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1 Introduction
Fractional calculus is a mathematical branch investigating the properties dealing with
arbitrary order differential and integral operators. Fractional differential equation have
been an excellent instrument in the mathematical modeling of dynamical systems and
real world problems, such as physics, biological and chemical engineering, aerodynamics,
earthquake vibrations, fractals and chaotic, nonlinear control theory, signal and image
processing, artificial intelligence, etc. However, many researchers introduced various def-
initions of fractional derivative and integral operators of arbitrary order. For more details,
we refer the reader to the books [1-5]. Some recent contributions to the theory of frac-
tional differential equations and its applications can be seen in [6-9] and the references
cited therein.

In this paper, we study the existence and stability of solutions for the following general-

ized proportional fractional (GPF) functional integro-differential Langevin equation with
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variable coefficient and nonlocal fractional integral conditions:

CD1P(CD2P + )(2))x(E) = £ (£, %(2), x(0(2)), (Kx)(8), te€la,T)
Z:’Zl /cml“i""x(oi) = Z;Izl ajalﬂi'px(nj), (11)

Okl Px(Yi) = Y1 vial P (&),

where ¢D?” denotes the GPF derivative of order g, g = {q1,42} with 0 < q1,42 < 1,
1<q1+q> <2, p>0,in Caputo type, ,I"” denotes the GPF integral of order w > 0,
w = {i, B Vo 01}s P > 0, Kiy 0ty i, Vi € R, 03, mjy Y, § € (0, T) forall i = 1,2,...,m, j =
,2,....m,k=1,2,...,p,1=1,2,...,r,m,n,p,r €N, A € C([a, T}, R), f € C([a, T] x R3,R),
0 € C(la, T],[a, T]), and

(Kx)(2t) = ft¢(t,s,x(s)) ds, tela,T],

where ¢ € C([a, T)? x R, [, 00)).

The Langevin equation has been used to describe the dynamics of physical phenomena
in the fluctuating environment of mathematical physics [10, 11]. For a system in complex
phenomena, it has been realized that the integer order of the Langevin equation does not
provide the accurate representation of dynamical systems. Therefore, one of the best ways
to overcome this disadvantage is to replace the integer order derivative by the fractional
order derivative [12—15]. The popular research interest in fractional Langevin equations
is focused on the investigation of existence and stability of solutions. In this context, the
literature has witnessed the appearance of many results on Langevin equations within var-
ious types of fractional operators and using different techniques, we refer the reader to the
papers [16—29] and the references therein. It is worth mentioning here that all of the above
cited work has been conducted in the frame of the classical Riemann-Liouville, Caputo,
and Hadamard fractional operators. Further, the problem of Langevin has been considered
using some generalized fractional derivatives in which, for instance, Atangana—Baleanu
and Hilfer fractional derivatives were employed [30, 31].

Inspired by the above work and with the hope of considering generalized fractional
derivative that includes the classical derivatives as particular cases, we accommodate the
newly defined GPF derivative to study the problem of Langevin equation. The new deriva-
tive D”9x(t) involves two parameters and has the features that the semigroup property is
preserved, nonlocal character is possessed, and upon limiting cases it converges to the
original function and its derivative. The GPF derivative is well behaved and has a sub-
stantial advantage over the classical derivatives in the sense that it generalizes previously
defined derivatives in the literature. We list here some recent results which have been
elaborated in the frame of GPF derivative [32—37]. Exploring the literature and in view of
equations considered in the aforesaid references, one can figure out that equation (1.1) is
entirely different from the equations investigated earlier. The nonlinearity function incor-
porates an integral term, (1.1) includes variable coefficient, and the boundary conditions
are formulated in general settings.

The manuscript is processed as follows. Sect. 2 is essential in its nature as it presents
preliminary definitions and results. In Sect. 3, we establish some appropriate conditions
for the existence and uniqueness of solutions of problem (1.1) via the technique of fixed
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point theorems. In Sect. 4, we set up applicable results under which the solution of prob-
lem (1.1) fulfills the conditions of different kinds of Ulam stability. The validity of discussed
results is illustrated by a particular example in Sect. 5. We end the paper by a conclusion.

2 Preliminaries

This section presents some fundamental definitions and lemmas that will be used in this

paper. For interpretations and proofs, the reader can consult the papers [38—40].
Throughout this paper, we define E = C([4, T], R) as the Banach space of all continuous

functions from [, T] into R equipped with the norm ||x||g = sup,.(, r1{|x(£)}.

Definition 2.1 ([38]) For p € (0,1] and o € R*, the generalized proportional fractional
(GPF) integral of function f of order « is defined by

(I"°f) () =

palf o / e (¢ — 5 Vf(s) dis, (2.1)

where I'() represents the gamma function.

Definition 2.2 ([38]) For p € (0,1] and o € R*, the generalized proportional fractional
(GPF) derivative of Caputo type of function f of order « is defined by

(sD2f)(@) = m / TN ¢yl pref(r) d, (2.2)

where n = [¢] + 1 with [«] represents the integer part of the real number « and (D™*f)(t) =

(DPF ()" with (D°F)(2) = (1 - p)f (&) - pf (¢). Note that lim,,_o(D?f)(¢) = £(¢).

Lemma 2.3 ([38]) For p € (0,1] and n = [«] + 1, we have (uCD“'pal"‘”’f)(t) =f(t), and

) n-1 k,
(d“ D10 =0 7 O3 P Z((Ia) (t-a). (23)
k=0

Proposition 2.4 ([38]) Let « > 0 and B > 0. Then, for any p € (0,1] and n = [a] + 1, we
have X
(i) (%e7 (s-a)ﬂ D) = B e T (- a)f ot a0,

ﬂ+a)p
(i) (D™ re’s (s—a)P 1)) = & B a)e & t-a)f 1 a>n.
(iti) (¢D* re’s s—a))t)=0,a>mk=0,1,. -1

Fixed point theorems play a major role in establishing the existence theory for problem
(1.1). We collect here some well-known fixed point theorems for the sake of completeness.

Lemma 2.5 (Banach’s fixed point theorem [40]) Let D be a nonempty closed subset of a
Banach space E. Then any contraction mapping T from D into itself has a unique fixed
point.

Lemma 2.6 (Krasnoselskii’s fixed point theorem [41]) Let M be a closed, bounded, convex,
and nonempty subset of a Banach space X. Let A, B be the operators such that (i) Ax + By €
M whenever x, y € M; (ii) A is compact and continuous; (iii) B is a contraction mapping.
Then there exists z € M such that z = Az + Bz.
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Lemma 2.7 (Schaefer’s fixed point theorem [40]) Let M be a Banach space and T : M —
M be a completely continuous operator, and let the set D = {x € Ml: x = k Tx,0 < k <1} be
bounded. Then T has a fixed point in M.

In order to transform the main problem into a fixed point problem, (1.1) must be con-
verted to an equivalent Volterra integral equation. We provide the following lemma, which
is important in our main results.

Lemma 2.8 Let i : [a,T] — R be a continuous function, 0 < q1,q2 <1, 1 <q1 + g2 <2
and p, [Li; Bj» Yo 1> 0, kis &), wi, v € R and o3, nj, Y, &1 € (a,T) forall i = 1,2,...,m,
j=12,...,mk=12,...,p,1=1,2,...,r, m, n, p, r € N. Then the function x € E is the
solution to the following linear GPF Langevin equation equipped with nonlocal fractional
integral conditions:

Cprr(Cpwr 4+ A ()x(t) = h(t), tela, T,
Z:ﬁl Kial"*Px(0;) = Z] 1 a]alﬁ] x(’l;) (2.4)
Zizl wkalyk’px(wk) = Zl:l vlaIWI’px(gl)x

if and only if x satisfies the following fractional integral equation:

x(t) = TP R(t) — ITP 0 (t)x(t)

2=L(r_g)

e r Qu(t —a)? " . .
-Q ; a[q1+q2+ﬂ,,ph . _a1q2+ﬁ],pk ) }
"Ta [(pqqum ) (Z[ () ()]

m

- Z [T () — alqzml-,p)\(ai)x(ai)])

i=1

Qo (t — a)22 r
+ (szl - sz(;q;’ll)) <Z w[aITH I () = I ()]

I=1
J2
_ Zwk[a[qnqzwk,ph(wk) _ a1q2+yk’p}\(1/fk)x(l/fk)]>:|, 25)
k=1
where
% 7 ) 8,55 (-a)
K'(a—a)qz*“'e p \0i 01(77 —a q2 e p i
=) o —Z e : (2.6)
= PP (qy + pi+1) PP (g + B+ 1)
el Y=
Py p”’F(Mi +1) = pﬂjr(ﬂj +1)
P a)k(‘ﬁk—a)q2+yk67(‘/’k ~a) r vi(E - )q2+<ple > ~L(&-a) 09
- 2.8

PN (g +yc+1) = p T (qa+r+1)

k=1
i (Wi —a)le T VD (g - ayre’s @0

- ’ 2.9
=~ AT+ 1) 121: P (i + 1) 29

Q=Q1Q4 — Q203 #0. (2.10)

b
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Proof Let x be a solution of problem (2.4). By using Lemma 2.3 with Proposition 2.4 (i),

the first equation of (2.4) can be written as an equivalent integral equation

p-1
t—a)e s -1
$(E) = T PR(E) — (TP A(E) 4 0y e pqz)r e, @11)
2

where arbitrary constants c;, ¢z € R.
Taking the GPF integral operator ,/"* into (2.11), we obtain

TP(0) = () = I A0

(t - a)q2+wep%1(t*d) (t— a)we%l(t*a)

+c +c 2.12
1 P (qy + w+ 1) 2 p"T(w+1) ( )

Substituting w = {1;, B> ¥x» @1}, t = {03, 1), ¥i, &} in (2.12), respectively, and applying the
boundary conditions of problem (2.4), we have

n
Qier+ ey =Y oyl () — (1P M (0)x(n))]
j=1
m
- Z [T () = (TP (0)x(0r)],
i=1
r

Q301 + 40y = E Vi I TP B(E)) — PP (8 (E) ]
=1
»

=3 [l B() - I ()R ()]

k=1

Solving the above system for ¢; and ¢;, we have

1 n
a5 {“ (Z I ) = 1))

j=1

m
- Z i [ LT (o) — alqzmi’p)»((fi)x(m)])

14
=3 [ P ) - azqzwkvpx(wk)x(wk)]) }

k=1

[91 (Z w1 (E) — I A E)a(E)]

=1

Q=

p
= [ T B() - a1q2+”k'p)»(1/fk)x(¢k)])

k=1

n
-9 (Z [TV ) — 12 2 ()
j=1
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I e R awwx(ai)x(a»])],

i=1

where Q1, Qy, Q3, Q4, and Q are defined by (2.6)—(2.10), respectively. Substituting the
values ¢; and ¢; into (2.11), we get the fractional integral equation (2.5).

Conversely, it is easily to shown by direct calculation that the solution x(¢) given by (2.5)
satisfies problem (2.4) under the given boundary conditions. The proofis completed. O

3 Main results
In this section, we establish the existence results of solutions for problem (1.1). Fixed point
theorems are employed to prove the results.

Throughout this paper, the expression ,1%°f (s, x(s), x(6(s)), (Cx)(s))(c) means that

oI"f (5,%(5),%(6.(5)), (Kx)(9)) ()

= m / ep’%l(c_s)(c —5)"7f (5, %(5), %(6(5)), (Kx)(5)) ds,

where b € {g2,q1 + @2, G2+ i G2 + By D2+ Vi G2 + 1 1 + G2 + i L + G2 + Bis 1 + G2 + Vi q1 +
q2 + @1} and c € {t, 0y, 1, Y, &} For simplicity, we set

Eo(8) = f (£, %(2), %(6(0)), (Kx)(2)).
In view of Lemma 2.8, an operator Q : E — E is defined by

(Qx)(t) = oI TP Fi(5)(£) — oI ™7 M(5)2(s)(2)

PG Qu(t —a)®
+ - Qg
Q p2I'(g2 +1)

X ( [P E () (1)) = o2 HP (s)2(5) () ]
j

= >kl I E(5) o) - aﬂz%’ﬂx(s)x(s)(oi)])

i=1

Y, r
N (szl _ %) (; Vi I TP, (5)(8) — T 5 (5)(s) (1)

p
= [ TP EL(s) (Yi) - alq””'p/\(S)x(S)(Wk)]) ] . (3.1)

k=1

Then problem (1.1) has solutions if and only if the operator Q has fixed points.
To proceed further, we introduce the following hypotheses:
(H;) Letf:[a, T] x R® — R be a continuous function.
(H,) Let A:[a,T] — R be a continuous function.
(Hs3) There exist positive constants L;, Ly such that

[f (&, w1, vi,w1) = f(t, 2, v2, wa)| < Ly (|ug = ua] + [vi = val) + Lo|wy — wy

forany u;, v, w; €R,i=1,2,and ¢t € [4, T].
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(Hy) Let ¢:[a, T]> x R — R be a continuous function, and there exists a positive con-
stant ¢ such that

|¢(t,S, M) - ¢(t:s¢ V)‘ < ¢0|L£ - V|
for each (¢,5) € [a4, T1?> and u, v € R.

(Hs) |ft,u,v,w)| <g(t), ¥(t,u,v,w) € [a, T] x R® and g € C([a, T],R").

(Hs) There exist nonnegative continuous functions /41, /3, h3, hs € E such that
(&, v, )| < () + Ba(Olul + B3 Olv] + BaOlwl, wv,weR, tela T,
with hT = Supte[ﬂ,T] hl(t), hjzﬂ = Supte[ﬂ,ﬂ h2(t), h; = Supte[u,ﬂ hg(t), hz =

SUP,c (4,71 ha(t).
For the sake of computational convenience, we make use of the following constants:

(T - )
Ai= Mm '93'>’ (32)
2I(T - a)t
|9|(pqzr(qz+1> 'Ql'>’ (33)
Aglag) = — L=

P+ (1 + 1)

1 pq1+qz+ﬂ,r(u +B+1) pq1+q2+ﬂz (u+p;+1)

i=1

S il —a) ok (Y — @)
+ A E + E (3.4)
2 pm+q2+<ﬂl]" u+q@p+1) P N2k (1 + i + 1) ’

Aa = oI 0()|(T) + Ay (Z oy lal 5 2(5)] ) + 3 licil ol |x(s)y(ai>>

j=1 i=1

r 14
A (Z Va2 0()| 6+ 3 nlad 277 |x(s)|(wk)>, (3.5)

=1 k=1

where u={q; + q2,q1 + q2 + 1}.
3.1 Existence and uniqueness result via Banach’s contraction principle

The existence and uniqueness result of a solution for problem (1.1) will be proved by using

Banach’s fixed point theorem.

Theorem 3.1 Suppose that hypotheses (H1), (Hz), (Hs), and (Hy) are satisfied. If
2L1 A3(q1 + q2) + Lago Az(qr + g2 + 1) + Ag < 1 (3.6)

and A1, Ay, As(u), u={q1 + q2,q1 + g2 + 1}, and A4 are given by (3.2), (3.3), (3.4), and (3.5),
respectively, then problem (1.1) has a unique solution in the space E.
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Proof Firstly, we transform problem (1.1) into a fixed point problem x = Qx, where the
operator Q is defined as in (3.1). Observe that the fixed points of the operator Q are solu-
tions of problem (1.1). Applying the Banach contraction principle, we shall show that the
operator Q has a fixed point which is the unique solution of problem (1.1).

Let sup,c(, 77 [f (£,0,0,0)| := M; < 00. Next, we set Bg, := {x € E: |lx[|[g < R} with

MiAz(q1 + q2)
[2L1As3(q1 + q2) — LagoAs(q1 + g2 + 1) — Ag]’

Ry > - (3.7)

where As(u), u = {q1 + q2.q1 + g2 + 1}, and A4 are given by (3.4) and (3.5), respectively.
Note that Bg, is a bounded, closed, and convex subset of E. The proof is divided into two
steps as follows.

Step 1. The operator Q defined by (3.1) satisfies the relation: OBr, C Bg,.

For any x € Bg,, we have

|(Qx)(®))|

ﬂ(t—a)
e’ |24](t — a)?
< TP F(s)|(8) + o177 |1 (5)| | 2(9)| (2) + ] [(qur(qz ot Q23]

x (Z logj [ LT 92802 | E(s) | () + T2 PP | ()| [ ()| ()]

j=1

+ Y il [P E($)](00) + oI |1 (s) | |x(5)|(0i)]>

i=1

. (mn . %) (; o[22 |Ey(5)](8) + ol 0(9)]|2(9)| 81)]

p
£ Y ol [o TP [Ey(s)| () + oI 7700 | 1(5)] |x(S)|(1ﬁk)])}

k=1

2L(T-a)

|€2]

< I 2P (|Ey(s) = £(5,0,0,0)| + |f(5,0,0,0)|)(T) + oI |A(s)||(s) |(T) + €

|2 [(T — a)® - .
x [(W + |93|> (1_21 |otj | [17+924F0° (| Fo(s) = £ (s, 0,0,0)

+[f(5,0,0,0)[) () + oI?*7* | (s)| |(s) | (m)]

3 il [0 (|Es) ~ £5,0,0,0)] + [£(5,0,0,0)]) )
i=1

. |2 (T - a)?2

bl ﬂ|x<s>||x<s>|<m’]> (mi )

X (Z |Vl|[a1ql+q2+w’p(|Fx(s) —f(S, 0,0, 0)| + lf(S: 0,0, 0)|)(‘§l)

=1

+ oI |3 (s)| |(9) | (61)]
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p
+ 3kl [l TP (| Eols) - £(5,0,0,0)] + [£(5,0,0,0)|) (¥e)

k=1

+ VP |k(s)| |x(s)|(¢k)]) :|

-1
By using the property e'n @) <1lfora<s<u<t<Tand (H3)-(H,), we obtain

|(Qx)(®))|

< AT (L ([x(s)| + [2(0(5))[) + Lal (KCx) ()] + Mo )(T) + oI [ A (5) | |x(s) |(T)

2-lr_g)
; (T - a)®
L€ |:(| al(T —a) +|93|>

|2] P22l (g2 +1)

X (Z |oz,-|[u1q”q2*ﬂ/’"’ (L1(|x(s)| + |x(9(s))|) + L2|(1Cx)(s)| +M1)(n,)

j=1
+ I 25)|[(s) | ()] + D Il [ 92100 (Ly (J(s) | + |(6(5))])
i=1

+ Lo|(Kx)(s)| + M) (07) + oI [ A(s) | |x(8)|(6i)])

+ <|Ql| + M) (Z |v1|[alq1+q2+‘p"p(L1(|x(s)| + |x(9(s))’)
I=1

p2T(q2 +1)

+ Lo|(Kx)(s)| + M1) (&) + oI? 9P| 1(5)| |%(s) | (61)]

»
+ Z |oog| [ oI P 2270 (Ly (|2(s)| + |4(6(5))|)

k=1

+ Lo|(Kx)(s)| + M) () + o170 | (s) | |x(5)‘(1/fk)]):|

IA

1 T
DT (g1 + 42) / (T — )1 271 (2L1 Ry + Logpo(s — )Ry + M) ds
1 2 a

. 1 [ (19T - a)®
RO o) |:(,0‘12F(512+1) +'93')

n .
1 nj
2 ; . q1+q2+Bj-1
X < |a]||:pﬂh+q2+ﬁj /a (nj —s)T 420

P C(q+ g2+ B)

X (2L1R1 + L2¢0(S —a)Ry + Ml) ds + Rla[qzﬂsj"o ‘)»(S)|(77])i|

a 1
£y |Ki|[ :
= LpTr et (qy + ga + i)

o
X / (07 = )T+ (QL Ry + Logho(s — @)Ry + M) ds + Ry 19247
a

)\(S)|(Ui):|>
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T - a)® 1
+ (191 + 1$2|(T - a)™ Z| v / (& — 5) T2+
p2l(g2+1) J\ 4z L1+ (q1 + g2 + ¢1)

x (2L1Ry + Lago(s — a)Ry + My) ds + Ry .19+ | A(s)| (g,)}

1
> |wk|[
= p41+q2+yk]"(q1 +q+ Vk)

Vi
X / (Y = )T+ (2L Ry + Logho(s — a)Ry + M) ds
a

+ Ry ITT0P |)»(S)|(Wk)i|>i|

T — g)01+492 " ail(n; — g)T1+92+h
< (2L,R +M1)|: ( a) + A, (Z | 1|(77/ )

p1*T (g1 +q2 + 1) — P2 T (g1 + g + B+ 1)

i |ki| (07 — @)1 921 Z [vy|(§; — a)T 929!
+ +
pNr il (qy + qa + i + 1) 2 o PUEI (g + g2 + @i+ 1)

i=1

. i k| (Wi — a)T1+92+ %k ¢ LodoR (T — q)n1+a2+1
= pIrT (qy + g + vk + 1) PN paeT (qr + g5 +2)

loyj| (1 — @)1+ 02 +F5+1 " lic;|(0; — @)1 +a+uitl )

+
P AT (qy + g2 + By +2) 2 PIHHIT (g + g2 + i +2)

( i=1
q1+q2+¢p+1 L _ g)T1+ a2+l
+A2< [vil (&~ a) +Z x|V~ a) )}

PP (qy + qa + @1 +2) A= pTH T (qy + g2 + Vi +2)

m
1| oI |A(s) T)+A1(Z|a, |57 |25)| () + Z|xi|azqz+“f'p|x(s)y(m>>

j=1 i=1
p
+ A (Z Wil |7(5) (€ + Y |wk|a1q2*ykvp|x(s>|<wk))}
=1 k=1

< (2L1R1 +M1)A3(u) +L2¢0R1A3(M + 1) +R1Ay <Ry,

which implies that || Ox||g < R;. Therefore, @ maps bounded subsets of B, into bounded
subsets of By, , that is, OBg, C Bg,.

Step II. To show that an operator Q : E — E is contraction.

For any x y € E and for each ¢ € [a, T], we have

(Q0)(1) - ()(®)]
< AT PPIE(s) = By (s)[(T) + oI ™" [A() | |x(s) = y(s)[(T)

7T (1T~ a)®
+ + 193]
2] p2I(q2 +1)

x (Z logj| [ (ZT 92 P17 | Ey () = Fy(8)| (1)) + ol %P7 | 0(5) ||(s) = ()| (m))]

j=1



Khaminsou et al. Boundary Value Problems (2020) 2020:176 Page 11 of 30

+ Y Nl [l 1P| Eo(s) = Fy(8)](0) + oI 2707 | A(5) | |2(s) _y(5)|((7i)])

i=1

<|92|(T—a)q2
+ _—

Pl (g + 1) + |§Z1|) (lzzl il [ L9292 |, (s) — F,(s)| (&)

r
]qz+¢zp|)\(s)||x s) — y(s)|($1) +Z|a)k| ]q1+q2+)/k,0|F (s) - F(s)|(1ﬁ/<)
k=1

+ ﬂ1’12+”’<"")»(s)| |x(s) >:|

JdNCP (210 + Lago(s — a))(T) llx = ylle + oI [A(s) (T ll% — yll&

224(T-a)
QT - a)®
e {(| (T ~a) +|93|>

IA

12 p22(q2 +1)

x (Z | [ 925 (2L + Lagpo(s — @) (ny) 1 = y 2

j=1

+ I ()| () 1~ y115]

+ 3 Nl [l 1P (2L + Logho(s — @) () 1 — ylle

i=1

— q2
. ﬂ1q2+“f'ﬂ|x(s)|(ai>||x—ynE]) . (w |s21|>

p22I (g2 + 1) ’
X (Z il [ TP (2L + Logo(s — a)) (&) lx — ylle

=1

+ oI | A (5)| (€D 1% - yllie]
)4

+ 3wkl [l TP (2Ly + Lygo(s — a)) (¥i) |16 — ¥l
k=1

+ 1P | (s) | () 1% —yIIE]ﬂ
o T-aytre Z |l (1 — @)1+
Y ot el(g + g+ 1) = PIHHIT (qy + g + B+ 1)

S s U Y S U OO i
o P (g g+ i+ 1) N\ p1 e T (qy+ o+ @+ 1)

IA

|k | (WY — a)T1+92+7k (T — a)1r+a2+1

r
+ +L
; P (g1 + g2 + vk + 1))} 2o [p‘“*‘“l"(ql +q2+2)

k
+A1

(
s

|05j|(77j _ a)q1+qz+/5;+1 m kil (o; — a)q1+q2+uz+1 )

+
pq1+q2+ﬁjr(ql g+ B+ 2) 121: PR (qq + g + Wy + 2)

n

=1

- 1 d +q2+yi+1

Z lvi|(§; — a) i ra2rorr |k (Yri — @)1 +a2+ 7 >:|
+D

PIHUL (G +qa + @1 +2) A= pT R (G + g + yic +2)
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n m
+al PP [MS)(T) + Ay (Z o lad 22 |s) [ (1) + D Iiilad 245

j=1 i=1

k(S)!(Gt))

r p
+ Ay (Z iloI? 9 |0(s)[(8) + ) |wk|a1q2+ykvp|A(s>|<wk)ﬂ lle = ylle

I=1 k=1

< [2L1As(q1 + 42) + LagoAs(qy + g2 + 1) + Ag]llx = yllg,

which implies that || Qx — Qyllg < [2L1A3(q1 + q2) + Lado Az(q1 + g2 + 1) + Ag]llx - yllE. As
2L1 As(q1 + q2) + LadhoAs(q1 + g2 + 1) + A4 < 1, hence, by the Banach contraction principle
(Lemma 2.5), the operator Q is a contraction, therefore, it has a unique fixed point that is
the unique solution of problem (1.1) in E. The proof is completed. d

3.2 Existence result via Krasnoselskii’s fixed point theorem

By using Krasnoselskii’s fixed point theorem, the existence theorem will be obtained.

Theorem 3.2 Assume that (H,), (H3), (Hy), and (Hs) hold. Then problem (1.1) has at least
one solution on [a, T| provided A4 < 1, where A4 is defined by (3.5).

Proof Let sup,c(, 7118(t)| = liglle. By choosing a suitable By, = {x € E: [|x[|g < R,}, where

R > Aslq1 + @) lIglle

) 3.8
2 =L (38)

and As(q; +¢q2) and A4 are defined by (3.4) and (3.5), respectively. We define the operators
Q; and 9, on Bg, by

1442, ep%l(t_a) Qu(t - a)??
(@)= TEIEEO + g [<pqzr(qz 1) 93>

n m
x (Z a1 F(s) () Zxmﬂ“qﬂ“h%(s)(a»)

j=1 i=1
Q(t - a)®

+(9 - S(t-a)?
p2I(gq2 + 1)

r p
x (Z Vi I TP E (5)(E) = Y woral TR Fx(s)(l/fk)>:|’ tela, T,

=1 k=1
p-1
o

= (t-a) ) m
(Qu)(t) = = |:( Galt —a)t Qg) (Z Kigl 100 A (5)x(s)(07)
i=1

Q P2l (g +1)

=D gl A(S)x(S)(n;))

j=1

Qt-a)? \ [ o
+ (Ql - m) (,Z; W IT70P A (5)x(s) (Vi)

=D v A(S)x(S)(Sz)ﬂ =P M$)x(s)(t), t€(aT]

=1
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Note that Q = Q; + Qy. For any «, y € By,, we have

1Q1x + Doyl

< sup { ]q1+qu|F ‘ + qup‘k ||)/ |(t
tela,T)

2L (t-a

e’ [24|(t — a)®2

+ + Q23]
|2 p22T (g2 +1)

X ( || [T 92 P2 | Eo(5)] () + ol P72 [0(5)]||9(5)| (my)]
j=1

3 il [0 |y (5) (00) + o120 15| |y<s>|<ai>])
i=1

o)
+<|91| M)(Zw” 141“12'*'90[%7’1:' |(§l)

p2I (g2 + 1)

+ ol |0 (s) | y(s)|(81)]

p
+ Y gl [T TP [Ey(s)| () + oI 707 | A(5)] \y(ﬂ!(%)])} }

k=1

< lgl T-ae X": |ogj| (g — @)™+
= ST pnr el (g + g5+ 1) — pT P T (qy + qa + B+ 1)

. Xm: ki|(o; — a)T1+az+ii) P A X’: [vi|(&; — a)T1+a2+er
o PR (g + g2 + i + 1) \& pre (g + g+ g+ 1)

Lo Jorl( - @y
+
kX—I: P (g1 + g2 + v +1)

+ Ry [aﬂw ()| (T) + A (Z il P [A(s)| () + D liil o240 |A(s)|(oi>>

j=1 i=1

r p
+ Ay (Z vilaI2 0 |0(s) | (E) + ) |wk|a1q2*yk*|x(s)|<z/fk))}

=1 k=1

= As(q + @2) gl + AaRy < Ry,

which implies that ||Q;x + Q| < Bg,- It follows that Q1x + Q,y € Bg,» which satisfies
assumption (i) of Lemma 2.6.
To show that assumption (ii) of Lemma 2.6 is satisfied, let {x,} be a sequence such that

x, — x in E. Then, for each ¢ € [a, T], we take

[(Quxn)(8) = (Qua)(2)|

1q1+q2f0|]5' (s) — F(S)i(T) |Q||:(M |93|)

p2T(q + 1)



Khaminsou et al. Boundary Value Problems (2020) 2020:176 Page 14 of 30

x (ZIa/|a1q1+’”+ﬂ"p|Fxn(S)—Fx(S)|(n;) £l IR Fxn(S)—Fx(S)KGi))

j=1 i=1

; (|91| ; 'fj'&%) (Z ([0 |, ()~ E(9)] &)

p
+ Y gl Il [E (s) —Fx(s)|(x/fk)>}

(T — a)ynta2
<
P12 (q1 + q2 + 1)

P A Z”: |Olj|(77j _ d)ql+q2+ﬂ;’ X i lici| (07 — @)+ a2+
1 :
=, p‘Zl+q2+ﬁ/l—‘(ql +qr+ ‘3] + 1 P pq1+q2+u,,1"(q1 +qo + i+ 1)

A Z vil(g - @) i |k (i = )+
N\ p1 e T+ o+ @i+ 1) e p 2T (qy + g2+ i+ 1)

X ”Fxn _Fx”IE

= As(q1 + @)1, — Fxll.
Since f and X are continuous, by the Lebesgue dominated convergent theorem, we have
(Qux,)() - (Qx)()| = 0, asn— o0
Hence,
| Qixn — Qixll — 0 asn— oo.
Therefore, the operator Q; is continuous. Also, the set Q1 B, is uniformly bounded as
Qixlle < As(q1 + g2)lIglle.

Next, we prove the compactness of the operator Qi. Set sup(,, .. e rxp: f (621,22,
a1.22.23)€la TIxBY

z3)| = f* < 00, then for each ¢, t; € [a, T] witha < t; <t, < T, we have

|(Q1x)(t2) - (le)(tl)|

1 -1 p-1
< |ITTRPE(5)(t2) — TP F(s) (1) | + _|ie”7(t2fa) _ 5

1Q
(tr—a)” - (t —a)?
X[|Q4l< p2L (g2 +1) )

n m
x (Z |l I TP E () () + ) |:<i|alql+‘f2“‘f’f’Px(s)(ai)>

=1 i-1
th—a)2 —(t) —a)??
410 (h—a)? —(t; —a)
p2I(q2 +1)

r p
x (Z Vil LT 2P E (5) (&) + ) |wkuﬂﬁqzwk'”a(s)(«pk))}

=1 k=1
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1
=f th—a) 2 — (f) —q)TV* 2 — (ty — ) 11712
=f [pq1+qzr(ql+q2+1)(|(2 ) (t ) (ta—t1) |
1 p-1
= (tp-a)
+ (t — 1)1 2) + er

—_a)2 _ (t; — g)12 " (s — g)91+92B;
—e'7 &5 (-a) | |Q4|((t2 @ (b - a) ) Z |ot,|(n] 2 :
p22T(gp + 1) p= pq1+q2+ﬁ,r(q1 +tqo+ B+ 1)

. Zm: |Ki|<gi — g)nran )) L1 ((t2 —a)® —(t _qu)

— Io‘h*‘qzﬂlzr(ql +qy+ Wi+ 1 quF(qz + 1)
5 Z o i ookl (Y = @) 27
= pTrD(qy + gy + i+ 1) A~ pTH (g + g + Yi+ 1) '

which is independent of x and |(Q1x)(t2) — (Q1x)(t1)| — O as t, — t;. Therefore, the set
Q1 By, is equicontinuous, the operator Q; maps bounded subsets into relatively compact

subsets, it follows that the set Q;Bg, is relatively compact. Then, by the Arzela—Ascoli
theorem, the operator Q; is compact on B, . It is easy to see that using A4 < 1 leads to the
operator Q) is a contraction mapping and also assumption (iii) of Lemma 2.6 holds. Thus,
all the assumptions of Lemma 2.6 are satisfied. Hence, the conclusion of Theorem 3.2
implies that problem (1.1) has at least one solution on [4, T']. This completes the proof. [J

3.3 Existence result via Schaefer’s fixed point theorem
The last existence result is based on Schaefer’s fixed point theorem.

Theorem 3.3 Assume that (H,), (H3), (Hy), and (Hg) hold. Then problem (1.1) has at least
one solution on [a, T].

Proof To show that the operator Q has at least a fixed point in [E, the proof is divided into
a sequence of four steps.

Step I The operator Q is continuous.

Let x, be a sequence such that x, — x in E. Then, for each ¢ € [a, T], we obtain

|(Qux,) (1) - (Qx)(®)|
< AP |Fy () = Fu(9)[(8) + oI |1(5)]| |2 (5) - (5) | (2)

271 (4_g) "
e’ (¢ - @) |

Q N[ 192 BP | (s) = F, )

MTeY [(quF(q2+1)+| s Dl |,y () — Eu(9)| ()

j=1

m

b B 6) 1n(5) ~ 2] (1] + 3 Pl [ e e

i=1

F,(s) - Fx(s)|(0i)

+ o IPP |3 (5)]| [ (s) —x(s)|(ai)]> + <|§21| , Snlt-a® )

12T (qo + 1)

x (Z |vi] [T 2P| Er (5) = Fuls)] (€0 + oI |0(5)] 2 (5) — x(5) | (€]

=1

14
+ 3wkl [l TP | Ey, (5) = Fels) | (W) + a7 |A(5)| |2 (s) = 2(5) (Ilfk)]ﬂ

k=1
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(T — a)n+a
<
p1*2T(q1 +q2 + 1)

A 2”: || (n) — a)rath N i |ici|(0; — @) T +az+i
' PP (qy + o + B + 1) pTr 2T (qy + qa + i + 1)

J=1 i=1
W S L L, i (¥ — @)
2 - pUFR2+T (g1 + qo + @y + 1) —~ P2 T (g + ga + Vi + 1)
X ||Fx, = Fxlle

+ |:a1q2,ﬂ|k(s)‘ +A1<Z |t 1qz+f’;ﬁ|;L ZIKI qu+;ttp|)L ’ )
j=1

r p
A (Z Vil A6 [(E) + 3 |wk|a1q2*yw|x(s>|<m))] It — e

I=1 k=1

= A3(ql + qZ)HFxn - Fillg + Aallx, — x|E.

Since f and A are continuous, this implies that the operator Q is also continuous. Hence,

we obtain
|Fy, —Fxlle >0 and |x,—x|lg— 0, asn— oo.

Step II The operator Q maps a bounded set into a bounded set in E.
For R3 > 0, there exists a constant M3 > 0 such that, for each x € BR3 ={xekE:|x|g <

Rs}, then || Qx||g < Mj3. Then, forany ¢t € [a, T] and x € BRB, we have

|(Qx)(®))|

< AT PPIE(s)[(8) + | A(5)| [2(5) | (£)

/)*1(

er T 1t - a)r
+ +19
191 p2I (g2 +1)

logj [T+ 92 00 | E(5)| () + oI 297 |.(5)| | 2(5) | (my)]

(1 1
Y Nl [l 1P| F(s)|(03) + oI A(5) | |x(5)|(0i)]>
i=1

Qi+ —————

IQzI(t—ﬂ)‘”)
p22I(gq2 + 1)

(
x (Z |vi] [T 24P | Eo(s) | (81) + oI 29 [0(5) |[(5)| (€]

=1

p
+ ) k[l TP | Eols) [ (k) + oI 2170 | AG5) | |x(5)|(1/fk)]>:|~
k=1

Page 16 of 30
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It follows from hypotheses (H;) and (Hg) that

A" |F()|(2) < o™ (h1(s) + ha(s) |x(s)| + hi3(s)lx(es) + ha(s) | (KCx) (5)] ) (2)

“em s (i HiR3 + HiR3 + HiR —a))d
p”l"(u)/ﬂ(z $)“ (I} + h3Rs + h3Rs + WyRygpo(s — a)) dis

(Z— ﬂ)u . (Z a)u+1
04T (u + 1) +h R3¢° “T(u+2)

IA

where u = {q1 +q2,q1 + @2+ i Q1 + G2+ Bj, 1 + G2+ 01, q1 + g2 + i} and z = {£, T, 03, 1, &, Ve ).
This implies that
|(Qx)(2)|

(T — a)n+a
<
p1*2T(q1 +q2 + 1)

N 3 I S R (i
+ +
1 PT T (g + o + B + 1) PR (qy + qa + iy + 1)

J=1 i=1
A i |Ul|(sl - a)q1+q2+<01 i |a)k|(1/fk — a)ql*'qZﬂ’k
+ +
’ = P+ g+ @+ 1) A p T (qy + g + vk + 1)

X (h’{ + h3R3 + h;Rg)

(T - a)n+a2+1
+

P () + g2 +2)

A i loyj| (n; — a)rathitl + i ki (0; — )T a2 +mitl
1 = pq1+42+ﬁj[‘(ql +qo + ﬁ] +2) — patatiki[t ql +qy+ i+ 2)

r P .
|vi| (& — @)+ atort g (Wi — @)D +a2+ et
+ A E + Z
2(1:1 pIt LGy + g2 + @r+2) = pT DGy + g+ Vi +2)

X hZRg(ﬁo

+ {aﬂw 1) (T) + Ay (Z |1l [2.5) | () + D il oI+ |x(s)|(of))

j=1 i=1

r 14
+ Ay (Z ilaI2 9 | (s)|(E) + ) |wk|a1q2*yk'f’|x(s)|(1/fk))}R3

I=1 k=1
< As(qr + @) (I} + W5R3 + H3Rs) + As(qy + g2 + DR3¢ + AaRs3 := M,
we estimate
1Qxlle < As(qy + q2) (i} + H5Rs + h3Rs) + As(q1 + go + D)I;R3po + AuRs := Ms,
where A1, Ao, As(u), u ={q1 + q2,q1 + g2 + 1}, and A4 are given by (3.2), (3.3), (3.4), and

(3.5), respectively.
Step III The operator Q maps a bounded set into an equicontinuous set of E.
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Fora<tij<tp<Tandxe€ BR3 where BRS is as defined in Step II, by using the property

f is bounded on the compact set [, T] x BRS, we have

(Qx)(82) — (Qx)(t1) |
< | dTHPE(s)(8) — TP Fy(s)(81) | + |l A(8)2() (82) — a2 A(8)(5)(11)

+ L _ )
1€2]
(h-a)? - (h-a)? [+ .
x | I1Q ([ [+a+bpe | ,
[I 4I< DT+ 1) ;|011|[a |F.(s)|(n))

+ J2Pr |A(s)’ ’x(S)’(nj)]

+ Y 1l [I TR | Ey(s)](03) + oI 1(5) | Ix(S)I(ai)])

i=1
(tr —a)? — (ty —a)P
’ |S22|< p2T(q2 +1) )

x <Z (Vi [T 2P F(5)(81) + oI 29 [0 (s) | [(5)[ (61)]

I=1

p
3 Joorl [T E () () + T2 [(5) |x<s>|<wk)])]

k=1
1
<
p1*2T(q1 + q2) Ja
X (]’li< + h;Rg + h;Rg + hZRg(f)()(S — 61)) dS

t2 s)( t _S)q1+q2—l _ 6%(t]_s)(t1 _S)q1+q2—l|

’OT ty S)(t )q1+q2—1

+
p1+2I(q1 + q2) ftl
x (h’l‘ + h3Rs + W5R3 + hiRso(s — a)) ds

alC) 2 —8) 1927 A (s)| ds

e F(qz) /

t2—s +g9-1 L (t1-s) +gq2—1
e’7 2 (g, —synrl _ g% (&1 = )T 27| ()| ds
p@l‘(qz)/ | [[26)]

—e

h*+h2R3+h Rs + I, R3¢0| 2214y a)
|€2]

(tr—a)? —(t —a)®
X [ [€24]
p2T (g2 +1)
n . 1
(n; — a)T1+22+Pj (n; — a)Ti+a2+hi+
X Z |oz,~|( q1+q2+ﬂ'1 * ql+q2+/]3'
= P Tl +q2+B+1)  p T(q1+q2 + B +2)
(07 — a)T1+a2+ik (0; — @)dr+aa+ii+l
+ Z| kil ¥ _
pUH AT (qy + qo + i+ 1) p T (qy + g + Wi +2)

r (& — a)rra2tor (& — a)Dratert]
+ v +
,Z; i (p‘f”’”*WF(m +qr+@r+1)  pTrtl (g + g + @1+ 2))

2l(n a){
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4 (W — a)1+a2+7k (W — a)T1+a2 v+l
+ +
; |kl (qul+q2+}’kr(q1 +qo+ i+ 1) p‘ﬂ+q2+)’kr(ql +qo+ Yk + 2))

(t, —a)®? — (h —a)P ¢ _
i) || St

j=1

Y leilad PP M) (00) + Y [vilad P[0 (s)| (81)

i=1 I=1

p
+ Z || 192+ VP
k=1

A(s)] (1///<):| :

The R.H.S of the above inequality tends to zero as t, — #; implies that ||(Qx)(ty) —
(Qx)(t1)|lg — 0 as t, — t;. Thus, by Steps I to III, together with the Arzeld—Ascoli the-
orem, we conclude that the operator Q is completely continuous.

Step IV Theset D={x € E:x=pQx,0 < ¢ < 1} is bounded (a priori bounds).

Letx € D, then x = o Qx for some 0 < ¢ < 1. From (H,)—(Hs), for each ¢ € [a, T], one can

get the estimates

|(Qx)(®))|
= [o(Qx)(0)|

P_—l(T,a)
. , ’ |ul(T - a)
AT E (D) I 105) 19| (1) + i [( T +|93|>

x (Z logj| [ 19924 P00 | Fo(5) | (m)) + oI PP | A(5) | |2(5) | (m))]

j=1

i=1

£ Y Il [l 10 | Ey(8)[(07) + o274 [2(5) | |x(5)|(ai)]>

(1w i) (Z a4 [E(6)| )

+ oL | (s)| | ()| (61)]

p
£ Y ol [o TP [Ey(s)| () + oI 7700 | 1(5)] ‘x(s)‘(Wk)])i|

k=1

(T — q)n+a
<
p1*2T(q1 + g2 + 1)

LA i |0l/|(TI/ _ ﬂ)q1+q2+/31 N i |Kz|(az _ ﬂ)QI+q2+M1
1 :
= pq1+qz+ﬁ/[‘(ql tq+ B+ 1) pt PIHRIT (qy + gy + i + 1)

— q) 1192+l x| (Wi — @)D +a2+vk

r p
[vil(&
+ A +
2(; P 2T (qy + qo + @1 + 1) Z P2 (g1 + g + Vi + 1)

k=1

x (I + W5R3 + h3R3)
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(T — a)11+22+1
P (gy + g2 +2)

P A Xn: lovj| () — a)T+a il + i |ki|(0; — @)D raz+mitl
1 i pq1+qz+ﬁ;r(q1 +qr+ Bj+2) pTHRHAT (g1 + g + i + 2)

j=1 i=1
(3o e S ol = g
’ = PP (g + g+ @ +2) A PP (qy + g + v+ 2)
X hyR3o

+|:a1q2,ﬂ|k(s)‘ +A1<Z|a| 1qz+f’;ﬁ|;L ZIKI qu+lttp|)L ’ )
j=1
r p
+ Ay (Z (vilal 2700 | 1 ()|(ED) + ) |wk|a1q2*yk'P|x(s)|(wk))}ks

I=1 k=1

= Ag(ql + qg)(]’li< + h;Rg + h;Rg) + Ag(ql + q2 + l)thg(p() + A4R3.

Thus, || Qxllg < Az(q1 + q2)(h} + H3R3 + H5R3) + As(q1 + g2 + 1)I;R3¢0 + AsR3 := N < 00.
This implies that the set D is bounded.

By all the hypotheses of Theorem 3.3, we conclude that there exists a positive constant
N such that ||x||g < N < oo. By applying Schaefer’s fixed point theorem (Lemma 2.7), the
operator Q has at least one fixed point which is a solution of problem (1.1). This completes
the proof. d

4 Ulam-Hyers stability results
In this section, we investigate the Ulam stability of problem (1.1), namely Ulam—Hyers sta-
ble, generalized Ulam—Hyers stable, Ulam—Hyers—Rassias stable, and generalized Ulam—

Hyers—Rassias stable.

Definition 4.1 ([39]) Problem (1.1) is said to be Ulam—Hyers stable if there exists ® €
R* \ {0} such that, for each ¢ > 0 and solution z € E! = C'([a, T],R) of the inequality

D10 (SD™ 4+ 4(8))2(8) — f (£, 2(8), 2(6()), (K2)(®)) | < 0, te€a, T], (4.1)
there exists a solution x € E! of problem (1.1) such that

|z(t) —x(t)| <®go, te€laT] (4.2)
Definition 4.2 ([39]) Problem (1.1) is said to be generalized Ulam—Hyers stable if there
exists @y € C(R*, R*) with ®,(0) = 0 such that, for each solution z € E! of inequality (4.1),
there exists a solution x € E! of problem (1.1) such that

’z(t) —x(t)‘ <®r0, tela,T]. (4.3)

Definition 4.3 ([39]) Problem (1.1) is said to be Ulam—Hyers—Rassias stable with respect
to &y € C([a, T],R") if there exists a real number Cy,¢, > 0 such that, for ¢ > 0 and for each
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solution z € E! of the inequality

|SDTP (EDI2P + A (2))2(2) - f (£, 2(2),2(0(2)), (K2)(@®)) | < 0@/ (2), tela,T], (4.4)
there exists a solution x € E! of problem (1.1) such that

|2(t) - x(t)| < Cro0®s(8), telaTI (4.5)
Definition 4.4 ([39]) Problem (1.1) is said to be generalized Ulam—Hyers—Rassias stable

with respect to ®r € C([a, T], R*) if there exists a real number Cy,¢ > 0 such that, for each
solution z € E! of the inequality

|SDT0 (SD™ + 0(8))2(0) — f (£, 2(0), 2(0(8)), (K2)®)) | < Bs(®), tela,T),  (46)
there exists a solution x € E! of problem (1.1) such that
|z(t) —x(t)| <Cro®s(t), telaT]. (4.7)
Remark 4.5 1t is clear that
(i) Definition 4.1 = Definition 4.2;
(ii) Definition 4.3 = Definition 4.4;
(iii) Definition 4.3 for ®(-) = 1 = Definition 4.1.
Remark 4.6 A function z € E! is a solution of inequality (4.1) if and only if there exists a
function ¥ € C([a, T, R) (dependent on z) such that
i) @)l <o, VtelaTl;
(i) DA (ED™P + A(8)z(t) = f (1, 2(2), 2(6(2)), (K2)(2) + W(2), t € [a, T].
By Remark 4.6, the solution of the problem
SDIP(ED2P 4 1(0))2(0) = £ (8,2(0),2(0(0)), (K2)(0)) + ¥ (8), t€aT],

can be written as follows:

2(t) = (ITTPE(5)(2) — ol P 1 (s)x(s)(2)

e/%l(l_“) Qut — a)n2
+ - Qg
Q p2I (g2 +1)

x ( [l ™I Ey(s) (1)) = ol P 1(5)(5) (1)
j=1

= Y kil TP E(5)(0) — (PP k(S)?C(S)(Ui)])

-1

_ )42 r
. (szl - ;:Z(Ft(—q;)l)) (; WL E ($)(E) — I . (5)x(5) ()]
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S

= k[ TR E () (k) — oI PP )\(S)x(s)(Wk)])i| + ol () (2)

k=1

e”TM Qult-a)?
+
pel(ga+1)

( aj [q1+q2+f5/p\p kalqﬁqzmm\p( )o ))

i=1

Q(t —a)? )
,0‘12 C(g2 +1)

(Zvl JIHHOLO (g Zwk T+ VP (g Wk))}‘ (4.8)

=1 k=1

Firstly, we present an important lemma that will be used in the proofs of the first stability
theorem.

Lemma 4.7 If z € E! satisfies inequality (4.1), then the function z is a solution of the fol-
lowing inequality:

|2(5) = (Q2)(t)| < As(q1 +q2)o, 0<o <1, (4.9)
where A3(q1 + q2) is given by (3.4).

Proof From Remark 4.6 with (4.8), we obtain

|2(2) - (Q2)(9)]

271 (t_g) n
er Qu(t — a)n2 ,
= OO+ —g [<pqzr<qz+1> -2 ) [ et e v
j=1

< . Qz(t — ﬂ)qZ r
B i1 i - q+q2+P1P
;Klal lIf(s)(cn)) + <§21 DTy 1) gulal W(s)(&)

k=1

14
_ Z wka1q1+q2+yk,p\y(s)(¢k)>:| ‘

(T — a)ni+a2
<
P gy + g2 +1)

LA Z oyl )™l i |iil (07 — @)t ra2 i
1 :
= p611+q2+/3/1"(q1 +q+ B+ 1) p= P2 (g1 + g+ + 1)

i »
[i|(§ — a)rre+e x| (Yri — @)+
+ A E + E:
2(11 P2 (qy + qa + @+ 1) @

P pq1+‘12+ykl"(ql +qo+ Vi + 1)

= As(q1 + q2)0,
where As(q1 + ¢g2) is given by (3.4), from which inequality (4.9) is obtained. O

Now, we present the Ulam—Hyers stability and generalized Ulam—Hyers stability results.
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Theorem 4.8 Assume that (H;), (H,), (Hs), (Ha) are satisfied with
2L1A3(q1 + q2) + Ladpo As(qr + g2 + 1) + Ag < 1,

where A3(u), u = {q1 + g2, q1 + 42 + 1}, A4 are defined by (3.4) and (3.5), respectively. Then
problem (1.1) is both Ulam—Hyers stable and generalized Ulam—Hyers stable on [a, T].

Proof Let z € E! be a solution of inequality (4.1), and let x be the unique solution of prob-
lem (1.1),

Cp1r(CD2P + )())x(t) = f(£,%(2), x(0(2)), (Kx)(8), te€la,T)
Z:'Zl Kialﬂhpx(o'i) = Z;;l ajalﬂjypx(nj)’ i:l wkalyk’px(llfk) = Z;:l vlalwypx(gl)

By applying the triangle inequality, | — v| < |u| + |v|, and Lemma 4.7, we have

|2(2) — x(2)|

2(t) - {ul DAL E(s)(8) = al ™ A (s)2(s)(2)

-1
e7 CO /1 Qut —a)® o
+ —
Q p=l(g, +1)

x ( ol ELS) ) = ol 196 ()]
j=1

=3 kIR E () o) - afqu"’A(s)x(s)(m)])

i=1

Qo (f — a)2 r
. (91 - %) ( DLl G 1)

p
=3 on[ oI E(s) (k) - al‘“*yk"’)x(S)x(S)(lﬁk)])] } '

k=1
= |2(t) - (Q2)(®) + (Q2)(1) - (QX)(¥)]
< |2(0) - (Q2)()| + |(Q2)(1) - (Q)(2)|

< As(q1 + @)o + [2L1As(qr + q2) + Lago As(qr + g2 + 1) + Au]|2(t) — x(2)

’

where As(u), u = {q1 + q2,q1 + g2 + 1}, and A, are defined by (3.4) and (3.5), respectively.
This yields that

As(q + g2)0
[2L1A3(q1 + g2) + LagpoAs(q1 + g2 + 1) + Aal’

|2(2) — x(2)| < -

By setting

® e A3z(q1 +q2) (4.10)

1 [2L1As(q1 + q2) + LagoAs(qr + g2 + 1) + A4l

Page 23 of 30
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we end up with
|z(t) —x(t)| < ®o.
Hence, problem (1.1) is Ulam—Hyers stable. Moreover, if we set ®¢(0) = ®¢ such that
®/(0) = 0, then problem (1.1) is generalized Ulam—Hyers stable. The proof is com-
pleted. O
Remark 4.9 A function z € E! is a solution of inequality (4.4) if and only if there exists a
function ® € C([a, T],R) (dependent on z) such that
(i) 10@)] <0Ve(®), Vi€ [a,T];
(i) DT/ (CD™P + A(8)z(t) = f (2 2(8), 2(0(2)), (K2)(2) + O(t), t € [a, T].
By Remark 4.9, the solution of the problem
EDPR(CD" 1 A(0)2() = f (8, 2(8),2(0(8)), (K2)(®) + ©(®),  telaT],

can be written as follows:

2(t) = TP E,(s)(8) — oI M(s)x(s)(2)
. e%(t—a) |:< Qu(t — a)® ~ 523)
Q P2 (g2 +1)

x ( o[l ™I Ey(s) (1)) = ol P 1(5)(5) (1)
j=1

= 3 la O (s) o) - azqzwf’ms)x(s)(oi)])

_ 2\12 r
. (91 - %) (; W[ LT E ($)(E) - I . (5)x(5) ()]

p
= k[ TP E(5) (k) — oI PP )»(S)x(S)(Ilfk)]ﬂ + TP O(s)(2)
k=1

eﬁT(t ) Qu(t —a) 0
+
pl(gs +1)
( [q1+q2+ﬂ, p@(s)(m) _ Z Kmlq”qz*“‘ p@(s)(O‘,))
i=1
o Qz t 6l q2
LT o0l (g + 1)

x ( Vi [T O (5) (§)) — Zwk O+ ﬂ@(s)(wk)>:| (4.11)
=1

k=1

+
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Lemma 4.10 Let z € E! be a solution of inequality (4.4). Then the function z satisfies the
inequality

|2(t) - (Q2)(®)| < As(qr + @2)Ve(t)o, O0<o<1, (4.12)
where A3(q1 + q2) is given by (3.4).

Proof From Remark 4.9, we obtain the inequality

|2(2) - (Q2)(9)]

P_—l(t,a) n
er Qu(t —a)2
= I ()0 + S [(qu;(q +)1) —szs)<§ QTP W (5) )
2 -
J=1

m
= kg (s)(oi))

i=1

Qo (t —a)?2 "
+ (Ql - #@djl)) (ZZ:; Vi [T g (5)(61)

b
-y wkaﬂﬁw’pw@(s)(xm)} ‘

k=1

IA

(T — a)n1+a2
P+ (q1 + g2 + 1)

£ A i |Ot/|(T]] - ﬂ)ql +q2+ﬁj . i |Kl (Ul — d)ql g2+
1 i pq1+qz+ﬁ;1—*(q1 +qa+ B+ 1) pTHRHNT (g1 + g + i + 1)

J=1 i=1
+ A i [vi| (& — @) o244t s i || (Wi — a)T1+a2+7k
’ = PO (g + g+ @+ 1) A pTH T (qy + g + vk + 1)
x Wo(t)o

= Asz(q1 + g2) Ve (t)o,

where A1, Ag, As(q1 + q2) are given by (3.2), (3.3), and (3.4), respectively, which leads to
the inequality in (4.9). d

Next, we are ready to prove the Ulam—Hyers—Rassias and generalized Ulam—Hyers—

Rassias stability results.

Theorem 4.11 Assume that (H,), (H,), (Hs), (Hy) are satisfied with

2L1A3(q1 + q2) + Lopo As(qr +q2 + 1) + As < 1.

Then problem (1.1) is both Ulam—Hyers—Rassias stable and generalized Ulam—Hyers Ras-
sias stable on [a, T].

Page 25 of 30
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Proof Let z € E! be a solution of inequality (4.4), and let x be the unique solution of prob-
lem (1.1). By applying the triangle inequality and Lemma 4.7 with (4.11), we get

|2(2) — x(2)|

2(t) - {al"”’”’” F(s)(2) — ol ™" 1(5)x(s)(2)

ePT(t ) Qu(t — a)®2
+ - 93
Q p2T(q2 +1)

X < o[ () (1) = oI *P (s)2(5) () ]
]

i1

=3 kIR E () o) - azqzwi’ﬂx(s)x(s)(oi)])

i=1

_ )12 "
(o0 SN (S - i)

p
= [ TP E(s) (i) = (IPTP k(S)x(S)(Wk)])] + a1 O(s)(2)
k=1

G Qu(t — a)?
+ Qg
p2T(q2 +1)

( o) Iq1+q2+f3,p® (s)( ,’]) _ ZK ]ql+q2+mp@(s)(o',))

i=1

Qg If 6l q2
 p2T(qy +1)

b
X ( Vi [T O(s) () ~ Zwkal"”qz*”’”(@(S)(wk))] }'
I=1 k=1
= |2(£) - (Qz)(2) + (Qz)(¢) - (Qx)(?)|
< |2(6) - (Q2)(®)] + |(Q2)(2) - (Qx)(2)|

< As(q1 + @2)We (Do + [2L1As(qr + 42) + LadoAs(qr + g2 + 1) + Aa]|2(2) — x(

where As(u), u = {q1 + q2,q1 + g2 + 1}, and A, are defined by (3.4) and (3.5), respectively,

which implies that

~ Asz(q1 +q2)Ve(t)o
[26) - #(0)] = 1-[2L1A3(q1 + q2) + LagoAs(qr + g2 + 1) + Aul

By setting

Cro As(q1 +q2)
0 = )
1-[2L1A3(q1 + q2) + Lapo Az(q1 + g2 + 1) + Ay

Page 26 of 30
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we get the following inequality:
|2(8) - x(t)| < Cro0Ve(?).

Hence, problem (1.1) is Ulam—Hyers—Rassias stable. Moreover, if we set ®¢(¢) = oWo (),
with ®,(0) = 0, then problem (1.1) is generalized Ulam—Hyers—Rassias stable. The proof
is completed. O

5 Example
In this section, we present an example which illustrates the validity and applicability of the

main results.

Example 5.1 Consider the following nonlinear GPF functional integro-differential

Langevin equation involving nonlocal integral conditions:

DI (CDRE + L(t—a)?e’s “x(e) = £(£,x(8),2(0(), (Kx)(), ¢t e (0,2],
NC )afmsx(z, R Zle(i)uﬁ—z'%x(ﬁe) (5.1)

k+2 1 43 1 21

Zk=1 )al 633 % ( ) Z?=1( )l 273 (52

p=3%a=0T=2,m=3,n=2,p=2, r:3 Ki=1 0=

Here, q; = 2, q2 = 3

(z+1) Mi=
_ j+l 4 _ k42 _ 1
=128, 0 =L =L f=15 =12 ;=5 v = 5 =R k=12u=1,

=5k, 0=12,1=1,2,3,0(t)=*%,and

|\. MI»—t

-1
Mo) = o (- a)’e’s =,
Obviously, the function A satisfies (H>) for all ¢ € [a, T]. From the given data, we obtain that
©Q; & 0.6995071719, Q, =~ 0.7639237899, Q3 ~ —0.3023660189, 2, ~ —-0.2312067168,
Q2 ~ 0.0662301783 # 0. Furthermore, we assume the nonlinearity as follows:
(i) Let f : [a, T] x R® — R be a function, which is given by

S (&x(0),x(6(2)), (Kx)(2))

1 2 2cos’(nt) |« x(0.5¢) (t+2)° [ cos®(wt)

.z _ d
2 3 U162 T G+ 162 B ), @ a1 O

For x1, %3, 1, ¥2, 21, 22 € R and ¢ € [a, T], we have

(t+2)3

W|21 - 22|,

1
[f (51, 51,21) = f (£ %2, 32, 22) | < mﬂxl -1l + % —y2l) +
1
|¢(t,5,x1) —¢(t,5;y1)| =< lel _y1|'

Hypotheses (H;)—(H,) are satisfied with L; = Ly = 8—11, and ¢g = i. Hence

256 ’

2L1A3(q1 + qz) + L2¢0A3(q1 +{4> + 1) + A4 ~ (0.7833485782 < 1.
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Since all the hypotheses of Theorem 3.1 are satisfied, problem (5.1) has a unique solution
on [0,2]. Moreover, we can also compute that

_ As(qy + q2)
1-[2L1A3(q1 + q2) + Ladpo As(qr + g2 + 1) + Aal

~ 375.8602857 > 0.

Hence, by Theorem 4.8, problem (5.1) is both Ulam—Hyers and also generalized Ulam—
Hyers stable.
(ii) Let £ : [a, T] x R® — R be a function which is given by

20 et Il
+ .
E+1)2 2(6+9)% 2+«
L k(0750 sin’(re) / cos2(t - 5)
+ . +
(t + 9)2 |x(075t)| + 4- et + 1 p (et_s + l)

£ (t.x(2),x(0(2)), (Kx)(2)) =

x(s) ds.
It is easy to see that, for all x;, %2, y1, ¥2, 21, 22 € R and ¢ € [a, T], we get

V(t!xl!ylyzl) _f(t’x21y2722)| S 1 —J’1| + |x2 —J’2|)

1
4(t+9) (

|Z1_ZZ|!

1
+ —_—
(ef +1)3

1
’d’(t’sixl) —¢(t:57)/1)‘ =< 1_6|x1 _.yll'

Hypotheses (H1)—(Ha) are satisfied with L; = 324, Ly = é, and ¢ = 7. Hence

2L1As(qr + q2) + LagoAs(gy + go + 1) + Ay~ 0.7348101092 < 1.

Furthermore, for x, y, z € R and ¢ € [a, T], it follows that

2¢! et 1
x| + Syl +

V(t,x,y,z)| < (+ 1) + a(t+9) 4t +9)

—
(et +1)3 2
Hypothesis (Hs) is also valid w1th h(t) = t+1)2’ hy(t) = z+9 £ hs(t) = ¢+9 —— hy(t) = ef+1)3’
and hj =2, 5 = h} = 532, b = §. Therefore, all the hypotheses of Theorem 3.3 are fulfilled,
which concludes that problem (5.1) has at least one solution on [0, 2]. Moreover, we obtain

As(q + q2)
1-[2L1A3(q1 + q2) + Lapo As(q1 + g2 + 1) + As]

Cro = ~ 307.0654958 > 0.
Hence, by Theorem 4.11, problem (5.1) is both Ulam-Hyers—Rassias and generalized
Ulam-Hyers—Rassias stable.

6 Conclusion

Langevin equation is an important equation of mathematical physics that is used in mod-
eling the phenomena occurring in fluctuating environment such as Brownian motion. In
the literature, it is also referred to as a stochastic differential equation as it governs the
fast motion of microscopic variables of the dynamical systems. It has been realized, how-
ever, that the integer order Langevin equation cannot provide elaborate description to
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the complex systems that involve disordered or fractal medium. Therefore, attention to-
ward considering noninteger order Langevin equation becomes urgent and compulsory.
Thus, the boundary value problems defined by fractional Langevin equation have been ex-
tensively studied in recent years. Based on their interests and demands, the authors have
considered Langevin equation within different types of fractional derivatives and bound-
ary conditions. The fractional derivatives have been often utilized in the frame of Caputo,
Riemann-Liouville, or Hadamard settings, whereas the supplemented boundary condi-
tions have been of nonlocal, anti periodic, or mixed types.

In this paper, we study new Langevin equation within the so-called GPF derivative. Fixed
point theorems and Ulam’s approach are employed to investigate the existence, unique-
ness, and different types of stability. The results of this paper not only generalize previous
results but also provide a totally different approach in the sense that different fractional
derivative is accommodated, different boundary conditions are associated, different fixed
point theorems are used, and Ulam stability within GPF derivative is discussed. We believe
that the results of this paper will provide considerable potential to interested researchers
to produce relevant results concerning qualitative properties of nonlinear GPF differential

equations.
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