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Abstract
In this paper, we first derive a new kind of Pohozaev-type inequalities for p-Laplacian
equations in a more general class of non-star-shaped domains, and then we take two
examples and their graphs to explain the shape of the new kind of the
non-star-shaped domain. At last, we extend the results of Pohozaev-type inequalities
to elliptic systems, which are used to derive the nonexistence of positive solutions of
this type of systems in the non-star-shaped domains. On this basis, we also discuss the
existence of positive solutions of a kind of elliptic systems with double critical growth.
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1 Introduction
In this paper, we first consider the following elliptic equation:

⎧
⎨

⎩

–�pu = f (u), in �,

u = 0, on ∂�,
(1.1)

where �p = div(|∇u|p–2∇u), f ∈ C(R1, R1), and � ⊂ R
n (n ≥ 3) is a domain with smooth

boundary. We establish the Pohozaev-type inequalities not Pohozaev identities for the so-
lutions of (1.1), and by which we derive the nonexistence of positive solutions for the prob-
lem in non-star-shaped domains. Subsequently, we take two examples and their graphs to
explain the shape of the new kind of the non-star-shaped domain. Then, we also consider
a similar problem for the following elliptic system:

⎧
⎪⎪⎨

⎪⎪⎩

– div(|∇u|p–2∇u) = fu(u, v) x ∈ �,

– div(|∇v|p–2∇v) = fv(u, v) x ∈ �,

u = v = 0 x ∈ ∂�,

(1.2)
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where �p = div(|∇u|p–2∇u), fu(u, v) = ∂F(u,v)
∂u , fv(u, v) = ∂F(u,v)

∂v , fu(u, v), fv(u, v) : R × R → R,
and they are continuous. � ⊂R

N (N ≥ 3) is also a domain with smooth boundary.
When p = 2 in (1.1), Pohozaev proved the following well-known Pohozaev identity in

the famous paper [1]:

(2 – n)
∫

�

uf (u) dx + 2n
∫

�

F(u) dx =
∫

∂�

〈
x,ν(x)

〉
∣
∣
∣
∣
∂u
∂ν

∣
∣
∣
∣

2

ds. (1.3)

Based on the identity, Pohozaev, Brezis, and Nirenberg considered the following problem
in [1, 2]:

⎧
⎪⎪⎨

⎪⎪⎩

–�u = |u|p–1u + λu x ∈ �,

u > 0 x ∈ �,

u = 0 x ∈ ∂�,

(1.4)

where λ ∈ R, � ⊂ R
N (N ≥ 3) is a bounded domain with C1 boundary. They proved that

if � ⊂ R
N (N ≥ 3) is a star-shaped bounded domain, problem (1.4) has no solution when

both p ≥ n+2
n–2 , λ ≤ 0 and p > n+2

n–2 , λ ≤ δ(�, p).
Subsequently, Kawano and Ni discussed the general semi-linear elliptic equation when

p = 2 in [3]:

⎧
⎪⎪⎨

⎪⎪⎩

–�pu = f (x, u) x ∈ �,

u > 0 x ∈ �,

u = 0 x ∈ ∂�.

(1.5)

By the classic Pohozaev proof method, the authors derived the following identity:

(2 – n)
∫

�

uf (x, u) dx + 2n
∫

�

F(x, u) dx + 2
∫

�

(
x, Fx(x, u)

)
dx

=
∫

∂�

〈
x,ν(x)

〉
∣
∣
∣
∣
∂u
∂ν

∣
∣
∣
∣

2

ds.
(1.6)

In 1989, Guedda and Veron considered (1.1) in [4] and got the following identity:

(p – n)
∫

�

uf (u) dx + pn
∫

�

F(u) dx = (p – 1)
∫

∂�

〈
x,ν(x)

〉
∣
∣
∣
∣
∂u
∂ν

∣
∣
∣
∣

p

ds, (1.7)

where F(u) =
∫ u

0 f (t) dt, f (u), is continuous. And they got the nonexistence results of non-
trivial solutions in the case of supercritical growth and critical growth when 1 < p < N and
� ⊂ R

N is a star-shaped domain about origin. See [5–11] and the references therein. In
[12], we established more general Pohozaev-type inequalities of (1.5) and got the nonex-
istence of positive solutions when � ⊂R

N is a non-star-shaped domain.
In this paper, we discuss more general Pohozaev-type inequalities and the nonexistence

of positive solutions of (1.1). At the same, we take two examples and their graphs to explain
the shape of a new kind of the non-star-shaped domain.

The existence or nonexistence of nontrivial positive solutions of elliptic system (1.2)
have been extensively studied in recent years, we refer to [13–16] and the references
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therein. Researchers usually convert the proof of the existence of nonlinear elliptic prob-
lems into finding the existence of the critical point of the variational functional corre-
sponding to the equation, in which, one of the key issues is to prove that the (PS) sequence
has a strongly convergent sub-sequence. Therefore, the first step is to prove the bounded-
ness of the (PS) sequence. Scholars have put forward many conditions such as the famous
A-R condition. However, the A-R condition cannot be satisfied in many cases. In recent
years, it was shown that combining the Pohozaev identity and the Nehari manifold to cre-
ate a new manifold, which is called Pohozaev–Nehari manifold, was very effective when
treating nonlinearity which does not satisfy the A-R condition (see [17–19]).

In [17], Li and Ye considered the following Kirchhoff equation:

⎧
⎨

⎩

–(a + b
∫

R3 |∇u|2 dx)�u + u = |u|p–1u x ∈R
3,

u ∈ H1(R3), u > 0 x ∈R
3.

They established the Pohozaev identity

P(u) :=
a
2

∫

R3
|∇u|2 dx +

3
2

∫

R3
|u|2 dx +

b
2

(∫

R3
|∇u|2 dx

)2

–
3

p + 1

∫

R3
|u|p+1 dx

and the new Pohozaev–Nehari manifold

M =
{

u ∈ H1(
R

3)\0 | G(u) = 0
}

, (1.8)

where G(u) = 〈I ′(u), u〉 + P(u). The authors proved that the new manifold (1.8) was C1 and
the critical point of the limit equation on the new manifold was the critical point in the
entire space. Subsequently, the solution of the equation was obtained by finding the least
energy solution of the limit equation of the corresponding equation in the new manifold.

In [19], the authors studied the existence of a bound state solution for a class of quasi-
linear Schrödinger equations whose nonlinear term is asymptotically linear in R

N . The
equation is as follows:

–�u + V (x)u – �(
u2)u = g(u), x ∈ R

N , N ≥ 3,

where V (x) = W (x) – E is the new potential and g(u) = l(u2)u is the nonlinear term. The
authors defined the following Pohozaev manifold:

P =
{

v ∈ H1(
R

N)\0 | γ (v) = 0
}

and

P∞ =
{

v ∈ H1(
R

N)\0 | v satisfies Pohozaev identity
}

,

where

γ (v) =
N – 2

2

∫

RN
|∇v|2 dx +

N
2

∫

RN
V (x)f 2(v) dx +

1
2

∫

RN

(∇V (x), x
)
f 2(v) dx

– N
∫

RN
G
(
f (v)

)
dx,
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and the corresponding Pohozaev identity of the limiting problem is as follows:

N – 2
2

∫

RN
|∇v|2 dx +

N
2

∫

RN
V∞f 2(v) dx = N

∫

RN
G
(
f (v)

)
dx.

Employing the minimization methods restricted to the above Pohozaev manifold, the
authors obtained the existence of positive solutions for the asymptotically linear case.

In [16], Bozhkov and Mitidieri studied the existence and nonexistence of the following
(p,q)-Laplacian system:

⎧
⎪⎪⎨

⎪⎪⎩

–�pu = λa(x)|u|p–2u + (α + 1)c(x)|u|α–1u|v|β+1 x ∈ �,

–�qv = μb(x)|v|q–2v + (β + 1)c(x)|u|α+1|v|β–1v x ∈ �,

u = v = 0 x ∈ ∂�.

The authors also generalized the Pohozaev identity for the following system which is based
on reference [20]:

⎧
⎪⎪⎨

⎪⎪⎩

– div(|∇u|p–2∇u) = Fu(x, u, v) x ∈ �,

– div(|∇v|q–2∇v) = Fv(x, u, v) x ∈ �,

u = v = 0 x ∈ ∂�.

(1.9)

And the Pohozaev identity is as follows:

N – p
p

∫

�

|∇u|p dx +
N – q

q

∫

�

|∇v|q dx – N
∫

�

F(x, u, v) dx –
∫

�

DxF(x, u, v) dx

= –
(

1 –
1
p

)∫

∂�

|∇u|p(x,ν) ds –
(

1 –
1
q

)∫

∂�

|∇v|q(x,ν) ds.
(1.10)

By this kind of Pohozaev identity, the authors derived the nonexistence of the positive
solutions on the star-shaped domain. However, on the basis of preliminary work of Po-
hozaev inequalities for p-Laplacian equation, we can generalize the kind of identity to the
kind of Pohozaev inequalities for the p-Laplace system and (p,q)-Laplacian systems, and
naturally get the nonexistence of these systems on the non-star-shaped domain, which
is more general than the domain in [16]. In addition, we consider the following elliptic
system with double critical growth:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–�pu = |u|p∗–2u + α
p∗ |u|α–2|v|βu, x ∈ �,

–�pv = |v|p∗–2v + β

p∗ |u|α|v|β–2v, x ∈ �,

u = v = 0, x ∈ ∂�,

u > 0, v > 0 x ∈ �,

(1.11)

where α,β > 1, α+β = p∗ = Np
N–p . Using the Pohozaev inequalities, we can prove that system

(1.11) has no positive solution when � is a positive domain. It is worth to mention that
the more general Pohozaev to the general elliptic equations in a non-star-shaped bounded
domain can help us to obtain the necessary conditions of the existence of solutions for
some special equations. See [21–27]. In [27], Peng, Peng, and Wang discussed in detail
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the existence and the form of positive solution, the uniqueness of the minimal energy
solution of system (1.11) when p = 2. Based on their global compactness result and the
main method in [21], we consider the existence of positive solution of system (1.11) for
general p.

2 The results and proofs
We need the following lemma, which is similar but also has some differences with our
manuscript [12].

Lemma 2.1 Suppose V (x) = (V1(x), . . . , Vn(x)), which is a C1 vector field on R
n and u ∈

W 1,p
0 (�) ∩ C1(�̄) is a solution of (1.1). Then

∫

�

u div
(|∇u|p–2V (x)

)
dx = –

∫

�

|∇u|p–2〈V (x),∇u
〉
dx

and
∫

�

F(u) div V (x) dx = –
∫

�

f (u)
〈
V (x),∇u

〉
dx.

Based on the above lemma, we can have a Pohozaev-type inequality for solutions of
equation (1.1).

Theorem 2.2 (Pohozaev-type inequality) Suppose that V (x) is a linear vector field on R
n

with the form

V (x) =

⎛

⎜
⎜
⎝

a11 · · · a1n
...

...
...

an1 · · · ann

⎞

⎟
⎟
⎠x,

and V (x) satisfies div V (x) = n and 〈V (x), x〉 > 0 for ∀x ∈ R
n \ {0}. If u ∈ W 1,p

0 (�) ∩ C1(�̄)
is a solution of (1.1), then

(pμ – n)
∫

�

uf (u) dx + pn
∫

�

F(u) dx

≥ (p – 1)
∫

∂�

〈
V (x),ν(x)

〉
∣
∣
∣
∣
∂u
∂ν

∣
∣
∣
∣

p

ds,
(2.1)

where μ = sup|x|�=0
〈V (x),x〉

|x|2 .

Proof From μ = sup|x|�=0
〈V (x),x〉

|x|2 , we easily get

0 <
〈
V (x), x

〉
< μ|x|2, ∀x ∈R

n \ {0}.

Multiply the equation –�pu = f (u) by 〈V (x),∇u〉 and then integrate in �. By Lemma 2.1
and divergence theorem, the right-hand side is

–
∫

�

f (u)
〈
V (x),∇u

〉
dx = –

∫

�

n∑

i=1

f (u)Vi(x)
∂u
∂xi

=
∫

�

F(u) div V (x) dx,



Kou et al. Boundary Value Problems        (2020) 2020:178 Page 6 of 17

and then the left-hand side is

∫

�

div
(|∇u|p–2∇u

)〈
V (x),∇u

〉
dx

=
n∑

j=1

∫

�

∂

∂xj

(

|∇u|p–2 ∂u
∂xj

)( n∑

i=1

Vi(x)
∂u
∂xi

)

dx

=
n∑

j=1

∫

�

∂

∂xj

(

|∇u|p–2 ∂u
∂xj

n∑

i=1

Vi(x)
∂u
∂xi

)

– |∇u|p–2 ∂u
∂xj

∂

∂xj

( n∑

i=1

Vi(x)
∂u
∂xi

)

dx.

We also have

∫

�

div
(|∇u|p–2∇u

)〈
V (x),∇u

〉
dx

=
∫

�

div
(|∇u|pV (x)

)
dx

–
n∑

j=1

∫

�

|∇u|p–2 ∂u
∂xj

( n∑

i=1

aij
∂u
∂xi

+
n∑

i=1

Vi(x)
∂2u

∂xi∂xj

)

=
∫

∂�

〈
V (x),ν(x)

〉|∇u|p ds

–
n∑

j=1

∫

�

|∇u|p–2 ∂u
∂xj

( n∑

i=1

aij
∂u
∂xi

+
n∑

i=1

Vi(x)
∂2u

∂xi∂xj

)

=
∫

∂�

〈
V (x),ν(x)

〉|∇u|p ds +
∫

�

u div
(|∇u|p–2V (∇u)

)

–
n∑

j=1

∫

�

|∇u|p–2 ∂u
∂xj

( n∑

i=1

Vi
∂2u

∂xi∂xj

∂u
∂xj

)

=
∫

∂�

〈
V (x),ν(x)

〉|∇u|p ds –
∫

�

|∇u|p–2〈V (∇u),∇u
〉
dx

–
1
2

n∑

i=1

∫

�

|∇u|p–2Vi(x)
∂

∂xi

(|∇u|2)dx

=
∫

∂�

〈
V (x),ν(x)

〉|∇u|p ds –
∫

�

|∇u|p–2〈V (∇u),∇u
〉
dx

–
1
p

n∑

i=1

∫

�

Vi(x)
∂

∂xi

(|∇u|p)dx

=
∫

∂�

〈
V (x),ν(x)

〉|∇u|p ds –
∫

�

|∇u|p–2〈V (∇u),∇u
〉
dx

–
1
p

∫

∂�

〈
V (x),ν(x)

〉|∇u|p ds +
1
p

n∑

i=1

aii

∫

�

|∇u|p dx.

Comparing the left- and right-hand sides, we know the following identity:

(

1 –
1
p

)∫

∂�

|∇u|p〈V (x),ν(x)
〉
ds
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= –
1
p

n∑

i=1

aii

∫

�

|∇u|p dx +
∫

�

|∇u|p–2〈V (∇u),∇u
〉
dx +

∫

�

F div V (x) dx

= –
1
p

n∑

i=1

aii

∫

�

uf (u) dx +
∫

�

|∇u|p–2〈V (∇u),∇u
〉
dx +

n∑

i=1

aii

∫

�

F(u) dx.

By the fact 0 < 〈V (x), x〉 ≤ μ|x|2, we get the following result:

0 <
〈
V (∇u),∇u

〉≤ μ|∇u|2.

Thus,
∫

�

|∇u|p–2〈V (∇u),∇u
〉
dx ≤ μ

∫

�

|∇u|p dx = μ

∫

�

uf (u) dx

because div V (x) =
∑n

i=1 aii = n, we obtain the following inequality:

(pμ – n)
∫

�

uf (u) dx + pn
∫

�

F(u) dx

≥ (p – 1)
∫

∂�

〈
V (x),ν(x)

〉
∣
∣
∣
∣
∂u
∂ν

∣
∣
∣
∣

p

ds.

The proof is complete. �

By the above Pohozaev-type inequality, we can immediately get the nonexistence result
of the following problem:

⎧
⎨

⎩

–�pu = |u|α–1u + λ|u|p–2u, u > 0, in �,

u = 0, on ∂�.
(2.2)

Theorem 2.3 Assume that the vector field V (x) of Theorem 2.2 is transverse to ∂�. Then
(2.2) has no positive solution if

α ≥ np – n + pμ

n – pμ
and λ ≤ 0.

Proof With the similar method in the proof of Theorem 2.2, we also first consider that
(1.1) has a positive solution u. Then inequality (2.1) holds,

(pμ – n)
∫

�

(
uα+1 + λup)dx + pn

∫

�

(
1

α + 1
uα+1 +

λ

p
up
)

dx

≥ (p – 1)
∫

∂�

〈
V (x),ν(x)

〉
∣
∣
∣
∣
∂u
∂ν

∣
∣
∣
∣

p

ds.

That is,
(

pμ – n +
pn

α + 1

)∫

�

uα+1 dx + pμλ

∫

�

up dx

≥
∫

∂�

〈
V (x),ν(x)

〉
∣
∣
∣
∣
∂u
∂ν

∣
∣
∣
∣

p

ds.
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Since α ≥ np–n+pμ

n–pμ
, we have pμ – n + pn

α+1 ≤ 0. Thus,

pμλ

∫

�

up dx ≥
∫

∂�

〈
V (x),ν(x)

〉
∣
∣
∣
∣
∂u
∂ν

∣
∣
∣
∣

p

ds. (2.3)

If λ < 0, (2.3) contradicts the fact 〈V (x),ν(x)〉 > 0.
If λ = 0, (2.3) implies that ∂u

∂ν
= 0. By divergence theorem,

∫

�

�pu dx =
∫

�

div
(|∇u|p–2∇u

)
dx

=
∫

∂�

〈|∇u|p–2∇u,ν
〉
ds =

∫

∂�

|∇u|p–2 ∂u
∂ν

ds = 0.

On the other hand, the equation in (2.2) implies

∫

�

�pu dx = –
∫

�

u|u|α–1 dx < 0,

which is a contraction. Then, we complete the proof. �

By the way, we consider a special case of p = 2 which was discussed in [28]. Take p = 2
in Theorem 2.2 and Theorem 2.3, we have the following conclusions.

Corollary 2.4 (Pohozaev-type inequality for p = 2) Suppose that V (x) is a linear vector
field on R

n satisfying div V (x) = n and 〈V (x), x〉 > 0 for ∀x ∈R
n \{0}. If u ∈ W 1,p

0 (�)∩C1(�̄)
is a solution of (1.1) when p = 2, then

(2μ – n)
∫

�

uf (u) dx + 2n
∫

�

F(u) dx

≥
∫

∂�

〈
V (x),ν(x)

〉
∣
∣
∣
∣
∂u
∂ν

∣
∣
∣
∣

2

ds,
(2.4)

where μ = sup|x|�=0
〈V (x),x〉

|x|2 .

Corollary 2.5 Suppose that the vector field V (x) of Corollary 2.4 is transverse to ∂�. Then
(1.4) has no positive solution if

α ≥ n + 2μ

n – 2μ
and λ ≤ 0.

3 Examples
In this section, we construct two examples of domains in R

3 which satisfy the conditions
of our theorems but not non-star-shaped. The first example has been discussed in [28],
the second one is new.
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Figure 1 The graph of �1

Example 1 (see [28]) Let �1 ⊂ R
3 be a bounded domain surrounded by the following

closed surface �1:

�1 :

⎧
⎪⎪⎨

⎪⎪⎩

x1 =
√

1 – r2esin 2θ cos(θ –
√

1 – r2 sin 2θ ),

x2 =
√

1 – r2esin 2θ sin(θ –
√

1 – r2 sin 2θ ), θ ∈ [0, 2π ],

x3 = r, r2 ≤ 1.

(3.1)

In [28], the second author of the paper has proved that, for any given point P ∈ R
3,

the closed surface �1 is not star-shaped with respect to P. Thus, �1 is not star-shaped.
Subsequently, it is easy to verify that �1 satisfies the conditions of Theorem 2.2.

Next, we will give the specific graphic of the planar closed curve �1 in [28], which is
generated by the intersection of �1 and �, where � = {x = (x1, x2, 0) | x1 ∈ R

1, x2 ∈ R
1}.

Figure 1 is the graph of �1.

Example 2 Let �2 ⊂R
3 be a bounded domain surrounded by the following closed surface

�2:

�2 :

⎧
⎪⎪⎨

⎪⎪⎩

x1 =
√

1 – r2ecos 2θ cos(θ + 1
2

√
1 – r2 sin 4θ ),

x2 =
√

1 – r2ecos 2θ sin(θ + 1
2

√
1 – r2 sin 4θ ), θ ∈ [0, 2π ],

x3 = r, r2 ≤ 1.

(3.2)

Define a linear vector field V on R
3 by

V (x) =

⎛

⎜
⎝

3
7 0 0
0 15

7 0
0 0 3

7

⎞

⎟
⎠x.

It is easy to see that V is positive and
∑3

i=1 aii = 3. By a direct computation, we can show
that V (x) is transverse to �2. Therefore, �2 satisfies the conditions of Theorem 2.2.
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Figure 2 The graph of �2

Let �2 be the curve given by the intersection of plane � = {x = (x1, x2, 0) | x1 ∈ R
1, x2 ∈

R
1} and �2:

�2 :

⎧
⎪⎪⎨

⎪⎪⎩

x1 = ecos 2θ cos(θ + 1
2 sin 4θ ),

x2 = ecos 2θ sin(θ + 1
2 sin 4θ ), θ ∈ [0, 2π ],

x3 = 0.

The graph of �2 is presented in Fig. 2.

By the elementary method, we can show that �2 is not star-shaped in the plane. Hence,
�2 is not star-shaped.

4 The Pohozaev inequalities and the nonexistence of positive solutions for
p-Laplace elliptic systems

In this section, we generalize the results of Pohozaev inequalities of Theorem 2.2 to system
(1.2) to derive the nonexistence of positive solutions for the system with double critical
exponent. Firstly, define the following Sobolev space:

W̃� = W 1,p
0 (�) × W 1,p

0 (�)

with the norm

∥
∥(u, v)

∥
∥ =

(∫

�

|∇u|p + |∇v|p
) 1

p
.

Applying Theorem 2.2 to system (1.2), we get the following theorem.
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Theorem 4.1 (Pohozaev inequalities) Assume that V (x) is a linear vector field on R
N of

the form

V (x) =

⎛

⎜
⎜
⎝

a11 · · · a1n
...

...
...

an1 · · · ann

⎞

⎟
⎟
⎠x

for ∀x ∈ R
N \ {0}, V (x) satisfies div V (x) = N and 〈V (x), x〉 > 0. If (u, v) ∈ W̃ (�) ∩ C1(�̄) is

a solution of (1.2), then

(pμ – N)
∫

�

(u, v)∇F(u, v) dx + pN
∫

�

F(u, v) dx

≥ (p – 1)
∫

∂�

〈
V (x),ν(x)

〉
(∣
∣
∣
∣
∂u
∂ν

∣
∣
∣
∣

p

+
∣
∣
∣
∣
∂v
∂ν

∣
∣
∣
∣

p)

ds,
(4.1)

where μ = sup|x|�=0
〈V (x),x〉

|x|2 .

Proof Applying Theorem 2.2 to the first equation of system (1.2), we have

(pμ – N)
∫

�

ufu(u, v) dx + pN
∫

�

Fu(u, v) dx

≥ (p – 1)
∫

∂�

〈
V (x),ν(x)

〉
∣
∣
∣
∣
∂u
∂ν

∣
∣
∣
∣

p

ds.
(4.2)

Similarly, applying Theorem 2.2 to the second equation of system (1.2), we have

(pμ – N)
∫

�

vfv(u, v) dx + pN
∫

�

Fv(u, v) dx

≥ (p – 1)
∫

∂�

〈
V (x),ν(x)

〉
∣
∣
∣
∣
∂v
∂ν

∣
∣
∣
∣

p

ds.
(4.3)

Adding (4.2) and (4.3), we obtain the desired result. �

Similarly, applying Theorem 2.2 and Theorem 2.2 in [12] to two equations in the system
of (1.9), we can generalize the Pohozaev identity (1.10) of (p,q)-Laplace system in [16] to
Pohozaev inequalities.

Theorem 4.2 (Pohozaev inequalities) Suppose that V (x) is a linear vector field on R
N , and

let

V (x) =

⎛

⎜
⎜
⎝

a11 · · · a1n
...

...
...

an1 · · · ann

⎞

⎟
⎟
⎠x.
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∀x ∈ R
N \ {0}, V (x) satisfies div V (x) = N and 〈V (x), x〉 > 0. If (u, v) ∈ W̃ (�) ∩ C1(�̄) is a

solution of (1.9), then

(pμ – N)
p

∫

�

(u, v)∇F(x, u, v) dx +
(qμ – N)

q

∫

�

(u, v)∇F(x, u, v) dx

+ N
∫

�

F(x, u, v) dx +
∫

�

F1(x, u, v) dx

≥
(

1 –
1
p

)∫

∂�

〈
V (x),ν(x)

〉
∣
∣
∣
∣
∂u
∂ν

∣
∣
∣
∣

p

ds +
(

1 –
1
q

)∫

∂�

〈
V (x),ν(x)

〉
∣
∣
∣
∣
∂v
∂ν

∣
∣
∣
∣

q

ds,

(4.4)

where μ = sup|x|�=0
〈V (x),x〉

|x|2 .

Proof Based on Theorem 2.2 and [12], and the equations of system (1.9), we have

(pμ – N)
∫

�

uFu(x, u, v) dx + pN
∫

�

F1
u(x, u, v) dx + p

∫

�

F1,u(x, u, v) dx

≥ (p – 1)
∫

∂�

〈
V (x),ν(x)

〉
∣
∣
∣
∣
∂u
∂ν

∣
∣
∣
∣

p

ds
(4.5)

and

(qμ – N)
∫

�

vFv(x, u, v) dx + qN
∫

�

F1
v (x, u, v) dx + q

∫

�

F1,v(x, u, v) dx

≥ (q – 1)
∫

∂�

〈
V (x),ν(x)

〉
∣
∣
∣
∣
∂v
∂ν

∣
∣
∣
∣

q

ds,
(4.6)

where ∂F1
u (x,u,v)
∂u = fu(x, u, v), and ∂F1

v (x,u,v)
∂u = fv(x, u, v). Adding (4.5) and (4.6), we complete

the proof. �

Remark 1 The Pohozaev inequalities in Theorem 4.2 can also be written in the following
forms:

(pμ – N)
p

∫

�

|∇u|p dx +
(qμ – N)

q

∫

�

|∇v|q dx + N
∫

�

F(x, u, v) dx +
∫

�

F1(x, u, v) dx

≥
(

1 –
1
p

)∫

∂�

〈
V (x),ν(x)

〉|∇u|p ds +
(

1 –
1
q

)∫

∂�

〈
V (x),ν(x)

〉|∇v|q ds.

Now, we discuss the nonexistence of positive solutions for system (1.11).

Theorem 4.3 Suppose that the vector field V (x) of Theorem 4.1 is transverse to ∂�. Then
(1.11) has no positive solution.

Proof Let F(u, v) = 1
p∗
∫

�
(|u|p∗ + |v|p∗ + |u|α|v|β ) dx, by Theorem 4.3, the right-hand side of

the Pohozaev inequalities can be written as follows:

(

1 –
1
p

)∫

∂�

〈
V (x),ν(x)

〉
(∣
∣
∣
∣
∂u
∂ν

∣
∣
∣
∣

p

+
∣
∣
∣
∣
∂v
∂ν

∣
∣
∣
∣

p)

ds ≥ 0,
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the left-hand side is

=
(

μ –
N
p

)∫

�

(|∇u|p + |∇v|p)dx +
N
p∗

∫

�

(|u|p∗
+ |v|p∗

+ |u|α|v|β)dx

≤
(

μ –
N
p

)∫

�

(|∇u|p + |∇v|p)dx

< 0.

This is a contradiction, so (1.11) has no positive solution. �

5 The existence of positive solutions for a kind of p-Laplace elliptic system
This section studies the existence of positive solutions of (1.11).

Consider the functional J : W̃� →R, (u, v) ∈ W̃�,

J(u, v) =
1
p

∫

�

(|∇u|p + |∇v|p dx
)

–
1
p∗

∫

�

((
u+)p∗

+
(
v+)p∗

+
(
u+)α(v+)β)dx,

and (u, v) ∈ W̃RN ,

J∞(u, v) =
1
p

∫

RN

(|∇u|p + |∇v|p dx
)

–
1
p∗

∫

RN

((
u+)p∗

+
(
v+)p∗

+
(
u+)α(v+)β)dx.

By Theorem 1.7 in [27] and Lemma 3.4.5 in [29], we have the global compactness results
as follows.

Lemma 5.1 (Global compactness result, see [27]) Let (un, vn) be a Palais–Smale sequence
for W̃�. Then there exists a solution (u0, v0) of system (1.11), m sequences of positive num-
bers ri

n (1 ≤ i ≤ m), and m sequences of points xi
n (1 ≤ i ≤ m), when n → ∞, such that up

to a subsequence:

(1) (un, vn) = (u0, v0) +
m∑

i=1

(
ri

n
)N–p

p
(
Ui
(
ri

n
(
x – xi

n
))

, Vi
(
ri

n
(
x – xi

n
)))

+
(
σ 1

n + σ 2
n
)
,

where ri
n → ∞, ‖(σ 1

n ,σ 2
n )‖ → 0;

(2) J(un, vn) = J(u0, v0) +
m∑

i=1

E∞(Ui, Vi) + o(1).

By Lemma 5.1, we have the existence of positive solutions of (1.11).

Theorem 5.2 Assume that � ⊂ R
N is a bounded domain and there exists 0 < R1 < R2 <

+∞ satisfying

{
x ∈R

N : R1 < |x| < R2
}⊂ �,

{
x ∈R

N : |x| < R1
} �⊂ �.

Then problem (1.11) admits a positive solution when R1
R2

is sufficiently large.
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Proof Using a similar method as that in [27], let

J1(u, v) =
∫

�

|∇u|p + |∇v|p

S := inf
u∈W 1,p(RN )\{0}

‖u‖p

|u|pp∗
S0 := f (τ )S,

where f (τ ) := 1+τp

(1+τβ +τp∗ )
p

p∗
.

M̃ :=
{

(u, v) ∈ W̃� :
∫

�

((
u+)p∗

+
(
v+)p∗

+
(
u+)α(v+)β)dx = 1

}

.

By similar methods as those in [27], if we choose ε > 0 small enough, J1 has no critical
value in (S0, S0 + ε]. However, if J1 does not have a critical point, then the unit sphere is
contractible in �, which contradicts {x ∈R

N : |x| < R1} �⊂ �. This implies that J1 has criti-
cal points, and so the system has nontrivial positive solutions. Without loss of generality,
let R1 = 1

4R < 1, R2 = 4R > 1. For ∀σ ∈ Sn := {x ∈ R
N | |x| = 1} (unit sphere), 0 ≤ t ≤ 1, we

denote

uσ
t (x) =

(
(1 – t)

1
p–1

(1 – t)
p

p–1 + (x – σ t)
p

p–1

)N–p
p

∈ W 1,p(
R

N).

In order to make ωσ
t ∈ W 1,p

0 (�) for every uσ
t (x), and

∫

RN |∇(uσ
t , τuσ

t ) – (ωσ
t , τωσ

t )|p dx is
small enough, we choose a radially symmetric function φ ∈ C∞

0 as follows:

φR(x) =

⎧
⎪⎪⎨

⎪⎪⎩

φ(Rx) 0 ≤ |x| ≤ 1
R ,

1 1
R ≤ |x| ≤ R,

φ( x
R ) |x| ≥ R,

where φ satisfies: 0 ≤ φ ≤ 1, when x ∈ �; φ = 1, when 1
2 < |x| < 2; φ = 0, when x is not in

1
4 < |x| < 4. So φR(x) ∈ C∞

0 (�), and set ωσ
t = uσ

t (x)φR(x), then

∥
∥
(
uσ

t , τuσ
t
)

–
(
ωσ

t , τωσ
t
)∥
∥p

W̃ (RN )

=
(
1 + τ 2)

p
2

∫

RN

∣
∣∇(

uσ
t (φR – 1)

)∣
∣p dx

≤ 2p(1 + τ 2)
p
2

[∫

RN

∣
∣∇uσ

t
∣
∣p(φR – 1)p +

∫

RN

∣
∣uσ

t
∣
∣p|∇φR|p

]

≤ C[
∫

BC
2R∪B 1

2R

∣
∣∇uσ

t
∣
∣p dx +

1
Rp

∫

B4R\B2R

∣
∣∇uσ

t
∣
∣p dx +

∫

B 1
2R

∣
∣uσ

t
∣
∣p dx

:= A + B + C.

Obviously, A → 0, when R → ∞.

B ≤ C
Rp

(∫

B4R\B2R

∣
∣uσ

t
∣
∣p

∗
dx
)

R1– p
p∗ → 0.
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Denote

vσ
t =

ωσ
t

‖(ωσ
t , τωσ

t )‖Lp∗
,

where ‖(ωσ
t , τωσ

t )‖p∗
Lp∗ =

∫

�
(u+)p∗ + (v+)p∗ + (u+)α(v+)β , limR→∞

∫

RN |∇vσ
t – ∇ uσ

t
‖uσ

t ‖Lp∗ |dx →
0, (vσ

t , τvσ
t )(v0, τv0) ∈ M̃; hence J1(vσ

t , τvσ
t ) → S0.

Therefore, we just have to prove:
There exists (u0, v0) ∈ M̃ such that J1(u0, v0) < S0 + ε, J ′

1(u0, v0) = 0.
We prove the problem by reduction to absurdity. By Lemma 5.1, J1 does not have any

Palais–Smale sequence at level (S0, S0 + ε]. By the deformation lemma in [21], ∃ε > 0, and
a flow � : M̃ × [0, 1] → M̃, such that

�(M̃c+ε , 1) ⊂ M̃c–ε ,

where M̃c = {(u, v) ∈ M̃ : J1(u, v) < c}.
By the deformation lemma, for given δ > 0, there exists a flow � : M̃ × [0, 1] → M̃ such

that

�(M̃S1 , 1) ⊂ M̃S0+δ

�
(
(u, v), t

)
= (u, v), ∀(u, v) ∈ M̃S0+ δ

2
.

Let

J2(u, v) =
∫

�

x
((

u+)p∗
+
(
v+)p∗

+
(
u+)α(v+)β)dx.

By Ekeland’s variational principle, there exists x1 ∈ � such that, as n → ∞,

((
u+

n
)p∗

+
(
v+

n
)p∗

+
(
u+

n
)α(v+

n
)β)

⇀ δx1 ,

|∇u|p + |∇u|p ⇀ S0δx1 .

That shows J2(M̃S0+δ) ⊂ U for any given neighborhood U ⊂ �.
Assume that the projection E of a neighborhood U of � is continuous, and E : U → �.

Let

h : Sn × [0, 1] → �, h(σ , t) = E
(
J2
(
�
((

vσ
t , τvσ

t
)
, 1
)))

because

lim
t→1

∫

�

∣
∣∇vσ

t
∣
∣p dx = S0.

Hence, vσ
t ∈ M̃S0+ δ

2
, so we have

�
(
vσ

t , 1
)

= vσ
t .
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Therefore,

lim
t→1

J2
(
�
(
vσ

t , 1
))

= lim
t→1

J2
(
vσ

t
)

= σ ∈ Sn ⊂ �.

It shows that h is continuous and satisfies h(σ , 1) = σ , and for some x2,

h(σ , 0) = E
(
J2
(
�(v0, 1)

))
= x2 ∈ �.

Hence Sn can contract to x2 in �, it is a contradiction. By the strong maximum principle,
we have u0 > 0, v0 > 0. So, we have completed the proof. �
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