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Abstract
This work is concerned with a system of two singular viscoelastic equations with
general source terms and nonlocal boundary conditions. We discuss the stabilization
of this system under a very general assumption on the behavior of the relaxation
function ki , namely,

k′
i (t)≤ –ξi(t)�i(ki(t)), i = 1, 2.

We establish a new general decay result that improves most of the existing results in
the literature related to this system. Our result allows for a wider class of relaxation
functions, from which we can recover the exponential and polynomial rates when
ki(s) = sp and p covers the full admissible range [1, 2).

Keywords: Viscoelasticity; Stability; Nonlocal boundary conditions; Relaxation
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1 Introduction
In this paper, we consider the following system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

utt(x, t) – 1
x (xux(x, t))x +

∫ t
0 k1(t – s) 1

x (xux(x, s))x ds = f1(u, v),

x ∈ �, t > 0,

vtt(x, t) – 1
x (xvx(x, t))x +

∫ t
0 k2(t – s) 1

x (xvx(x, s))x ds = f1(u, v),

x ∈ �, t > 0,

u(x, t) = v(x, t) = 0, x ∈ ∂�, t ≥ 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), v(x, 0) = v0(x),

vt(x, 0) = v1(x), x ∈ �,

u(L, t) = v(L, t) = 0,
∫ L

0 xu(x, t) dx =
∫ L

0 xv(x, t) dx = 0,

(1)
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where � = (0, L), ki : [0, +∞) −→ (0, +∞), (i = 1, 2), are non-increasing differentiable func-
tions satisfying more general conditions to be mentioned later and

⎧
⎨

⎩

f1(u, v) = a|u + v|2(r+1)(u + v) + b|u|ru|v|r+2,

f2(u, v) = a|u + v|2(r+1)(u + v) + b|v|rv|u|r+2,
(2)

where r > –1 and a, b > 0.
Mixed nonlocal problems for parabolic and hyperbolic partial differential equations

have received a great attention during the last few decades. These problems are especially
inspired by modern physics and technology. They aim to describe many physical and bi-
ological phenomena. For instance, physical phenomena are modeled by initial boundary
value problems with nonlocal constraints such as integral boundary conditions, when the
data cannot be measured directly on the boundary, but the average value of the solution on
the domain is known. Initial boundary value problems for second-order evolution partial
differential equations and systems having nonlocal boundary conditions can be encoun-
tered in many scientific domains and many engineering models and are widely applied in
heat transmission theory, underground water flow, medical science, biological processes,
thermoelasticity, chemical reaction diffusion, plasma physics, chemical engineering, heat
conduction processes, population dynamics, and control theory. See in this regard the
work by Cannon [1], Shi [2], Capasso and Kunisch [3], Cahlon and Shi [4], Ionkin and
Moiseev [5], Shi and Shilor [6], Choi and Chan [7], and Ewing and Lin [8]. In early work,
most of the research on nonlocal mixed problems was devoted to the classical solutions.
Later, mixed problems with integral conditions for both parabolic and hyperbolic equa-
tions were studied by Pulkina [9, 10], Yurchuk [11], Kartynnik [12], Mesloub and Bouziani
[13], Mesloub and Messaoudi [14, 15], Mesloub [16], and Kamynin [17]. For instance, Said
Mesloub and Fatiha Mesloub [18] obtained existence and uniqueness of the solution to the
following problem:

utt –
1
x

(xux)x +
∫ t

0
k(t – s)

1
x

(xux)x ds + aut = f (t, x, u, ux), x ∈ (0, 1), t > 0, (3)

and proved that the solution blows up for large initial data and decays for sufficiently small
initial data. Mesloub and Messaoud [14] considered the following nonlocal singular prob-
lem:

utt –
1
x

(xux)x +
∫ t

0
g(t – s)

1
x

(xux)x ds = |u|pu, x ∈ (0, a), t > 0, (4)

and proved blow-up result for large initial data and decay results of sufficiently small initial
data enough for p > 2. In [19], Draifia et al. proved a general decay result for the following
singular one-dimensional viscoelastic system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

utt – 1
x (xux)x +

∫ t
0 g1(t – s) 1

x (xux(x, s))x ds = |v|q+1|u|p–1u, in Q,

vtt – 1
x (xvx)x +

∫ t
0 g2(t – s) 1

x (xvx(x, s))x ds = |u|p+1|v|q–1v, in Q,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ (0,α),

v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈ (0,α),

u(α, t) = v(α, t) = 0,
∫ α

0 xu(x, t) dx =
∫ α

0 xv(x, t) dx = 0,

(5)
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where Q = (0,α) × (0, t) and p, q > 1. Piskin and Ekinci [20] studied problem (1) when the
Bessel operator has been replaced by a Kirchhoff operator with a degenerate damping
terms. They proved the global existence and established a decay rate of solution and also
a finite time blow up. Recently, Boulaaras et al. [21] treated problem (1) and proved the
existence of a global solution to the problem using the potential-well theory. Moreover,
they established a general decay result in which the relaxation functions k1 and k2 satisfy

k′
i(t) ≤ –ξ (t)kp

i (t), 1 ≤ p <
3
2

. (6)

Motivated by the above work, we prove a general stability result of system (1) replacing
the condition (6) used in [21] by a more general assumption of the form:

k′
i(t) ≤ –ξi(t)�i

(
ki(t)

)
, i = 1, 2.

Our decay result improves all the existing results in the literature related to this system.
This paper is divided into four sections. In Sect. 2, we state some assumptions needed

in our work. Some technical lemmas will be given in Sect. 3. The statement with proof of
the main result and some examples will be given in Sect. 4.

2 Preliminaries
In this section, we present some materials needed in the proof of our results. We also state,
without proof, the global existence result for problem (1). Let Lp

x = Lp
x(0, L) be the weighted

Banach space equipped with the norm

‖u‖Lp
x

=
(∫ L

0
xup dx

) 1
p

.

L2
x(0, L) is the Hilbert space of square integral functions having the finite norm

‖u‖L2
x

=
(∫ L

0
xu2 dx

) 1
2

,

V = V 1
x (0, L) is the Hilbert space equipped with the norm

‖u‖V =
(‖u‖2

L2
x

+ ‖ux‖2
L2

x

) 1
2

and

V0 =
{

u ∈ V such that u(L) = 0
}

.

Lemma 2.1 ([14]) ∀w ∈ V0, a Poincaré-type inequality is

‖w‖2
L2

x
≤ Cp‖wx‖2

L2
x
. (7)

Remark 2.1 Notice that ‖u‖V0 = ‖ux‖L2
x

defines an equivalent norm on V0.
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2.1 Assumptions
(A1) ki : R+ →R+ (for i = 1, 2) are C1 non-increasing functions satisfying

ki(0) > 0, 1 –
∫ +∞

0
ki(s) ds =: �i > 0. (8)

(A2) There exist non-increasing differentiable functions ξi : [0, +∞) −→ (0, +∞) and C1

functions �i : [0, +∞) −→ [0, +∞) which are linear or strictly increasing and strictly
convex C2 functions on (0, ε], ε ≤ ki(0), with �i(0) = � ′

i (0) = 0 such that

k′
i(t) ≤ –ξi(t)�i

(
ki(t)

)
, ∀t ≥ 0 and for i = 1, 2. (9)

Remark 2.2 The given functions f1 and f2 satisfy

uf1(u, v) + vf2(u, v) = 2(r + 2)F(u, v), ∀(u, v) ∈R
2,

where

2(r + 2)F(u, v) =
[
a|u + v|2(r+2) + 2b|uv|r+2].

Lemma 2.2 (Jensen’s inequality) Let G : [a, b] −→ R be a convex function. Assume that the
functions f : (0, L) −→ [a, b] and h : (0, L) −→ R are integrable such that h(x) ≥ 0, for any
x ∈ (0, L) and

∫ L
0 h(x) dx = k > 0. Then

G
(

1
k

∫ L

0
f (x)h(x) dx

)

≤ 1
k

∫ L

0
G

(
f (x)

)
h(x) dx.

Remark 2.3 If � is a strictly increasing, strictly convex C2 function over (0, ε] and satisfy-
ing �(0) = � ′(0) = 0, then it has an extension, � , that is also strictly increasing and strictly
convex C2 over (0,∞). For example, if �(ε) = a,� ′(ε) = b,� ′′(ε) = c, and for t > ε, � can
be defined by

�(t) =
c
2

t2 + (b – cε)t +
(

a +
c
2
ε2 – bε

)

. (10)

Remark 2.4 Since �i is strictly convex on (0, ε] and �i(0) = 0,

�i(θz) ≤ θ�i(z), 0 ≤ θ ≤ 1,∀z ∈ (0, ε] and i = 1, 2. (11)

The modified energy functional E associated to problem (1) is

E(t) =
1
2
‖ut‖2

L2
x

+ ‖vt‖2
L2

x
+

1
2

(

1 –
∫ t

0
k1(s) ds

)

‖ux‖2
L2

x

+
1
2

(

1 –
∫ t

0
k2(s) ds

)

‖vx‖2
L2

x

+
1
2
[
(k1oux)(t) + (k2ovx)(t)

]
–

∫ L

0
xF(u, v) dx, (12)
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where, for any w ∈ L2
loc([0, +∞); L2

x(0, L)) and i = 1, 2,

(ki ◦ w)(t) :=
∫ t

0
ki(t – s)

∥
∥w(t) – w(s)

∥
∥2

L2
x

ds.

Using (1) with direct differentiation gives

dE(t)
dt

= –
1
2
(
k′

1oux
)
(t) –

1
2

k1(t)‖ux‖2
L2

x
–

1
2
(
k′

2ovx
)
(t) –

1
2

k2(t)‖vx‖2
L2

x

≤ 1
2
(
k′

1oux
)
(t) +

1
2
(
k′

2ovx
)
(t) ≤ 0. (13)

2.2 Local and global existence
In this subsection, we state, without proof, the local and global existence results for system
(1), which can be proved similarly to the ones in [14, 18] and [21].

Theorem 2.1 Assume that (A1) and (A2) hold. If (u0, v0) ∈ V 2
0 and (u1, v1) ∈ (L2

x)2. Then
problem (1) has a unique local solution.

For the global existence, we introduce the following functionals:

J(t) =
1
2

(

1 –
∫ t

0
k1(s) ds

)

‖ux‖2
L2

x
+

1
2

(

1 –
∫ t

0
k2(s) ds

)

‖vx‖2
L2

x

+
1
2
[
(k1oux)(t) + (k2ovx)(t)

]
–

∫ L

0
x
[
a|u + v|2(r+2) + 2b|uv|(r+2)]dx (14)

and

I(t) =
(

1 –
∫ t

0
k1(s) ds

)

‖ux‖2
L2

x
+

(

1 –
∫ t

0
k2(s) ds

)

‖vx‖2
L2

x
+ (k1oux)(t) + (k2ovx)(t)

– 2(r + 2)
∫ L

0
x
[
a|u + v|2(r+2) + 2b|uv|(r+2)]dx. (15)

We notice that E(t) = J(t) + 1
2‖ut‖2

L2
x

+ 1
2‖vt‖2

L2
x
.

Lemma 2.3 Suppose that (A1) and (A2) hold. Then, for any (u0, v0) ∈ V 2
0 and (u1, v1) ∈

(L2
x)2 satisfying

⎧
⎨

⎩

β = η[ 2(r+2)
r+1 E(0)]

r+1
< 1,

I(0) = I(u0, v0) > 0,
(16)

there exists t∗ > 0 such that

I(t) = I
(
u(t), v(t)

)
> 0, ∀t ∈ [0, t∗). (17)

Remark 2.5 We can easily deduce from Lemma 2.3 that

�1‖ux‖2
L2

x
+ �2‖vx‖2

L2
x
≤ 2(ρ + 2)

ρ + 1
E(0), ∀t ≥ 0. (18)
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Theorem 2.2 Assume that (A1) and (A2) hold. If (u0, v0) ∈ V 2
0 and (u1, v1) ∈ (L2

x)2 and
satisfies (16), then the solution of (1) is global and bounded.

3 Technical lemmas
In this section, we establish several lemmas needed for the proof of our main result.

Lemma 3.1 There exist two positive constants c1 and c2 such that

∫ L

0
x
∣
∣fi(u, v)

∣
∣2 dx ≤ ci

(
�1‖ux‖2

L2
x

+ �2‖vx‖2
L2

x

)2r+3, i = 1, 2. (19)

Proof We prove inequality (19) for f1 and the same result holds for f2. It is clear that

∣
∣f1(u, v)

∣
∣ ≤ C

(|u + v|2r+3 + |u|r+1|v|r+2)

≤ C
(|u|2r+3 + |v|2r+3 + |u|r+1|v|r+2). (20)

From (20) and Young’s inequality, with

q =
2r + 3
r + 1

, q′ =
2r + 3
r + 2

,

we get

|u|r+1|v|r+2 ≤ c1|u|2r+3 + c2|v|2r+3,

hence

∣
∣f1(u, v)

∣
∣ ≤ C

[|u|2r+3 + |v|2r+3].

Consequently, by using (7), (12), (13) and the embedding V0 ↪→ L2(2r+3), we obtain

∫ L

0
x
∣
∣f1(u, v)

∣
∣2 dx ≤ C

(‖u‖2(2r+3)
L2(2r+3)

x
+ ‖v‖2(2r+3)

L2(2r+3)
x

)

≤ c1
(
�1‖ux‖2

L2
x

+ �2‖vx‖2
L2

x

)2r+3.

This completes the proof of Lemma 3.1. �

Lemma 3.2 ([22]) There exist positive constants d and t0 such that, for any t ∈ [0, t0], we
have

k′
i(t) ≤ –dki(t), i = 1, 2. (21)

Lemma 3.3 If (A1) holds. Then, for any w ∈ V0, 0 < α < 1 and i = 1, 2, we have

∫ L

0
x
(∫ t

0
ki(t – s)

(
w(t) – w(s)

)
ds

)2

dx ≤ Cα,i(hi ◦ w)(t), (22)

where Cα,i :=
∫ ∞

0
k2

i (s)
αki(s)–k′

i(s) ds and hi(t) := αki(t) – k′
i(t).
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Proof The proof of this lemma goes similar to the one in [22]. �

Lemma 3.4 Under the assumptions (A1) and (A2), the functional

�(t) :=
∫ L

0
xuut dx +

∫ L

0
xvvt dx,

satisfies, along with the solution of system (1), the estimate

�′(t) ≤ ‖ut‖2
L2

x
+ ‖vt‖2

L2
x

–
�1

2
‖ux‖2

L2
x

–
�2

2
‖vx‖2

L2
x

+ Cα,1(h1 ◦ ux)(t) + Cα,2(h2 ◦ vx)(t) +
∫ L

0
xF(u, v) dx. (23)

Proof Direct differentiation, using (1), yields

�′(t) =
∫ L

0
xu2

t dx +
(

1 –
∫ t

0
k1(s) ds

)∫ L

0
xu2

x dx

+
∫ L

0
xux

∫ t

0
k1(t – s)

(
ux(s) – ux(t)

)
ds dx

+
∫ L

0
xv2

t dx +
(

1 –
∫ t

0
k1(s) ds

)∫ L

0
xv2

t dx

+
∫ L

0
xvx

∫ t

0
k2(t – s)

(
vx(s) – vx(t)

)
ds dx

+
∫ L

0
x
(
uf1(u, v) + vf2(u, v)

)
dx. (24)

Using Young’s inequality, we obtain, for any δ1, δ2 ∈ (0, 1),

�′(t) ≤
∫ L

0
xu2

t dx – �1

∫ L

0
xu2

x dx +
δ1

2

∫ L

0
xu2

x dx

+
1

2δ1

∫ L

0
x
(∫ t

0
k1(t – s)

(
ux(s) – ux(t)

)
ds

)2

dx

+
∫ L

0
xv2

t dx – �2

∫ L

0
xv2

x dx +
δ2

2

∫ L

0
xv2

x dx

+
1

2δ2

∫ L

0
x
(∫ t

0
k2(t – s)

(
vx(s) – vx(t)

)
ds

)2

dx

+
∫ L

0
xF(u, v) dx. (25)

Taking δ1 = �1 and δ2 = �2 and using Lemma 3.3, we have

�′(t) ≤
∫ L

0
xu2

t dx –
�1

2

∫ L

0
xu2

x dx + cCα,1(h1 ◦ ux)(t)

+
∫ L

0
xv2

t dx –
�1

2

∫ L

0
xv2

x dx + cCα,2(h2 ◦ vx)(t) +
∫ L

0
xF(u, v) dx. (26)

�



Al-Gharabli et al. Boundary Value Problems        (2020) 2020:170 Page 8 of 17

Let us introduce the functionals

χ1(t) := –
∫ L

0
xut

∫ t

0
k1(t – s)

(
u(t) – u(s)

)
ds dx

and

χ2(t) := –
∫ L

0
xvt

∫ t

0
k2(t – s)

(
v(t) – v(s)

)
ds dx.

Lemma 3.5 Assume that (A1) and (A2) hold. Then the functional

χ (t) := χ1(t) + χ2(t)

satisfies, along with the solution of (1), the following estimate:

χ ′(t) ≤ –
(∫ t

0
k1(s) ds – δ

)

‖ut‖2
L2

x
+ cδ‖ux‖2

L2
x

+
c
δ

(Cα,1 + 1)(h1 ◦ ux)(t)

–
(∫ t

0
k2(s) ds – δ

)

‖vt‖2
L2

x
+ cδ‖vx‖2

L2
x

+
c
δ

(Cα,2 + 1)(h2 ◦ vx)(t), (27)

where 0 < δ < 1.

Proof Direct differentiation, using (1), gives

χ ′
1(t) = –

(∫ t

0
k1(s) ds

)∫ L

0
xu2

t

+
(

1 –
∫ t

0
k1(s) ds

)∫ L

0
xux(t)

∫ t

0
k1(t – s)

(
ux(t) – ux(s)

)
ds dx

+
∫ L

0
x
(∫ t

0
k1(t – s)

(
ux(t) – ux(s)

)
ds

)2

dx

–
∫ L

0
xf1(u, v)

∫ t

0
k1(t – s)

(
u(t) – u(s)

)
ds dx

–
∫ L

0
xut

∫ t

0
k′

1(t – s)
(
u(t) – u(s)

)
ds dx. (28)

Using Young’s inequality and Lemma 3.3, we get, for any 0 < δ < 1, the following:

(

1 –
∫ t

0
k1(s) ds

)∫ L

0
xux(t)

∫ t

0
k1(t – s)

(
ux(t) – ux(s)

)
ds dx

+
∫ L

0
x
(∫ t

0
k1(t – s)

∣
∣ux(t) – ux(s)

∣
∣ds

)2

dx

≤ δ

∫ L

0
xu2

x +
c
δ

∫ L

0
x
(∫ t

0
k1(t – s)

∣
∣ux(t) – ux(s)

∣
∣ds

)2

dx

≤ δ

∫ L

0
xu2

x +
c
δ

Cα,1(h1 ◦ ux)(t). (29)
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Using Young’s inequality, (18), (19) and (22), we have

∫ L

0
xf1(u, v)

∫ t

0
k1(t – s)

(
u(t) – u(s)

)
ds dx

≤ δ

(∫ L

0
x
∣
∣f1(u, v)

∣
∣2 dx

)

+
1
4δ

∫ L

0
x
(∫ t

0
k1(t – s)

(
u(t) – u(s)

)
ds

)2

dx

≤ c1δ
(
�1‖ux‖2

L2
x

+ �2‖vx‖2
L2

x

)2r+3 +
c
δ

Cα,1(h1 ◦ ux)(t)

≤ c1δ

(
2(r + 2)

r + 1
E(0)

)2r+1(
�1‖ux‖2

L2
x

+ �2‖vx‖2
L2

x

)
+

c
δ

Cα,1(h1 ◦ ux)(t)

≤ cδ‖ux‖2
L2

x
+ cδ‖vx‖2

L2
x

+
c
δ

Cα,1(h1 ◦ ux)(t). (30)

Also, by applying Young’s inequality and Lemma 3.3, we obtain, for any 0 < δ < 1,

–
∫ L

0
xut

∫ t

0
k′

1(t – s)
(
u(t) – u(s)

)
ds dx

=
∫ L

0
xut

∫ t

0
h1(t – s)

(
u(t) – u(s)

)
ds dx –

∫ L

0
xut

∫ t

0
αk1(t – s)

(
u(t) – u(s)

)
ds dx

≤ δ‖ut‖2
L2

x
+

1
2δ

(∫ t

0
h1(s) ds

)

(h1 ◦ u)(t) +
c
δ

Cα,1(h1 ◦ u)(t)

≤ δ‖ut‖2
L2

x
+

c
δ

(Cα,1 + 1)(h1 ◦ ux)(t). (31)

Similarly, we have

–
∫ L

0
xvt

∫ t

0
k′

2(t – s)
(
v(t) – v(s)

)
ds dx ≤ δ‖vt‖2

L2
x

+
c
δ

(Cα,2 + 1)(h2 ◦ vx)(t). (32)

A combination of all the above estimates gives

χ ′
1(t) ≤ –

(∫ t

0
k1(s) ds – δ

)

‖ut‖2
L2

x
+ cδ‖ux‖2

L2
x

+
c
δ

(Cα,1 + 1)(h1 ◦ ux)(t). (33)

Repeating the same calculations with χ2, we obtain

χ ′
2(t) ≤ –

(∫ t

0
k2(s) ds – δ

)

‖vt‖2
L2

x
+ cδ‖vx‖2

L2
x

+
c
δ

(Cα,2 + 1)(h2 ◦ vx)(t). (34)

Therefore, (33) and (34) imply (27), which completes the proof of Lemma 3.5. �

Lemma 3.6 Assume that (A1) and (A2) hold. Then the functionals J1 and J2 defined by

J1(t) :=
∫ L

0
x
∫ t

0
K1(t – s)

∣
∣ux(s)

∣
∣2 ds dx

and

J2(t) :=
∫ L

0
x
∫ t

0
K2(t – s)

∣
∣vx(s)

∣
∣2 ds dx
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satisfy, along with the solution of (1), the estimates

J ′
1(t) ≤ 3(1 – �)‖ux‖2

L2
x

–
1
2

(k1 ◦ ux)(t), (35)

J ′
2(t) ≤ 3(1 – �)‖vx‖2

L2
x

–
1
2

(k2 ◦ vx)(t), (36)

where Ki(t) :=
∫ ∞

t ki(s) ds (for i = 1, 2) and � = min{�1,�2}.

Proof We will prove inequality (35) and the same proof also holds for (36). By Young’s
inequality and the fact that K ′

1(t) = –k1(t), we see that

J ′
1(t) = K1(0)

∫ L

0
x
∣
∣ux(t)

∣
∣2 dx –

∫ L

0
x
∫ t

0
k1(t – s)

∣
∣ux(s)

∣
∣2 dx

= –
∫ L

0
x
∫ t

0
k1(t – s)

∣
∣ux(s) – ux(t)

∣
∣2 ds dx

– 2
∫ L

0
xux(t).

∫ t

0
k1(t – s)

(
ux(s) – ux(t)

)
ds dx + K1(t)

∫ L

0
x
∣
∣ux(t)

∣
∣2 dx.

Now,

– 2
∫ L

0
xux(t).

∫ t

0
k1(t – s)

(
ux(s) – ux(t)

)
ds dx

≤ 2(1 – �1)
∫ L

0
x
∣
∣ux(t)

∣
∣2 dx +

∫ t
0 k1(s) ds
2(1 – �1)

∫ L

0
x
∫ t

0
k1(t – s)

∣
∣ux(s) – ux(t)

∣
∣2 ds dx.

Using the facts that K1(0) = 1 – �1 and
∫ t

0 k1(s) ds ≤ 1 – �1, (35) is established. �

Lemma 3.7 The functional L defined by

L(t) := NE(t) + N1φ(t) + N2χ (t)

satisfies, for a suitable choice of N , N1, N2 ≥ 1,

L(t) ∼ E(t) (37)

and the estimate

L′(t) ≤ –4(1 – �)
(‖ux‖2

L2
x

+ ‖vx‖2
L2

x

)
–

(‖ut‖2
L2

x
+ ‖vt‖2

L2
x

)

+ c
∫ L

0
xF(u, v) dx +

1
4
[
(k1 ◦ ux)(t) + (k2 ◦ vx)(t)

]
, ∀t ≥ t0, (38)

where t0 is introduced in Lemma 3.2 and � = min{�1,�2}.

Proof It is not difficult to prove that L(t) ∼ E(t). To establish (38), we choose δ = �
4cN2

where
� = min{�1,�2}. We set Cα = max{Cα,1, Cα,2} and k0 = min{∫ t0

0 k1(s) ds,
∫ t0

0 k2(s) ds} > 0. Now
using (23) and (28) and recalling the fact that k′

i = αki – hi, we obtain, for any t ≥ t0,

L′(t) ≤ –
�

4
(2N1 – 1)

(‖ux‖2
L2

x
+ ‖vx‖2

L2
x

)
–

(

k0N2 –
�

4c
– N1

)
(‖ut‖2

L2
x

+ ‖vt‖2
L2

x

)
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– N1

∫ L

0
xF(u, v) dx +

α

2
N

[
(k1 ◦ ux)(t) + (k2 ◦ vx)(t)

]

–
[

1
2

N –
4c2

�
N2

2 – Cα

(
4c2

�
N2

2 + cN1

)]
[
(h1 ◦ ux)(t) + (h2 ◦ vx)(t)

]
.

First, we choose N1 so large such that �
4 (2N1 – 1) > 4(1 – �).

Then we select N2 large enough so that k0N2 – �
4c –N1 > 1. Now, one can use the Lebesgue

dominated convergence theorem with the fact that αk2
i (s)

αki(s)–k′
i(s) < ki(s), for i = 1, 2, to prove

that

lim
α→0+

αCα = 0.

Therefore, there exists α0 ∈ (0, 1) such that if α < α0, then, we get αCα < 1
8[ 4c2

�
N2

2 +cN1]
. Then,

by letting α = 1
2N < α0, we get 1

4 N – 4c2

�
N2

2 > 0. This leads to

1
2

N –
4c2

�
N2

2 – Cα

[
4c2

�
N2

2 + cN1

]

>
1
4

N –
4c2

�
N2

2 > 0.

Then, (38) is established. �

4 General decay result
In this section, we state and prove our main result.

Theorem 4.1 Let (u0, v0) ∈ V 2
0 and (u1, v1) ∈ (L2

x)2 be given and satisfying (16). Assume
that (A1) and (A2) hold. If �1 and �2 are linear, then there exist two positive constants λ1

and λ2 such that the solution to problem (1) satisfies the estimate

E(t) ≤ λ2 exp

(

–λ1

∫ t

t0

ξ (s) ds
)

, ∀t ≥ t0, (39)

where t0 is introduced in Lemma 3.2 and ξ (t) = min{ξ1(t), ξ2(t)}.

Proof Using (21) and (13) we have, for any t ≥ t0,

∫ t0

0
k1(s)

∥
∥ux(t) – ux(t – s)

∥
∥2

L2
x

ds +
∫ t0

0
k2(s)

∥
∥vx(t) – vx(t – s)

∥
∥2

L2
x

ds ≤ –cE′(t).

Using this inequality, the estimate (38) becomes, for some m > 0 and for any t ≥ t0,

L′(t) ≤ –mE(t) – cE′(t) + c
∫ t

t0

k1(s)
∥
∥ux(t) – ux(t – s)

∥
∥2

L2
x

ds

+ c
∫ t

t0

k2(s)
∥
∥vx(t) – vx(t – s)

∥
∥2

L2
x

ds.

Let L := L + cE ∼ E, we obtain

L′(t) ≤ –mE(t) + c
∫ t

t0

k1(s)
∥
∥ux(t) – ux(t – s)

∥
∥2

L2
x

ds
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+ c
∫ t

t0

k2(s)
∥
∥vx(t) – vx(t – s)

∥
∥2

L2
x

ds, ∀t ≥ t0. (40)

Multiply both sides of (40) by ξ (t) = min{ξ1(t), ξ2(t)} where ξ is non-increasing function
and using (A2) and (13) we get, for any t ≥ t0 and m > 0, the following:

ξ (t)L′(t) ≤ –mξ (t)E(t) + c
∫ t

0
ξ1(s)k1(s)

∥
∥ux(t) – ux(t – s)

∥
∥2

L2
x

ds

+ c
∫ t

0
ξ2(s)k2(s)

∥
∥vx(t) – vx(t – s)

∥
∥2

L2
x

ds

≤ –mξ (t)E(t) – c
∫ t

0
k′

1(s)
∥
∥ux(t) – ux(t – s)

∥
∥2

L2
x

ds

× c
∫ t

0
k′

2(s)
∥
∥vx(t) – vx(t – s)

∥
∥2

L2
x

ds

≤ –mξ (t)E(t) – cE′(t).

Since ξ is non-increasing, we have

(ξL + cE)′(t) ≤ –mξ (t)E(t), ∀t ≥ t0.

Integrating over (t0, t) and using the fact that ξL + cE ∼ E, then, for any λ1,λ2 > 0, we
obtain

E(t) ≤ λ2 exp

(

–λ1

∫ t

t0

ξ (s) ds
)

, ∀t ≥ t0. �

Theorem 4.2 Let (u0, v0) ∈ V 2
0 and (u1, v1) ∈ (L2

x)2 be given and satisfying (16). Assume
that (A1) and (A2) hold. If �1 or �2 is nonlinear, then there exist two positive constants λ1

and λ2 such that the solution to problem (1) satisfies the estimate

E(t) ≤ λ2�
–1
∗

(

λ1

∫ t

t0

ξ (s) ds
)

, ∀t > t0, (41)

where

�∗(t) =
∫ r

t

1
sH(s)

ds with H(t) = min
{
� ′

1(t),� ′
2(t)

}
.

Proof Using Lemmas 3.6 and 3.7, we easily see that

L1(t) := L(t) + J1(t) + J2(t)

is nonnegative and, for any t ≥ t0, and, for some C > 0,

L′
1(t) ≤ –cE(t).

Therefore, we arrive at
∫ ∞

0
E(s) ds < +∞. (42)
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Now, we define the following functionals:

I1(t) := γ

∫ t

t0

∥
∥ux(t) – ux(t – s)

∥
∥2

L2
x

ds, I2(t) := γ

∫ t

t0

∥
∥vx(t) – vx(t – s)

∥
∥2

L2
x

ds.

Thanks to (42), one can choose 0 < γ < 1 so that

Ii(t) < 1, ∀t ≥ t0 and i = 1, 2. (43)

Without loss of the generality, we assume that Ii(t) > 0, for any t > t0; otherwise, we get an
exponential decay from (38). We also define the following functionals:

η1(t) := –
∫ t

t0

k′
1(s)

∥
∥ux(t) – ux(t – s)

∥
∥2

L2
x

ds, η2(t) := –
∫ t

t0

k′
2(s)

∥
∥vx(t) – vx(t – s)

∥
∥2

L2
x

ds

and observe that

η1(t) + η2(t) ≤ –cE′(t), ∀t ≥ t0. (44)

Using (2.4), Assumption (A2), inequality (43) and Jensen’s inequality, we obtain

η1(t) ≤ 1
γ I1(t)

∫ t

t0

γ I1(t)ξ1(s)�1
(
k1(s)

)∥
∥ux(t) – ux(t – s)

∥
∥2

L2
x

ds

≤ ξ1(t)
γ I1(t)

∫ t

t0

γ�1
(
I1(t)k1(s)

)∥
∥ux(t) – ux(t – s)

∥
∥2

L2
x

ds

≤ ξ1(t)
γ

�1

(
1

I1(t)

∫ t

t0

γ I1(t)k1(s)
∥
∥ux(t) – ux(t – s)

∥
∥2

L2
x

ds
)

=
ξ1(t)
γ

�̄1

(

γ

∫ t

t0

k1(s)
∥
∥ux(t) – ux(t – s)

∥
∥2

L2
x

ds
)

, ∀t ≥ t0,

where �̄1 is defined in Remark (2.3). Then, we have

∫ t

t0

k1(s)
∥
∥u(t) – u(t – s)

∥
∥2

L2
x

ds ≤ 1
γ

�̄–1
1

(
γ η1(t)
ξ1(t)

)

, t ≥ t0.

Similarly, we can have

∫ t

t0

k2(s)
∥
∥v(t) – v(t – s)

∥
∥2

L2
x

ds ≤ 1
γ

�̄–1
2

(
γ η2(t)
ξ2(t)

)

, t ≥ t0.

Thus, the estimate (40) becomes

F ′(t) ≤ –mE(t) + c�̄–1
1

(
γ η1(t)
ξ1(t)

)

+ c�̄–1
2

(
γ η2(t)
ξ2(t)

)

, t ≥ t0. (45)

Set H = min{�̄ ′
1, �̄ ′

2} and define the functional

F1(t) := H
(

ε0
E(t)
E(0)

)

F(t) + E(t), for ε0 ∈ (0, ε) and t ≥ t0.
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Using the fact that �̄ ′
i > 0, �̄ ′′

i > 0 and E′ ≤ 0, we also deduce that F1 ∼ E. Further, we get

F ′
1(t) = ε0

E′(t)
E(0)

H ′
(

ε0
E(t)
E(0)

)

F(t) + H
(

ε0
E(t)
E(0)

)

F ′(t) + E′(t), for a.e t ≥ t0.

Recalling that E′ ≤ 0, then we drop the first and last terms of the above identity. Therefore,
by using the estimate (45), we have

F ′
1(t) ≤ –mE(t)H

(

ε0
E(t)
E(0)

)

+ cH
(

ε0
E(t)
E(0)

)

�̄–1
1

(
γ η1(t)
ξ1(t)

)

+ cH
(

ε0
E(t)
E(0)

)

�̄–1
2

(
γ η2(t)
ξ2(t)

)

, for a.e t ≥ t0. (46)

In the sense of Young [23], we let �̄∗
i be the convex conjugate of �̄i such that

�̄∗
i (s) = s

(
�̄ ′

i
)–1(s) – �̄i

[(
�̄ ′

i
)–1(s)

]
, for i = 1, 2, (47)

and it satisfies the following generalized Young inequality:

ABi ≤ �̄∗
i (A) + �̄i(Bi), for i = 1, 2. (48)

By letting A = H(ε0
E(t)
E(0) ), Bi = �̄–1

i ( γ ηi(t)
ξi(t) ), for i = 1, 2, and combining (46)–(48), we have, for

almost every t ≥ t0,

F ′
1(t) ≤ –mE(t)H

(

ε0
E(t)
E(0)

)

+ c�̄∗
1

[

H
(

ε0
E(t)
E(0)

)]

+ c
γ η1(t)
ξ1(t)

+ c�̄∗
2

[

H
(

ε
E(t)
E(0)

)]

+ c
γ η2(t)
ξ2(t)

≤ –mE(t)H
(

ε0
E(t)
E(0)

)

+ cH
(

ε0
E(t)
E(0)

)
(
�̄ ′

1
)–1

[

�̄ ′
1

(

ε0
E(t)
E(0)

)]

+ c
γ η1(t)
ξ1(t)

+ cH
(

ε0
E(t)
E(0)

)
(
�̄ ′

2
)–1

[

�̄ ′
2

(

ε0
E(t)
E(0)

)]

+ c
γ η2(t)
ξ2(t)

≤ –
(
mE(0) – cε0

) E(t)
E(0)

H
(

ε0
E(t)
E(0)

)

+ c
(

γ η1(t)
ξ1(t)

+
γ η2(t)
ξ2(t)

)

.

Multiplying the above estimate by ξ (t) = min{ξ1(t), ξ2(t)} > 0 and using the fact in (44),
we get

ξ (t)F ′
1(t) ≤ –

(
mE(0) – cε0

)
ξ (t)

E(t)
E(0)

H
(

ε0
E(t)
E(0)

)

– cE′(t), for a.e t ≥ t0.

Select ε0 small enough so that k0 := mE(0) – cε0 > 0, and we obtain

ξ (t)F ′
1(t) ≤ –k0ξ (t)

E(t)
E(0)

H
(

ε0
E(t)
E(0)

)

– cE′(t), for a.e t ≥ t0.

Let F2 = ξF1 + cE ∼ E, we have, for some α1,α2 > 0, the following equivalent inequality:

α1F2(t) ≤ E(t) ≤ α2F2(t), ∀t ≥ t0. (49)
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Hence, we have

F ′
2(t) ≤ –k0ξ (t)

E(t)
E(0)

H
(

ε0
E(t)
E(0)

)

, for a.e t ≥ t0. (50)

Now, we set

H0(t) = tH(ε0t), ∀t ∈ [0, 1].

Using the fact that � ′
i > 0 and � ′′

i > 0 on (0, r] (for i = 1, 2), we deduce that H0, H ′
0 > 0 a.e.

on (0, 1]. Now, we define the following functional:

R(t) :=
α1F2(t)

E(0)

and use (49) and (50) to show that R ∼ E and, for some β1 > 0,

R′(t) ≤ –β1ξ (t)H0
(
R(t)

)
, for a.e t ≥ t0.

Integrating over the interval (t0, t) and using a change of variables, we get

∫ ε0R(0)

ε0R(t)

1
sH(s)

ds ≥ β1

∫ t

t0

ξ (s) ds;

which gives

R(t) ≤ 1
ε0

�–1
∗

(

β1

∫ t

t0

ξ (s) ds
)

∀t ≥ t0,

where �∗(t) :=
∫ r

t
1

sH(s) ds. Since R ∼ E, we have, for β2 > 0,

E(t) ≤ β2�
–1
∗

(

β1

∫ t

0
ξ (s) ds

)

∀t ≥ t0.

This completes the proof. �

Example 4.3
(1) Let k1(t) = ae–αt and k2(t) = b

(1+t)q , q > 1. The constants a and b are chosen so that
(A1) is satisfied. Then there exists C > 0 such that

E(t) ≤ C
(1 + t)q , ∀t > 0.

(2) Let k1(t) = a
(1+t)m and k2(t) = b

(1+t)n with m, n > 1. The constants a and b are chosen
so that (A1) is satisfied. Then there exists C > 0 such that, for any t > 0,

E(t) ≤ C
(1 + t)ν

, with ν = min{m, n}.
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(3) Let k1(t) = ae–βt and k2(t) = be–(1+t)q with 0 < q < 1. The constants a and b are
chosen so that (A1) is satisfied. Then there exist positive constants C and α1 such
that

E(t) ≤ Ce–α1(1+t)ν , for t large.

Acknowledgements
The authors would like to express their profound gratitude to King Fahd University of Petroleum and Minerals (KFUPM)
and University of Sharjah for their continuous support and he also thanks an anonymous referee for his/her very careful
reading and valuable suggestions. This work is funded by KFUPM under Project #SB191048.

Funding
This work is funded by KFUPM under Project (SB191048).

Abbreviations
Not applicable.

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The authors read and approved the final manuscript.

Authors’ information
Not applicable.

Author details
1The Preparatory Year Math Program, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia.
2Department of Mathematics, University of Sharjah, Sharjah, UAE.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 22 June 2020 Accepted: 1 November 2020

References
1. Cannon, J.: The solution of the heat equation subject to the specification of energy. Q. Appl. Math. 21(2), 155–160

(1963)
2. Shi, P.: Weak solution to an evolution problem with a nonlocal constraint. SIAM J. Math. Anal. 24(1), 46–58 (1993)
3. Capasso, V., Kunisch, K.: A reaction–diffusion system arising in modelling man-environment diseases. Q. Appl. Math.

46(3), 431–450 (1988)
4. Cahlon, B., Kulkarni, D.M., Shi, P.: Stepwise stability for the heat equation with a nonlocal constraint. SIAM J. Numer.

Anal. 32(2), 571–593 (1995)
5. Ionkin, N.I., Moiseev, E.I.: A problem for the heat conduction equation with two-point boundary condition. Differ.

Uravn. 15(7), 1284–1295 (1979)
6. Shi, P., Shillor, M.: On design of contact patterns in one-dimensional thermoelasticity. In: Theoretical Aspects of

Industrial Design (1992)
7. Choi, Y., Chan, K.-Y.: A parabolic equation with nonlocal boundary conditions arising from electrochemistry. Nonlinear

Anal. 18(4), 317–331 (1992)
8. Ewing, R.E., Lin, T.: A class of parameter estimation techniques for fluid flow in porous media. Adv. Water Resour. 14(2),

89–97 (1991)
9. Pulkina, L.S.: A non-local problem with integral conditions for hyperbolic equations (1999)
10. Pul’kina, L.S.: A nonlocal problem with integral conditions for a hyperbolic equation. Differ. Equ. 40(7), 947–953 (2004)
11. Yurchuk, N.: Mixed problem with an integral condition for certain parabolic equations. Differ. Equ. 22(12), 1457–1463

(1986)
12. Kartynnik, A.: Three point boundary value problem with an integral space variables conditions for second order

parabolic equations. Differ. Uravn. 26, 1568–1575 (1990)
13. Mesloub, S., Bouziani, A.: Mixed problem with a weighted integral condition for a parabolic equation with the Bessel

operator. Int. J. Stoch. Anal. 15(3), 277–286 (2002)
14. Mesloub, S., Messaoudi, S.A.: Global existence, decay, and blow up of solutions of a singular nonlocal viscoelastic

problem. Acta Appl. Math. 110(2), 705–724 (2010)
15. Mesloub, S., Messaoudi, S.A.: A nonlocal mixed semilinear problem for second-order hyperbolic equations. Electron. J.

Differ. Equ. 2003, 30 (2003)



Al-Gharabli et al. Boundary Value Problems        (2020) 2020:170 Page 17 of 17

16. Mesloub, S.: On a singular two dimensional nonlinear evolution equation with nonlocal conditions. Nonlinear Anal.,
Theory Methods Appl. 68(9), 2594–2607 (2008)

17. Kamynin, L.I.: A boundary value problem in the theory of heat conduction with a nonclassical boundary condition.
USSR Comput. Math. Math. Phys. 4(6), 33–59 (1964)

18. Mesloub, S., Mesloub, F.: Solvability of a mixed nonlocal problem for a nonlinear singular viscoelastic equation. Acta
Appl. Math. 110(1), 109–129 (2010)

19. Draifia, A., Zarai, A., Boulaaras, S.: Global existence and decay of solutions of a singular nonlocal viscoelastic system.
Rend. Circ. Mat. Palermo 2, 1–25 (2018)
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