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1 Introduction

Extraordinary di erential equations, also known as fractional di erential equations, are
a generalization of di erential equations through fractional calculus. Much attention has
been accorded to fractional partial di erential equations during the past two decades due
to the many chemical engineering, biological, ecological, and electromagnetism phenom-
ena that are modeled by initial boundary value problems with fractional boundary condi-
tions. See Tarasov [16], Magin [15].

In this work we consider the nonlinear wave equation

utt—Au+aut+fot gt —9Au(s)ds=|ulP?u, x Q,t>0,

3 = by, x To,t>0,

3 t 0 (1.1)
u=0, x Iy, t>0,

u(x, 0) = up(x), ut(x,0) = ug(X), X

where Q is a bounded domain in R", n 1 with a smooth boundary 9<2 of class C? and
v is the unit outward normal to 92 =Ty TI'y, where I'y and I'; are closed subsets of 92
with Iy I''=
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a,b>0, p>2 and 3" with 0 <« < 1 is the Caputo’s generalized fractional derivative
(see [11] and [7]) defined by

1

ou() = r(l—o)

t
[ t-97eSumas 0 o
0
where I' is the usual Euler gamma function. It can also be expressed by
3¢ u(t) = 117 (1), (1.2)

where 1% is the exponential fractional integro-di erential operator given by

I“'”u(t):% /0 t(t—s)“‘le‘"(“s)u(s)ds n O

In the context of boundary dissipations of fractional order problems, the main research
focus is on asymptotic stability of solutions starting by writing the equations as an aug-
mented system. Then, various techniques are used such as LaSalle’s invariance principle
and the multiplier method mixed with frequency domain (see [1-16], and [18]).

Dai and Zhang [7] replaced fot Kt — 9us(x,9)ds with d7u(x,t) and h(x,t) with
[u]™tu(x, t) and managed to prove exponential growth for the same problem.

Note that the nonlinear wave equation with boundary fractional damping case was first
considered by authors in [4], where they used the augmented system to prove the expo-
nential stability and blow-up of solutions in finite time.

Motivated by our recent work in [4] and based on the construction of a Lyapunov func-
tion, we prove in this paper under suitable conditions on the initial data the stability of
a wave equation with fractional damping and memory term. This technique of proof was
recently used by [9] and [4] to study the exponential decay of a system of nonlocal singular
viscoelastic equations.

Here we also consider three di erent cases on the sign of the initial energy as recently
examined by Zarai et al. [17], where they studied the blow-up of a system of nonlocal
singular viscoelastic equations.

The organization of our paper is as follows. We start in Sect. 2 by giving some lemmas
and notations in order to reformulate our problem (1.1) into an augmented system. In the
following section, we use the potential well theory to prove the global existence result.
Then, the general decay result is given in Sect. 4. In Sect. 5, following a direct approach,
we prove blow-up of solutions.

2 Preliminaries
Let us introduce some notations, assumptions, and lemmas that are e ective for proving
our results.

Assume that the relaxation function g satisfies

(G1) g: R+ R4isanonincreasing di erentiable function with

g(0) >0, 1—/0 g(9ds=1>0; (2.1)
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(G2) There exists a constant & > 0 such that

g(t) —&gt), t>0. (2.2)
We denote
t 2
@ u)= /0 ot —9u®)—u(9[ds 23)

and
={w Hgli(w)>0} {0},
HE (@) ={u HYSQ),ulr, =0}.

Lemma 1 (Sobolev—Poincaré inequality) If eitherl g N2 (N 3)orl q +
(N =2), then there exists C> 0 such that

Ugi C U, U HYD).

Lemma 2 (Trace—Sobolev embedding) For all p such that

2(n—1)

n-2" (24)

we have
HE (@) LP(To).
We denote by Bthe embedding constant.e,
Upr, Bguo.

Lemma 3 ([17], p. 5, Lemma2 or [3], p. 1406, Lemma4.1) Consider a nonnegative function
B(t) C2?(0, ) satisfying

B (t)—4(5 + 1)B (t) +4(5 + 1)B(t) O, (2.5)
wheres >0,
If
B (0) > r,B(0) + o, (2.6)
then
B(t) lo, t>0, @.7)

where} R, r; represents the smallest root of the equation
r2—4(+1)r+(@+1)=0, (2.8)

e, rp,=206+1)—-2 (5§+1)s.
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Lemma 4 ([17], p. 5, Lemma 3 or [3], p. 1406, Lemma 4.2) Let Jt) be a nonincreasing
function on[ty, ) verifying the di erential inequality

J()? a+bX)?*3, t t, O, (2.9)
wherea >0, b R, then there exists T> 0 such that
Jim_J(t)=0, (2.10)

with the following upper bound cases for T
(i) When b< 0 and Xto) < min{l, «/(-b)},

T o+ ! a‘/—:b . (2.11)
-b /5 —Ato)
(ii) When b=0,
T to+ o) (2.12)
(iii) When b> 0,
T A (2.13)
o
or
n 1
T t0+2375571 8—5(1—[1+C\It0)]ﬁ), (214)
o
where
b\ #/@+9)
c= (_> |
o

Definition 1 We say that u is a blow-up solution of (1.1) at finite time T if

. hrTn_ U =0. (2.15)
Theorem 1 ([12], Theorem 1) Consider the constant

o0 = () Lsin (aw)
and the functionu given by

n@=1¢1"%", 0<a<l& R (2.16)

Then we can obtain

o=y, (2.17)
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which is a relation between U the “input” of the system

hop(E, 1)+ (82 +n)pE,t)—U(L,t)u(E) =0, t>0n 0 R (2.18)

and the “output” O given by

oW=o[ oEOuEE & RE>0 (219)
Now, using (1.2) and Theorem 1, the augmented system related to our system (1.1) may
be given by
Ui — AU + au +f0t gt —9Au(s)ds=|ulP?u, x ,t>0,
ho(&,1) + (82 +mo(5, 1) —u(x, t)u(€) =0,  x Toé R1t>0,
g_l: :_bl f_+ ¢(Svt)l‘l’($) dgv X FOYS th >0¥ (220)
u=0, x Tq,t>0,
U(X, O) = U()(X), Ut(X, 0) = Ul(X), X £,
#(£,0)=0, £ R,
where b; = bp.

Lemma 5 ([2], p. 3, Lemma2.1) ForallA D,={x C: mAa=0} {1 C: er+n>0}
we have

Aﬁ/+ e

n+A+E2 " sin(am)

Theorem 2 (Local existence and uniqueness) Assume that(2.4) holds Then for all
(uo, Uz, ¢bo) H%O(Q) x L2(Q) x L’%(— ,+ ), there exists some T small enough such that
problem(2.20) admits a unique solution

U C(0.T),HE, ()
u C([0,T) L*(<)), (2.21)
¢ C([O!T)|L2(_ vt )

3 Global existence
Before proving the global existence for problem (2.20), let us introduce the functionals

0=(1-[a9ds) uir@ wO- up

and

t
J(t):%[(l—/o g(s)ds) u2+(g u)(t)]—% up.
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The energy functional E associated with system (2.20) is given as follows:

1

E(t)=5ut§+§(1—ftg<s)ds) TERSCRI

——up+—// lo(&. 0 ds dp.

Lemma 6 If (u,¢) is a regular solution to(2.20), then the energy functional given if3.1)
veri‘es

(3.1)

d
SED=-aud-sg0 ul+i@ w0

+

—blfrof_ (&2 + ) |66, Pde dp (32)

0.

Proof Multiplying by u; in the first equation from (2.20), using integration by parts over
Q, we get

N =

1 t 1
Ut %—/ Auugdx+a u §+2( —/ g(s)ds) u §+§(g u)(t)
Q 0

:/ [u]P2uuy dx.
Q

Therefore

a1, 1 t , 1 1
a[ﬁ o g5 (1= [a9as) uiese u)(t)—Bup}

. 3.3)
+a u 5+blfr ax) [ @t 0dedp=0

Multiplying by b;¢ in the second equation from (2.20) and integrating over I'y x
(= ,+ ), weget

vl [ oeofdeapen [ [0 @ enjoof sea,

(3.4)
by /r (X, ) / J(E)p(E 1) dz dp =0,

From (3.1), (3.3), and (3.4) we obtain

d 1 1
G ED=-a u %—Eg(t) u %+§(g u)(t)

—blfrof_ &2+ )| 6.t P dp

0. O

Page 6 of 24
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Lemma 7 Assuming that(2.4) holds and that for all (uo,u1,¢0) HE () x L*(S2) x
L2(— ,+ ) verifying

p=CPZEO)7 <1,

(3.5)
[ (ug) >0.
Thenut) , t [O,T]
Proof As I(ug) >0, thereexists T T such that
[uy 0, t [0,T).
This leads to
t ) 2p
1- [g9ds) ul+@ wO I t OT)
0 p—2
) (3.6)
p
——E(0).
S50
Using the Poincare inequality, (3.1), (2.3), (3.5), and (3.6), we obtain
ub C* ujb
p-2 3.7
2p z
cp<mE(0)> u .

Thus
t
(1—/ g(s)ds> us+(@ um-ub>0, t [OT).
0
Consequently,u H, t [0, T ).

Repeating the procedure, T can be extended to T, and that makes the proof of our
global existence result within reach. O
Theorem 3 Assume that(2.4) holds Then for all

(Uo,Ur,¢0) HE(Q)x LAQ)x (- ,+ )
verifying(3.5), the solution of syster(2.20) is global and bounded

Proof From (3.2), we get

E(0) E(t)

c

t
% t§+ (1—/0 g(s)ds) u §+%(g u)(t)—% US
(3.8)
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Or I(t) >0, therefrom
wie uden [ [ joofdeds CEO)
I'oJ—

where C; = max{£, %,2}. O
4 Decay of solutions

To proceed for the energy decay result, we construct an appropriate Lyapunov functional
as follows:

L) = B0+ 010+ (0, @y

where

va(t)= /Q beudx,

wz(t):/%/j (sz+n)(/ot¢(s,s)ds)2dsdp,

and €1, €, are positive constants.

Lemma 8 If (u,¢) is aregular solution of problen(2.20), then the following equality holds

+ t
[ [ @snoen [ oesdsca
o J—
_ + B + )
= [ uoen [ scon@ean= [ [ Joeof deap
Proof From the second equation of (2.20), we have

(£2 +n)p(E. 1) =u (X (&) — dp(E.1), X T (4.2)

Integrating (4.2) over [0,t] and using equations 3 and 6 from system (2.20), we get

t
fo (24 n)p(6, 9ds= U Du(E) —$(E.1).,  x T, 4.3)
hence,
t
(&2 +7) /O $(E.9ds=ux Ou(E)—p(E,t), X T, (4.4)

Multiplying by ¢ followed by integration over I'o x (— ,+ ) leadsto

/F/ (52+n)¢(s,t)/0t¢(s,s)dsogdp

:/FO u(x,t)/_+ ¢(s,t)u(5)dsdp—/l_o /_ 6.0 dé d. O
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Lemma 9 For any(u, ¢) solution of problem(2.20), we have
arE(t)  L(t) oazE(), (4.5)
wherea, a;, are positive constants
Proof From (4.3), we get
! _ =9 1) uxtu)
/0 #(§,9ds= 21y + 24y x To. (4.6)
Thus
t 2 2 2,2
lp(, )17 [ux )"n ) & ulx t)u(E)
,9ds) = + -2 . 4.7
([ oes0s) =Gy €+ )2 @0
Multiplying by &2 + 5 in (4.7) followed by integration over 'y x (— ,+ ) leads to
+ ,t 2 + 2
ol [ [ 5 acaps [ uecof [ 5 deds
o J— ‘i: +T} I'o - E +’7 (4 8)

af 19(6.DU 0RO g, o

E2+7

Using Young’s inequality in order to have an estimation of the last term in (4.8), we get
forany § >0

//+ lp(&, t)u(x, t)M(§)| p:/ /+ lpE, ) |u(x, t)M(§)|
ro £2+n ro (E2+n)2 (§2+n)?

/FO/ I¢(~§ t)I2 dédp 4.9)

2 H2(€)
+3/r0|u(x,t)|/_ b ddp

Combining (4.8) and (4.9), we obtain

0a(t)| (25+1>// I¢(§t)|2dgdp

(4.10)
+(28+1)/ ]u(xt)]/
Since?ﬁr—n %,then
)] (2‘3 1)// 6.0 dz dp
(4.11)

+(25+1)fr0|u(x,t)|2/_ €2+nd$dp.

Page 9 of 24
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Applying Lammas 2 and 5, we get

)| (25 1)// (6,02 de dp + AgB@5+1) U 2.

By Poincare-type inequality and Young's inequality, we obtain

1 C
R210] 5 U §+7 u 3.

Adding (4.13) to (4.12), we get

b b
Y (t) + ?11/&(0‘ |y (t)] + 51 ¥a(t)]

1 1
5 U §+§[AOqu1(26+1)+C] us

[2‘“1}// 6.0 dz dp.

Therefore, by the energy definition given in (3.1), for all N >0, we have

—N

p

)+ Fval0)] NEW+

N
Ut §+E up B

1
+5[AdBgbi(28+1)+C =N] u 5

[;;nl }// l¢(e,0)|" dé dp.

From (3.7) and (4.15), we finally get

2
Ut 5

0+ 2vald)| NEQ)

1 p-—2
Z[AOqu1(26+1)+C —ﬁN} us

[2;(;71 N / (6.0 dz dp,

where N and ¢; are chosen as follows:

26+1 2p(A¢Bgbi(26 +1)+C
N > max s ’ P(AoBgba( ) ),1 ,
261 p-2

€1 Ne.
Then we conclude from (4.16)
arE(t)  L(t) o2E(),
where

(X1:61—N62

Page 10 of 24
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and
ar=€1 +Ney. O
Now, we prove the exponential decay of global solution.

Theorem 4 If (2.4) and (3.5) hold, then there exist k and Kpositive constants such that
the global solution 0f2.20) veri“es

E(t) Ke™*. (4.17)

Proof By di erentiation in (4.1), we get

L({t)=eE(t)+e U §+62/uttudx
Q

. t (4.18)
v [ [ o [ o 9dsed,
Combining with (2.20) to obtain
L(t):elE(t)+ez[ U 35— ui+u g—a/Quutdx}
~bic [ wtxt) [ ot 0y (@.19)
rbuey [ [ @enoco [ oeoasea
An application of Lemma 8 leads to
Lt)=ciE(t)+e U 5—€2 U 5+e uf
(4.20)

_blezfrof— |¢(§,t)[2d$dp—aezfguutdx.

Using Poincare-type inequality and Young's inequality on the last term of (4.20), we get,
forall s >0,

1
fuutdx — w 3+Cs uli (4.21)
Q 45
From (4.20), (4.21), and (3.2), we obtain

L (t) [—ael+ez<1+%)] U 5+e[-1+38Ca] wu3
. (4.22)
+e U S—blezfr / (&, 1)|* d& dp.
o)
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We use (3.7) to get

a
L (t) |:—3.61+62(1+E):| Ut §+52|:—1+8C a+C”<p

—byes / f (et dé dp.
I'og J—

On the other hand, from (3.5)

b2
1+ c%%) <0.

For a small enough § , we may have

o\ 7
_1+sC a+cp(p—p2) <0.

Then choose d > 0 depending only on § such that
_ a 2_ 2
L (t) acL te| 1+ 3 Ug 5 ed U 2

i [ 0 [ loteof dean.

Equivalently, for all positive constant M, we have

a M M
L (t) |:—a€1+€2(1+5+?>1| ut§+ez[?—d} u

+blez[%—1]/rf_ (&, 1)|> d& dp — esME(t).

For €; and M <min{2,2d} chosen such that

a M
Jeltag +3)
a

€1

We obtain from (4.25)

—€)

M,

o2

L) —MeE®)

as a result of (4.5). Now, a simple integration of (4.26) yields

L(t) LO)e™,

where k = % Another use of (4.5) provides (4.17).

2p
-2

2
2

(4.23)

(4.24)

(4.25)

(4.26)

Page 12 of 24
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5 Blow-up
In the current section, we follow the same approach given in [11] to prove the blow-up of
solution of problem (2.20).

Remarkl By integration of (3.2) over (0,t), we have
t
E(t):E(O)—af Us 5ds
0
1 t , 1
w5(1-[a9as) uisi@ uo 5.
2 A 2
t +
or [ /F/ (62 +n)|¢(.9|* de dpds
Now, let us define F(t):
t
F(t)= u §+a/ u 3ds
0
1 t 1
~5(1- [ases) ui-Ge worbH, 52)

where

Ho= [ A [ (gz+n)(/os¢(s,z)dz)2dsdpds 53)

Lemma 10 Assumethat u % is bounded on0, T), then
H({t) C<+ . (5.4)
More precisely
0 %Cque_"Cz [C3 o+ G ()T,
where
Ci=sup { u 31}
t [0,T)

Proof Using (2.18), we obtain
t
#e0= [ nEe N Suxgds  x T (55)
0

Holder’s inequality yields

P(&1) (/Otuz(s)e‘2@2+">(t‘s)ds>%(/0t|u(x,s)|2ds)%, x To. (5.6)
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On the other hand,

(/ths(s,s)ds)z T/Otw(s,s)fds

From (5.6) in (5.7), we obtain

t 2 t s s
2(g)e 22 (s2) 2
(/0 ¢>(§,s)ds> T/(; [/0 pA(€)e dz/(; lu(x,2)| dz} ds

Applying Lemma 2 leads to

t 2 tr ps ,
/ ( f ¢(€,S)ds> dp  ByGiT / [ / p2(£)e 26 +n)(S—Z)dZi| ds
To \JO o LJo

Sincez (0,9, we choose C, O0suchthats—z % to term (5.9) into

t 2
/ (/ i ’S)ds> dp BCITA ()R,
To \JO 2
Multiplication by &2 + , followed by integration over (0,t) x (— ,+ ) yields

t +
H(t) C,Bue"<T3 / [ / g2+l g-Cot? dg} ds
o LJo
t + )
+C1Be "2y T? / [ / ga-lgCot dg]ds
0 0
Then
1 trr+
H(t) ECque‘"C?C%‘)“lT?’/ [/ y‘*e‘ydy] ds
o LJo
1 t +
+§Cque‘”°2C§‘2“nT3/O [/0 y"‘le‘ydy} ds
Applying a special integral (Euler gamma function), we obtain
1
H(t) Ec:que—’7C2 [C3* o+ C32n T ()T
Lemma 11 Suppose p 2, then

F@) (p+2) u 2

(6.7)

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

(5.18)

t t
+2p{—E(0)+a / uséds—%(l— / 9(3)d5> 1130 00 51

b/f/ (6 + )lo(e.9[de dpas|.

Page 14 of 24
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Proof We di erentiate with respect to t in (5.2), then we get

F(t)=2/ﬂuutdx+a us
1 , 1
+ Eg(t) u 2_5(9 u)(t) (5.15)

+2b1/0t /r/ (52+n)¢(s,s)/os¢(s,z)dzdsdpds

Using divergence theorem and (2.20), we obtain

F)=2 u 5—2/ u/tg(t—s) u(s)dsdx
Q 0
+2 u B+2by fr uxt) [ n(e)p(e.0dEdp (5.16)

+2by /F f (E2+n)p(E.1) fo $(2,9dsk dp.

By definition of energy functional in (3.1) and relation (5.1), we give the following evalua-
tion of the third term of (5.16):

2

2up=pu ;+p u §+pb1/F / ’¢(€,t)|2d§dp—2pE(O)
0 J—
t 1 t 1
+2p[a/ Us Eds——(l—/ g(s)ds> ui-Z@@ u@ (5.17)
0 2 0 2

+b1/0t/r0/_+ (sz+n)|¢(s,s>|2dsdpds].

We can also estimate the last term of (5.16) using Lemma 8:

// ($2+n)¢(s,t)/ $(&.9dsck dp
g J— 0
(5.18)

=/FO u(x,t)/_+ ¢(s,t)u(s)d5dp—/ro / 06,0 dé dp.

From (5.17), (5.18), and (5.16), we get

FO (P+2) u3+(P-2 u §+bl(I0—2)/F /_ 660 de dp

+2p[—E(O)+a/0t Us %ds—%(l—/otg(s)ds) u %—%(g u)(t) (5.19)

+bl/0t/rof_+ (sz+n)|¢<s,s)}2dsdpds]
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Taking p > 2, we obtain the needed estimation
F@O (+2)
t 1 t 1
+2p{—E(O) + af Us 5ds— E(1—/ a(d ds) us— E(g u)(t)
0 0
t +
o f (sz+n)!¢(s,s)\2d5dpds}. o
I'o /-
Lemma 12 Suppose that [» 2 and that either one of the next assumptions is veri“ed
(i) E(0) < 0;
(i) E(0)=0, and

F(0)>a up 35 (5.20)

(iii) E(0) >0, and

F(0)>[F(0)+lo] +a up 3, (5.21)
where

r=p-2y/p2-p
and

lo=a up 3—2E(0). (5.22)

Then F(t)>a ug 3 fort>t, where

(5.23)

_ 2
t >max{0’ M}’

2pE(0)
where =t in case(i), and t; =0 in casegii) and (iii ).

Proof (i) Case of E(0) < 0.
From (5.14), we have

F(t) —2pE()
which clearly leads to

F(t) F(0)—2pEO)t.
Then

F(t)y>au 3, t t,

where t asgivenin (5.23).
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(i) Case E(0) = 0.

Using (5.14) we get

F(ty o, t o

Thus

F(t)y F(), t O

Then, by (5.20),

F(t)>au 5, t O

(iiii) Case E(0) > 0.

The proof of this case consists of getting to a di erential inequality: B (t) — pB (t) +

pB(t) 0 pursued by a use of Lemma 3. Indeed, from (5.15) we have

F(t):Z/uutdx+a u s’
Q
1 1
300 us-3(0 wo

+2b1/0t /F/ (52+n)qb(g,s)/osqb(g,z)dzdsdpds

Or, the last term in (5.24) can be estimated using Young’s inequality

/0‘ /FO /_+ (52+ﬂ)¢($ys)/os¢(‘§,z)dzdgdpds
%/Ot/% /_+ (62+n)|6(&,9|" de dpds

+%/Ot/r0/_+ (52+n)</03¢(§,z)dz)zd§dpds

On the other hand,

t t
d
2/ /usudxds:/ — Us 5ds= U 35— up 2.
0 Ja o ds

By Young’s inequality, we get

t t
2 2 2 2
u s /0 Us 2ds+/0 u 5ds+ ug 5.

(5.24)

(5.25)

(5.26)

(5.27)

Page 17 of 24
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Now, we remake (5.24) using (5.25) and (5.27):

t t
F(t) u3+ ut§+a/ usgds+a/ u3ds+a up 3
0 0

1 ¢ , 1
~3(1- [a9as) wi-3@ w0
0
. . (5.28)
o[ [ [ € n)lote 9l dedpas
0 J—
t + s 2
o [ (§2+n)</ ¢(s,z)dz) dz dp ds
0 JIgJ— 0
From the definition of F in (5.2), inequality (5.28) also becomes
t +
FO FO+ udeb [ [ [ (@ rn)lo9f dedpds
: 0 hodm (5.29)
+a/ Us 5ds+a ug 3.
0
Thus, by (5.14), we get
t
FO-p(FO-FO} 2u f+ap | usdds—pa up 3-2pE0)
L (530)
epby [ [ [ (e n)loe 9 dedpas
0 /-
Hence
F (t)—pF () +pF(t) +plo O, (5.31)
where
lo=a up 3—2E(0).
Posing
B(t)=F()+1o
leads to
B (t)—pB(t)+pB(t) O. (5.32)
By Lemma 3 and for p=§ + 1, we conclude that if
B(t)>(p—2y/p?—p)B(0)+a o 3, (5.33)

then

F(t)=B(t)>au 5 t O O
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Theorem 5 Suppose that » 2 and that either one of the next assumptions is veri‘ed
(i) E(0) <0;
(i) E(0) = 0 and (5.20) holds

1
- 2\2 7T
(iii) 0 < E(0) < @=A(F o2 uo 57 X)™ 5 (5.21) holds

16p
Then, in the sense of De"nitiorl, the solution(u, ¢) blows up at “nite time T .
For casdi):
J(to)
T to——= 5.34
°~ Ity (5.34)

Moreoverif J(to) <min{1,,/ %}, we get

O
— In . 5.35
—bl NE ) (539

For casdii), we get either

T to +

T to— % (5.36)
or

T to+ j((tt?) (5.37)
For casdiii ):

T ﬂ’_) (5.38)

o

or else

T 428 ’”1; (1-[1-cdte)]?1 ), (5.39)
wherey; = % c= (5)2%1, Jt), b and o are as in(5.40) and (5.54) respectively

Note that to = 0 in cases (ii) and (iii). For case (i), we have as in (5.23): tg =t .

Proof Consider

JO=[F®) +aT —t) uo 5], t [to,TI. (5.40)
We di erentiate on J(t) to get

3(0) =) [F () -a o 3] (5.41)

and again

3 () = I G(), (5.42)
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where
G(t)=F (O)[F(t)+a(T —t) up 3]—(1+y){F(t)—a up 5}2. (5.43)
Using (5.14), we obtain

F) (P+2) u 3

+2p{—E(0)+a/(;t Us %ds—%(l—/{jg(s)ds) u 5—%(9 u)(t)

+b1/0t/F0/_+ (52+n)|¢(s,s)|2d5dpds}.

Consequently,
F(t) —2pE0)
xp{ Uy §+a/ Us 2ds— }( /9(5)d5> u 5—%(9 WM (5.44)

+b1/// (62+1)|0(e. 9 depds}

Or, from (5.15) and the fact that u 3— up 3= 2[0 /o usudxds we attain
t
F(t)—a uo 522/ uutdx+2a/ /usudxds
Q 0 Q

+2b1/0t /F/ (52+n)¢(s,s)/os¢(s,z)dzdsdpds

Going back to (5.43) with (5.44) and (5.45) in hand, we get

(5.45)

G(t) —2pE(0)t)7

wp uwgvaf ugas (1= [o9ss) ui-j@ wo

b [ /Ff (€ )lote, 9| e dp ]

«[ugeaf wias3(i-[a9as) ui-j6 WO g4
[ ool [eeaof e

—4(1+)/1){/Quutdx+a/0 /Qusudxds+ Eg(t) u %—%(g u)(t)

+b1/0t/m / (52+n)¢($,8)/os¢(%‘,2)dzd$dpdsr-
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For the sake of simplicity, we introduce the following notations:

A= u§+a/t Z2ds— %( —ft (s)ds> u —%(g u)(t)
+b1/ /r/ (€2 +7 </ g z)dz) d dpds

B:/uutdx+a/ /usudxds+ Zgt) u 5—1(9 u)(t)
Q 0 Ja 2 2

+b1f0tfr0f_+ (52+n)¢(s.s)/os¢<s,z)dzdsdpds

C= u §+a/t usgds—%( /t (s)ds) u g—%(g u)(t)

+b1/// (62+1)|6(€,9|* de dpds

Therefore
Q) —2pE(0)I1)7 +p{AC—B2}, (5.47)
Note that, w Rand t>0,

AW2+2BW+C:[W2 u §+2W/ uu dx+ Uy g]
Q

+af0t[w2 u §+2w/9uusdx+ Us %}ds
t
+(W2+1)(_%(1— /O g(s)ds) u %—%(9 uXt))

w(ze0 ui-3@ uo)

nf [ [ ol [ocan)

r2wp(e.9 [ 0. 2)dz+ }¢>(s,s)|2} dz dp ds

(5.48)

Hence

AW +2BW+ C

t
=[wu .+ u 2]2+a/ [Wu o+ us]’ds
0

t
+(wz+1)<—%(1— /0 g(s)ds) u %—%(g U)(t)> (5.49)
+W(%g(t) u g—%(g U)(t))

+b1fotfrof_+ (sz+n)[wfos¢(s,z)dz+|¢(s,s)|]2dsdpds
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Itis clear that

AW +2B+C 0
and

B2—-AC 0. (5.50)
Then, from (5.47) and (5.50), we obtain

Gt) —2pEO)JID7, t to. (5.51)

Hence, by (5.42) and (5.51),

0 EQID" 7, t to. (5.52)

p*—4p
2

Or, by Lemma [6], J(t) <0, wheret to.
Multiplication by J (t) in (5.52), followed by integration from t, to t, leads to

JO? o +bXt?, (5.53)

where

2 2 -1 2
o =[P (F (to)— o 32— P24-E(0)(to) ™ 13(to)*" 71,

— p(p—4)?
b= 922;4 E(0).

(5.54)

1
(2p—4)(F (to)—a ug 2)%X(to) 71
16p

Note that o >0 is equivalent to E(0) <
the existence of a finite time T > 0 such that

, Which by Lemma 4 ensures

. hgn_ Jt) =0.

That involves

t 1 t
lim [ u §+a/ u %ds——(l—/ g(s)ds) u?
t T 0 2 0

X . (5.55)
-2 u)(t)+b1H<t)] =0,

t 1 t
lim [ u §+a/ u §ds——<1—/ g(s)ds) u’
t T~ 0 2 0

k (5.56)
~3@ OO+bHO =+

So, there exists T such thatto<T T and u 3S + astS T

Page 22 of 24
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Indeed, if it is not the case, then  u 3 remained bounded on [to, T ), which by
Lemma 10 leads to

tli¥1_[ uj+bH(t)]=C<+ ,

contradicting (5.56). O

6 Conclusion
Much attention has been accorded to fractional partial di erential equations during the
past two decades due to the many chemical engineering, biological, ecological, and elec-
tromagnetism phenomena that are modeled by initial boundary value problems with frac-
tional boundary conditions. In the context of boundary dissipations of fractional order
problems, the main research focus is on asymptotic stability of solutions starting by writ-
ing the equations as an augmented system. Then, various techniques are used such as
LaSalle’s invariance principle and the multiplier method mixed with frequency domain.
We prove in this paper under suitable conditions on the initial data the stability of a wave
equation with fractional damping and memory term. This technique of proof was recently
used by [4] to study the exponential decay of a system of nonlocal singular viscoelastic
equations. Here we also considered three di erent cases on the sign of the initial energy
as recently examined by Zarai et al. [17], where they studied the blow-up of a system of
nonlocal singular viscoelastic equations.

In the next work, we will try to extend the same study of this paper to a general source
term case.
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