⎧
⎨

⎩

–k�′ = l3�(3) + 6l��′,

–k� ′ = l3� (3) + 3l2k�(3) + 6l�′� + 6l�� ′ + 6k��′.
(37)

Then, balancing �(3) and ��′, �(3) and �′� ′ for (33), we have n = m = 2.
Therefore, based on Eq. (24), the solution of Eq. (15) can be assumed to be

⎧
⎨

⎩

�(Y ) = a0 + a1Y + a2Y 2,

�(Y ) = b0 + b1Y + b2Y 2.
(38)

Next, substituting Eq. (23) and Eq. (38) into Eq. (37), we make all coefficients of Y i vanish
and obtain the algebraic equations including unknown numbers ai, bi (i = 0, 1, 2), l and k.
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Figure 7 u(x, y, t) for l = 1, k = –1 at t = 0

Figure 8 v(x, y, t) for l = 1, k = –1 at t = 0

Solving these equations, we have the following solutions:

l = l, k = k, a0 =
8l3 – k

6l
, a1 = 0, a2 = –2l2,

b0 =
k(16l3 + k)

6l2 , b1 = 0, b2 = –4lk.
(39)

So, the exact solution of Eq. (15) is

⎧
⎨

⎩

u(x, y, t) = 8l3–k
6l – 2l2 tanh2(lx + k(y – t)),

v(x, y, t) = k(16l3+k)
6l2 – 4lk tanh2(lx + k(y – t)),

(40)

where l �= 0, k are arbitrary constants.
When we take l = 1, k = –1 at t = 0, the values of u, v are illustrated in Figs. 7 and 8.
Case 4.5. For Eq. (16), likewise, substituting Eq. (21) into (16), we get the following or-

dinary differential equations:

⎧
⎨

⎩

–c�′ = l3�(3) + 6l��′,

–c� ′ = l3� (3) – 3l3�(3) + 6l�′� + 6l�� ′ – 6l��′.
(41)
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Figure 9 u(x, y, t) for l = 1, c = 1 at t = 0

Then, balancing �(3) and ��′, �(3) and �′� ′ for (41), we have n = m = 2.
Therefore, based on Eq. (24), the solution of Eq. (16) can be assumed to be

⎧
⎨

⎩

�(Y ) = a0 + a1Y + a2Y 2,

�(Y ) = b0 + b1Y + b2Y 2.
(42)

Next, substituting Eq. (23) and Eq. (42) into Eq. (41), we make all coefficients of Y i vanish
and obtain the algebraic equations including unknown numbers ai, bi (i = 0, 1, 2), l and c.
Solving these equations, we have the following solutions:

l = l, c = c, a0 =
8l3 – c

6l
, a1 = 0, a2 = –2l2,

b0 = –
16l3 + c

6l
, b1 = 0, b2 = 4l2.

(43)

So, the exact solution of Eq. (16) is

⎧
⎨

⎩

u(x, y, t) = 8l3–c
6l – 2l2 tanh2(l(x – y) + c(x – t)),

v(x, y, t) = – 16l3+c
6l + 4l2 tanh2(l(x – y) + c(x – t)),

(44)

where l �= 0, c are arbitrary constants.
Figures 9 and 10 depict the exact solution of Eq. (16), which is obtained by taking l = 1,

c = 1 at t = 0.

5 Construction of conservation laws
In this section, we chiefly construct conservation laws of Eq. (1) using Ibragimov’s method
[27, 30]. First, we prove that Eq. (1) is nonlinear self-adjoint.

5.1 Proof of nonlinear self-adjointness
With regard to Eq. (1), conservation laws multipliers have the following form:

	1 = 	1(x, y, t, u, v), 	2 = 	2(x, y, t, u, v).
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Figure 10 v(x, y, t) for l = 1, c = 1 at t = 0

Moreover,

⎧
⎨

⎩

Eu[	1(ut – uxxx – 6uux) + 	2(vt – vxxx – 3uxxy – 6(uv)x – 6uuy)] = 0,

Ev[	1(ut – uxxx – 6uux) + 	2(vt – vxxx – 3uxxy – 6(uv)x – 6uuy)] = 0,
(45)

where the Euler operators Eu, Ev are expressed as

⎧
⎨

⎩

Eu = ∂
∂u – Dx

∂
∂ux

– Dy
∂

∂uy
– Dt

∂
∂ut

+ D2
x

∂
∂uxx

· · · ,

Ev = ∂
∂v – Dx

∂
∂vx

– Dy
∂

∂vy
– Dt

∂
∂vt

+ D2
x

∂
∂vxx

· · · .
(46)

Substituting (46) into (45), we obtain the following system which only has the unknown
variables 	1, 	2:

	1v = 0, 	1xu = 0, 	1uu = 0,

	2u = 0, 	2v = 0,

–	1t + 6u	1x + 6v	2x + 6u	2y + 	1xxx + 3	2xxy = 0,

–	2t + 6u	2x + 	2xxx = 0.

Solving this system, we have 	1 = 6tuF1y + (6tu + x)F2(y) + uF3(y) + F4(y), 	2 = F1(y),
where F1(y), F2(y), F3(y) and F4(y) are arbitrary functions.

Consider a PDE system of order m,

Rα(x, u, . . . , u(k)) = 0, α = 1, . . . , m, (47)

where x = (x1, x2, . . . , xn), u = (u1, u2, . . . , um) and u(1), u(2), . . . , u(k) represent the set of all
first, second,. . . , kth-order derivatives of u in regard to x.

The adjoint equations of Eq. (47) are written as

(
Rα

)∗(x, u, v, . . . , u(k), v(k)) = 0, α = 1, . . . , m, v = v(x).
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Besides,

(
Rα

)∗(x, u, v, . . . , u(k), v(k)) =
δL
δuα

,

where L is a formal Lagrangian of the following form:

L = vβRβ (x, u, . . . , u(k)), β = 1, 2, . . . , m,

and the Euler–Lagrange operator is expressed as

δ

δuα
=

∂

∂uα
+

∞∑

j=1

(–1)jDi1 · · ·Dij
∂

∂uα
i1···ij

, α = 1, 2, . . . , m.

Definition 5.1 ([31]) The system (47) is said to be nonlinearly self-adjoint if the adjoint
system is satisfied for all the solutions u of system (47) upon a substitution v = ϕ(x, u) such
that ϕ(x, u) �= 0. Particularly, the system

(
Rα

)∗(x, u,ϕ, . . . , u(k),ϕ(k)) = 0, α = 1, . . . , m,

is identical to the system

λβ
αRβ (x, u, u, . . . , u(k), u(k)) = 0, β = 1, . . . , m,

that is,

(
Rα

)∗|v=ϕ(x,u) = λβ
αRβ , β = 1, . . . , m,

where λβ
α is a certain function.

Theorem 5.1 ([32]) The determining system of the multiplier 	(x, u) of system (47) is iden-
tical to the system of nonlinearly self-adjoint substitution.

If the formal Lagrangian of Eq. (1) is given as

L = ϕ1(x, y, t, u, v)(ut – uxxx – 6uux)

+ ϕ2(x, y, t, u, v)
(
vt – vxxx – 3uxxy – 6(uv)x – 6uuy

)
,

based on Theorem 5.1, we can get

⎧
⎨

⎩

ϕ1(x, y, t, u, v) = 	1(x, y, t, u, v) = 6tuF1y + (6tu + x)F2(y) + uF3(y) + F4(y),

ϕ2(x, y, t, u, v) = 	2(x, y, t, u, v) = F1(y).
(48)

Therefore, Eq. (1) is nonlinearly self-adjoint with substitution (48).
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5.2 Construction of conservation laws
Theorem 5.2 ([31]) The system of differential Eq. (47) is nonlinearly self-adjoint. Then
every Lie point, the Lie–Bäcklund, nonlocal symmetry

X = ξ i(x, u, u(1), . . .)
∂

∂xi + ηα(x, u, u(1), . . .)
∂

∂uα
,

admitted by the system of Eq. (47), gives rise to a conservation law, where the components
Ci of the conserved vector C = (C1, . . . ,Cn) are determined by

Ci = W α

[
∂L
∂uα

i
– Dj

(
∂L
∂uα

ij

)

+ DjDk

(
∂L
∂uα

ijk

)

– · · ·
]

+ Dj
(
W α

)
[

∂L
∂uα

ij
– Dk

(
∂L
∂uα

ijk

)

+ · · ·
]

+ DjDk
(
W α

)
[

∂L
∂uα

ijk
– · · ·

]

,

and W α = ηα – ξ juα
j . The formal Lagrangian L should be written in the symmetric form

concerning all mixed derivatives uα
ij , uα

ijk , . . . .

The Lagrangian L of Eq. (1) is given as follows:

L = 	1(ut – uxxx – 6uux) + 	2
(
vt – vxxx – 3uxxy – 6(uv)x – 6uuy

)
.

For the generator X = ξ 1∂x + ξ 2∂y + ξ 3∂t + φ∂u + ϕ∂v, in line with the Theorem 5.2, we
obtain W 1 = φ – ξ 1ux – ξ 2uy – ξ 3ut , W 2 = ϕ – ξ 1vx – ξ 2vy – ξ 3vt , so the components of the
conservation vector have the following form:

Cx = W 1
[

∂L
∂ux

+ D2
x

(
∂L

∂uxxx

)

+ DxDy

(
∂L

∂uxxy

)]

+ Dx
(
W 1)

[

–Dx

(
∂L

∂uxxx

)

– Dy

(
∂L

∂uxxy

)]

+ D2
x
(
W 1) ∂L

∂uxxx
+ DxDy

(
W 1) ∂L

∂uxxy
+ W 2

[
∂L
∂vx

+ D2
x

(
∂L

∂vxxx

)]

+ Dx
(
W 2)

[

–Dx

(
∂L

∂vxxx

)]

+ D2
x
(
W 2) ∂L

∂vxxx
,

Cy = W 1
[

∂L
∂uy

+ D2
x

(
∂L

∂uxxy

)]

+ Dx
(
W 1)

[

–Dx

(
∂L

∂uxxy

)]

+ D2
x
(
W 1) ∂L

∂uxxy
,

Ct = W 1 ∂L
∂ut

+ W 2 ∂L
∂vt

.

By substituting the Lagrangian L into above components of the conservation vector, Cx,
Cy, Ct are simplified as

Cx = –W 1[6(u	1 + v	2) + D2
x(	1) + 3DxDy(	2)

]

+ Dx
(
W 1)[Dx(	1) + 3Dy(	2)

]
– D2

x
(
W 1)	1 – 3DxDy

(
W 1)	2

– W 2[6u	2 + D2
x(	2)

]
+ Dx

(
W 2)Dx(	2) – D2

x
(
W 2)	2, (49)

Cy = –W 1[6u	2 + 3D2
x(	2)

]
+ 3Dx

(
W 1)Dx(	2) – 3D2

x
(
W 1)	2, (50)



Gao and Yin Boundary Value Problems        (2020) 2020:169 Page 18 of 20

Ct = W 1	1 + W 2	2. (51)

For the generator X1 = 1
3 x∂x + t∂t – 2

3 u∂u – 1
3 v∂v, we have W 1 = – 2

3 u – 1
3 xux – tut , W 2 =

– 1
3 v – 1

3 xvx – tvt . According to Eqs. (49)–(51), the components of the conserved vector of
generator X1 have the following form:

Cx
1 =

(
2
3

u +
1
3

xux + tut

)
{

6
[
u
(
6tu(F1)y + (6tu + x)F2(y) + uF3(y) + F4(y)

)
+ vF1(y)

]

+ uxx
[
6t(F1)y + 6tF2(y) + F3(y)

]}

–
(

ux +
1
3

xuxx + tuxt

)
{

F2(y) + ux
[
6t(F1)y + 6tF2(y) + F3(y)

]

+ 3(F1)y
}

+
(

4
3

uxx +
1
3

xuxxx + tuxxt

)
[
6tu(F1)y + (6tu + x)F2(y) + uF3(y) + F4(y)

]

+ (3uxy + xuxxy + 3tuxyt)F1(y) + (2v + 2xvx + 6tvt)uF1(y)

+
(

vxx +
1
3

xvxxx + tvxxt

)

F1(y),

Cy
1 = (4u + 2xux + 6tut)uF1(y) + (4uxx + xuxxx + 3tuxxt)F1(y),

Ct
1 =

(

–
2
3

u –
1
3

xux – tut

)
[
6tu(F1)y + (6tu + x)F2(y) + uF3(y) + F4(y)

]

–
(

1
3

v +
1
3

xvx – tvt

)

F1(y).

For the generator X2 = ∂t , we have W 1 = –ut , W 2 = –vt . According to Eqs. (49)–(51), the
components of the conserved vector of generator X2 can be expressed as follows:

Cx
2 = ut

{
6
[
u
(
6tu(F1)y + (6tu + x)F2(y) + uF3(y) + F4(y)

)
+ vF1(y)

]

+ uxx
[
6t(F1)y + 6tF2(y) + F3(y)

]}

– uxt
{

F2(y) + ux
[
6t(F1)y + 6tF2(y) + F3(y)

]
+ 3(F1)y

}

+ uxxt
[
6tu(F1)y + (6tu + x)F2(y) + uF3(y) + F4(y)

]

+ 3uxytF1(y) + 6uvtF1(y) + vxxtF1(y),

Cy
2 = 6uutF1(y) + 3uxxtF1(y),

Ct
2 = –ut

[
6tu(F1)y + (6tu + x)F2(y) + uF3(y) + F4(y)

]
– vtF1(y).

For the generator X3 = ∂x, we have W 1 = –ux, W 2 = –vx. According to Eqs. (49)–(51), the
components of the conserved vector of generator X3 can be written the following form:

Cx
3 = ux

{
6
[
u
(
6tu(F1)y + (6tu + x)F2(y) + uF3(y) + F4(y)

)
+ vF1(y)

]

+ uxx
[
6t(F1)y + 6tF2(y) + F3(y)

]}

– uxx
{

F2(y) + ux
[
6t(F1)y + 6tF2(y) + F3(y)

]
+ 3(F1)y

}

+ uxxx
[
6tu(F1)y + (6tu + x)F2(y) + uF3(y) + F4(y)

]

+ 3uxxyF1(y) + 6uvxF1(y) + vxxxF1(y),
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Cy
3 = 6uuxF1(y) + 3uxxxF1(y),

Ct
3 = –ux

[
6tu(F1)y + (6tu + x)F2(y) + uF3(y) + F4(y)

]
– vxF1(y).

For the generator X4 = y∂y – v∂v, we have W 1 = –yuy, W 2 = –v – yvy. According to
Eqs. (49)–(51), the components of the conserved vector of generator X4 are given as

Cx
4 = yuy

{
6
[
u
(
6tu(F1)y + (6tu + x)F2(y) + uF3(y) + F4(y)

)
+ vF1(y)

]

+ uxx
[
6t(F1)y + 6tF2(y) + F3(y)

]}

– yuxy
{

F2(y) + ux
[
6t(F1)y + 6tF2(y) + F3(y)

]
+ 3(F1)y

}

+ yuxxy
[
6tu(F1)y + (6tu + x)F2(y) + uF3(y) + F4(y)

]
+ 3(uxy + yuxyy)F1(y)

+ 6u(v + yvy)F1(y) + (vxx + yvxxy)F1(y),

Cy
4 = 6yuuyF1(y) + 3yuxxyF1(y),

Ct
4 = –yuy

[
6tu(F1)y + (6tu + x)F2(y) + uF3(y) + F4(y)

]
– (v + yvy)F1(y).

For the generator X5 = ∂y, we have W 1 = –uyW 2 = –vy. According to Eqs. (49)–(51), the
components of the conserved vector of the generator X5 can be expressed as

Cx
5 = uy

{
6
[
u
(
6tu(F1)y + (6tu + x)F2(y) + uF3(y) + F4(y)

)
+ vF1(y)

]

+ uxx
[
6t(F1)y + 6tF2(y) + F3(y)

]}

– uxy
{

F2(y) + ux
[
6t(F1)y + 6tF2(y) + F3(y)

]
+ 3(F1)y

}

+ uxxy
[
6tu(F1)y + (6tu + x)F2(y) + uF3(y) + F4(y)

]
+ 3uxyyF1(y)

+ 6uvyF1(y) + vxxyF1(y),

Cy
5 = 6uuyF1(y) + 3uxxyF1(y),

Ct
5 = –uy

[
6tu(F1)y + (6tu + x)F2(y) + uF3(y) + F4(y)

]
– vyF1(y).

6 Conclusions
In this paper, Lie group analysis is applied to the (2 + 1)-dimensional integrable coupling
of the KdV equation. The optimal system of the obtained symmetries and reduced equa-
tions are obtained based on symmetry method. Moreover, explicit solutions of the reduced
equations are constructed by using the tanh method. Through the figures related to so-
lutions, we can show the rules of the wave propagation corresponding to Eq. (1). Finally,
nonlinearly self-adjointness of Eq. (1) is manifested and its conservation laws are derived
by using Ibragimov’s method.
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