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1 Introduction

The dynamic properties of diffusion equations ensure the stability of diffusion phenomena
and provide the mathematical foundation for the study of diffusion dynamics. There are
many studies on the existence of global attractors for diffusion equations. For the classical
results, we refer the reader to [1-9].

The convective Cahn—Hilliard equation [10—16], which arises naturally as a continuous
model for the formation of facets and corners in crystal growth, is a typical fourth order
nonlinear parabolic equation. Let 2 = [0,L] x [0, L], where L > 0, y is a positive constant,
B is a vector. We consider the convective Cahn—Hilliard equation in the 2D case:

ut+yA2u:A<p(u)—;§-V1//(u), x=(x1,%) eR%LE>0. (1)
Equation (1) is supplemented by the following boundary conditions:

u(xy + L,xg,t) = u(xy,xp + L, ) = u(x1,%0,2), x€R%t>0, (2)
and the initial condition

u(x,0) = uo(x). 3)

In this paper, we denote by H = L%(2), (-,-) the H-inner product and by || - || the cor-
responding H-norm, denote A = —A, where A is the Laplace operator. Assume that the
initial function has zero mean, i.e., [; o 4o(x) dx = 0, then it follows that fQ u(x, t)dx = 0 for
t > 0. Here, as [3], we set

per per

HE :{u‘ueH" (Q),/u(x,t)dxzo,}, k=1,2,....
Q
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Using the same method as [13], we obtain the lemma on the existence of global weak
solution to problem (1)—(3).

Lemma 1.1 Suppose that ug € Hjer(Q) and the functions ¢(r) € C*(R), ¥ (r) € CY(R) sat-
isfy

e'(N>0, oV <clrrc,  Y) <corve'(r) +cu,

where k < 3 is a positive constant and i = 0,1,2. Then there exists a unique solution u for
problem (1)—(3) such that
u € C(R*; H),(Q)) N L}, (R H,,(Q)).
By Lemma 1.1, we can define the operator semigroup S(¢)uq :ngr(Q) x Rt — H;er(Q),
which is (H;er,H;er)—continuous. In what follows, we always assume that {S(£)};>¢ is the
semigroup generated by the weak solutions of problem (1). It is sufficient to see that the

restriction of {S(¢)} on the affined space H;er(Q) is a well-defined semigroup.

Proposition 1.2 ([17-19]) Suppose that A is an (H', H)-global attractor for {S(t)};>o.
Suppose further that {S(t)};>0 has a bounded (H',H*)-absorbing set and {S(t)};=o is
(HY, H*)-asymptotically compact. Then A is also an (H', H*)-global attractor.

The main result of this paper will be stated in the following.

Theorem 1.3 Suppose that uo € H,,,(Q) and the functions ¢(r) € C3(R), ¥(r) € C3(R)
satisfy

o'(r>0, oD <crire, W) <cre' )+, (4)

where k < 3 is a positive constant and i = 0,1,2. Then there exists an (H', H*)-global at-
tractor for the solution u(x,t) of problem (1)—(3), which is invariant and compact in H*(Q)
and attracts every bounded subset of H'(Q2) with respect to the norm topology of H*(S2).

Remark 1.4 Inthe previous papers [18, 20, 21], my cooperators and I also studied the exis-
tence of global attractor for a 2D convective Cahn—Hilliard equation. There are two main
differences between the previous results and Theorem 1.3. First, in [18, 20], we assumed
that there exists double-well potential for the convective Cahn-Hilliard equation, which
was replaced by the higher order polynomial in [21]. But, in this paper, this assumption
is changed by (4), which seems more abroad than double-well potential and polynomial.
Second, in [18), the existence of (H2, H?)-global attractor was obtained, and in [20, 21], the
existence of (H*, H¥)-global attractor was proved. In this paper, we only assume that the
initial data belongs to H'(£2) and obtain the (H!, H*)-global attractor for the 2D convective
Cahn-Hilliard equation.

The remaining parts are organized as follows. We begin by giving some uniform es-
timates of solutions for the 2D convective Cahn—Hilliard equation in Sect. 2. Then, in
Sect. 3, we prove the main results on the existence of global attractor.
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2 Uniform estimates of solutions
First of all, we establish the uniform estimates of solutions of problem (1) as £ — oco. These
estimates are necessary to prove the existence of global attractors.

Lemma 2.1 Suppose that uy € L*(Q) and the functions ¢(r) € CH(R), ¥ (r) € C1(R) satisfy
¢o'(r)>0, Y'(r) < cor\/m +cr.

Then, for problem (1)—(3), we have
“M(f) H <M,, Vt=T,,

and

t+1 9
/ |Au(@)||"dt < Mo, t=>T,.
t

Here, My is a positive constant depending on y and c; (i = 0,1). To dependsony,c; (i=0,1)
and R, where ||lug)|®> < R%.

Proof Multiplying equation (1) by u and integrating the resulting relation over €2, we ob-

tain
1d ) ) , ) )
——lull® +yllAull® + | @' (@)|Vul"dx=8- | ¥ (w)uVudx. (5)
2dt A i
Note that
p [ vuvuds=p- [ uvuds
Q Q
562|/3|/|MVu\/<p’(u)|dx+C3|/3|/ |ut| dx
Q Q
1
5§/Q<p/(u)|vbt|2dx+%||u||2+%3.
Hence
d 2 / 2 2
E”M” +2y | Aull” + | @' ()|Vul®dx < collull” + cs. (6)
Q

Applying Poincaré’s inequality, we arrive at
llael® < NI Vull?.

Moreover,

(©)?
Sl aul.

1
d(IVul? = —c’/ ubudx < = |lul® +
Q 2
Therefore, the following inequality holds:

lul® < ()l Aul®
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Summing up, we get

d 2
il ((03;2 —C4> lul? < cs, @)

where y satisfies % — ¢4 > 0. Using Gronwall’s inequality, we deduce that

2y /\2 /\2
Jul? < & g2 1 2 2(¢) @)
B 2y —aa(c)? T 2y —a(c)?
forallt > T* = 2;/52/2)(2&)2 In [2”_622(%;2]132 . Integrating (6) over (¢, ¢ + 1) with ¢ > T* yields
t+1
[ 1autdr <, ©)
t

By using a mean value theorem for integrals, we obtain the existence of atime ¢, € (T, T* +
1) such that

[au()[* < s
holds uniformly, the proof is complete. g

Lemma 2.2 Suppose that uy € H,,, () and the functions ¢(r) C2(R), ¥(r) € C(R) sat-

isfy

er

(>0, oV =<clrT+c, Y <corye' () e,
where k < 3 is a positive constant and i = 0,1, 2. Then, for problem (1)—(3), we have
|Vu@®| <M, vE=Ty,
and
t+1 9
/ [VAu@)| dr <My, t=T.
t

Here, M, is a positive constant depending on y and c;, ¢; (i = 0,1). T, depends on vy, c;, c;

(i=0,1) and R, where ||uo||21 <R%
'per

Proof Multiplying equation (1) by —Au and integrating the resulting relation over Q2 yields

1d 5 )

——|IVull® +y|IVAull* == | Apu)Audx—-8- | Vi(u)Audx

2dt Q Q

= —f (p/(u)|Au|2dx—/ @" ()| Vul* Audx
Q Q

-B -/Qw/(u)VuAudx.
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Hence
IV ey IV s [ o d
2 dt
—/ <p”(u)|Vu|2Audx—/3-/ Y (u)VulAudx
Q Q
§c/ |uAu||Vu|2dx+c|ﬂ|/|u2‘/g0’(u)VuAu|dx+c||Vu||2
Q Q
c c c2|B)?
< —/ |Vu|4dx+—/ |uAu|2dx+/ (p’(u)|Au|2dx+ﬂ/ u|Vu|? dx
2 Jg 2 Ja Q 4 Ja
Co
+ E||Vu||2.
By Nirenberg’s inequality, we obtain

105 1ol
llulla < LIV Aull&llulls +c5llull, IVaulla < IV AUl lull2 + cyllull,

103 501
llulls < IV Al # ]l + <5 llull, [Aulls < cilIVAuls flulls + chllul.

Thus, by Holder’s inequality and the above inequalities, we deduce that

c 4 c 2|/3|2
— | |Vu|*dx + = IuAul dx+ —— | u*|Vu|dx< = IIVAMII +—
2 Ja 2 Q 2

Summing up, we obtain

d 2 2 2

EIIVMII + Y IVAUll® < cell Vull” + ¢7. (10)
On the other hand,

2¢c3(c)?

Vuzz—/uAudx< ulll|Au|| < | ——————
IV . < ulllAull < 3 — ()

[l Al

and

lAu|? = —/Qw -VAudx < |Vull||VAu].
Adding the above two inequalities together gives

collVull® < e VAUl < %”VA””2+CS- (11)
It then follows from (10) and (11) that

IVl + DIVl < ¢ v cs.

dt 2
Applying Gronwall’s inequality yields

2(c7 +¢cg) 4y +cg)

IVul® < e 5| Vo * + < (12)
Y 14
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yR?
2(c7+cs)

forall t > T’ = max{T", % In }. Integrating (10) over (¢, ¢ + 1) with t > T’ gives

t+1
/ IVAu|?dt < co.
t

Using a mean value theorem for integrals, we obtain the existence of atime ¢y € (77, T’ +1)
such that

”VAM(Ifo)H2 <co

holds uniformly. Since we consider problem (1)—(3) in the 2D case, based on Sobolev’s

embedding theorem, we can get

1
P
||M||p=<[updx) <can,, 1=<p<oo.

Q

Set Ty = T', we complete the proof. d

Lemma 2.3 Suppose that uy € H,,,(2) and the functions ¢(r) € C*(R), ¥ (r) € C'(R) sat-

isfy

er

¢r>0, ¥ <l +d, Y (r) < cory/ @' (r) +c1,
where k < 3 is a positive constant and i = 0,1,2. Then, for problem (1)—(3), we have
”Au(t)” <M, Vt=Ty,,

and

t+1
/ lul>de <My, t>To.
t

/

Here, M, is a positive constant depending on y and c;, ¢; (i = 0,1). T, depends on v, c;, c;

(i =0,1) and R, where ||uo||f_[1 <R%.
'per

Proof Multiplying equation (1) by A%u and integrating the resulting relation over Q, we
obtain

Ld o A%l
2dt”Au” +y||A uH

= (Ag(w), A%u) + (B - Vir(u), A%u)
= (¢ (W) Au+¢"(W)|Vul?, A%u) + B - (Y () Vu, A%u)

B>

2 2
< 218+ Slewaul « = o @ivul | + T v ) va”
v v %
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Simple calculation shows that
d 2
— || Aul? A?
S Aul® + v [ A%
4 / 2 4 " 2|2 20 7 2 2
<— | |¢@Aul"dx+— | |o"@)|Vul*|"dx+c | u?|¢(w)||Vul*dx +c|| Vi
v Ja Y Ja Q

§c</ u4|Au|2dx+/u2|Vu|4dx+/u6|Vu|2dx>
Q Q Q

2 4 2
+cl|Aull” +cl|Vully + cl|Vul|
4 2 2 4 6 2 2 4
<c(llulglAuly + 1wl Vullg + 1wl Vuly) + cll Aull® + | Vullg + ¢

2 4 2 4 2
<c(lAulz + IVullg + +IVulz + IVulz) +cl Aul® +c.

By Sobolev’s embedding theorem, we deduce that

A

5
Al < (¢ A% * ul® + & llull)’ <

At v

IA

3
IVuld < (i A% ¥l ¥ + ) %HAZMH2 +Cey

3
IVuls < (c;] A% ¥ + chllull)*

IA

© ol +c.
¢
and
[ Vullg < () || AzM” i ||M||% + C/2||M||)2 < %” A2M||2 +Ce.
Moreover,
clAu|? = —c/ Vu-VAudx= c/ ulN udx < |u| H A2u|| < 8||A2MH2 + Ce.
Q Q
Summing up and setting & = 5 gives

d Y 2

— | Aull* + = | A%u||” < cra. 13

dt” ull* + 5 |A%u|” < c1a (13)
By a Calderén—Zygmund type estimate, the following inequality holds:

d yc
E”AMH2 + 7(||Au||2 +IVAU)?) < cra.

Then, using Gronwall’s inequality, we obtain

2c 4c
12 _ 4

< (14)
yc = yd

lAul? < e 0 ault) [ +

/P2
for all £ > T} = max{To, ) + % In ”;q[; }. Setting ¢ > T}, taking s € (¢, ¢ + 1), integrating (14)

over (s,t + 1), we derive that

||Au(t + I)H2 <ci3+ ||Au(s) H2 (15)
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Integrating (15) with respect to s in (¢, ¢ + 1), we can obtain
2 t+1 9
| Aut+ 1)[> < crs + f lau@)| dx < e VE=T), (16)
t

By (14), (12), (7), and Sobolev’s embedding theorem, we conclude
llt]l oo < c15, IVul, <cie, 1=<p<o0. (17)

Multiplying equation (1) by u,, integrating the resulting relation over Q2 yields

y d
lluge|I* + EEHAMHZ

:/ A(p(u)utdx+ﬂ~/ Vi (u)u; dx
Q Q

:/ (p’(u)Auutdx+/ (p”(u)|Vu|2utdx+/3-/ Y () Vuu; dx
Q Q Q

< le'@)| Al + |¢"@)| NVulzliudl + 181w )| IVl
1

< Sluel® + e @) |2 N1 Aul? + @ @) |21V ulid + 1812w @) 2, IVull?)

C17
2
llze |~ + 7,

=

N = N

that is,
) d 2
llzeel|” + a”AMH <cy. (18)

Integrating (18) over (¢ + 1,¢ + 2), using (14), we derive that

42
/ o |? dx < crg,  VE> Ty .
t+1

Using a mean value theorem for integrals, we obtain the existence of a time ¢; € (Tj +
1, T§ + 2) such that the following estimate holds uniformly:

||Mt(l‘1)||2 =< ci9.

Then the proof is complete. 0

Lemma 2.4 Suppose that uy € H,,,(Q) and the functions ¢(r) € C*(R), ¥/ (r) € C*(R) sat-
isfy

gN>0, eV =gl e, W) ScorVe' () +
where k < 3 is a positive constant and i = 0,1, 2. Then, for problem (1)—(3), we have

|VAu@)| <Ms, Vi=Ts,
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and

t+1
/ |A2u(0)|* de < Ms, Vi> Ts.
t

Here, M3 is a positive constant depending on vy, c;, c; (i = 0,1). T3 depends on vy, c;, c;

1
(i=0,1) and R, where ||luo|7,, < R>.

Proof Multiplying (1) by A3y and integrating the resulting relation over Q, we obtain

Ld G V8%l
2dt”VAu” +yHVA uH

=/ VA(p(u)VAzudx+ﬂ-/ AY(u)V A% udx
Q Q

:/ (p’(u)VAuVAzudx+3/ @"(u)VuluV A*udx
Q Q

+/(o”’(u)|Vu|2VuVA2udx (19)
Q
+,B~/ lﬁ’(u)AuVAzudx+ﬂ~/ V" )| Vu* VA udx
Q Q
< gnmzunz w0 @21V Aul? + 3] " ()| 2 1V ul2ll Aue
@@ |21V ullE + 1812w @) |2 I Aull® + 1B v @) |2, I Vull}).
It follows form (17) that
J
@21V aul® < S1vAul?,
/
3" )| Vulil Aul < S Aul
and
o @21Vl + 12|y @) [ N1 Aul® + 1B W ()] 1Vl < 52
Summing up, we find that
d 2 2112 / 2 2
Envmn +y | VA%u|" < (IVAUl® + | Aull} + c10). (20)

Using Nirenberg’s inequality, we obtain
/ 2 i 2 1% 2 2_Y 212
cAully <c (c1 ”VA u” | Au|® +c2||Au||) < ZHVA uH + C2p.
On the other hand,

cIVAu|? = c'/ Vu - VA udx < | Vul| | VA% 4| < %HVAZMW + .
Q

Page9of 17
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Hence
d 2, Y 212 /
—|IVAul|* + = ||VA u|| < €90 + Co1 + CC19. (21)
dt 2
A simple calculation shows that
d 2 2
EHVAM” +en||VAuUll® < cos. (22)

By Gronwall’s inequality, we immediately obtain

c 2c
23 _ 2023

|V Au@)|? < e 0 | Vu(t) | + (23)

a T c
forall ¢t > T} = max{T,t + é In M}. Combining (23), (14), (12), and (7) together gives

2¢23

Vitlloo < 24, lAully <cos, 1=<g<oo,Vt>Ty. (24)

Multiplying equation (1) by Au,, integrating the resulting relation over €2, we obtain

y d 2
V> + = — VA
Va1~ + 2dt” ull
=/ VA(p(u)Vutdx+,B-/ Ap(u)Vu, dx
Q Q
= / [go’(u)VAu +3¢"(u)VulAu + go”'(u)IVu|2Vu]Vut dx
Q

+,3"/;Z[I/I,(u)Au+I/f”(u)|Vu|2]Vutdx

< |’ @] VAUl Val + 3]l ¢" @] NV slloo | Autll| Vate |
+ [ " @) NV llZ NVl Vit |

+ 1B v' @) I Aullll Vgl + 181 ¥ @) | N Vielloo | Varll[| Vi |

1 €26
<c| V|l < = || Vaae|* + =
= cllVauell < S1Vul™+

Summing up, using the result of (23) gives
2 d 2
Vauell” + Y IVAull” < ca. (25)
Then
a IV Aull® <
— u Co6.
14 dr =G

Setting ¢ > T7, taking s € (¢, £ + 1), integrating the above inequality over (s, ¢ + 1), we obtain

[Vau+ 1| < %(C% + |V au@]?).
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Integrating the above inequality with respect to s in (¢, ¢ + 1), we have
9 1 t+1 9
[vaue+D|* < X (C% e [ vau) ds) <en VEZTI. 26)
14 t
Integrating (25) over (¢ + 1,¢ + 2), using (26) yields
t+2 1 9
/ |Abu P dr <, Ve T
t+1

Using a mean value theorem for integrals, we obtain the existence of a time ¢, € (T} +
1, T{ + 2) such that the following estimate holds uniformly:

1
|A2 u,(22) ||2 < ¢g9.
Then we complete the proof. O

(Q) and the functions ¢(r) € C3(R), ¥ (r) € C*(R) sat-

er

Lemma 2.5 Suppose that uy € H,,
isfy

9'(>0, @V =<qlrl" e, W) <corVe'(r) +c,
where k < 3 is a positive constant and i = 0,1,2. Then, for problem (1)—(3), we have
llote|l < My, VYt =Ty

Here, My is a positive constant depending on y, c;, c; (i =0,1). Ty depends on y, c;, c;

1
(i=0,1) and R, where ||u0||]2{1 <R%
per
Proof Setting v = u,, differentiating (1) with respect to the time ¢, we deduce that
Ve + y A%y — [A(p(u)]t -B- [Vl/f(u)]t =0. (27)

Multiplying (27) by v, integrating the resulting relation over €2 yields

1d
3wt = [ [agt]vds- [ po[vuw]vds=o 28)

Using Sobolev’s embedding theorem, we get

/[A(p(u)]tvdx+,3~/[w’(u)Vu]tvdx
Q Q
=/ <p’(u)vAvdx+f <p”(u)v2Audx+f @"" ()| Vu|*v* dx
Q Q Q

+2/Q(p”(u)vVuVde+,3 -/Ql/f’(u)vVde+/3 -/Qw”(u)szudx

< |e'@| avilivii+ [¢" @) |  Iaulsviig + [¢" @] I Valivi?

+2||@" @) V| IVIHIVVI + B @) | IVVIIvIE+ 1B]] v ()

2
| NVulls VI

Page 11 of 17
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< c(lAvilvi+ 1VvIE + [V vllivi)

14 C30 C31
< ClAavlP + = vlP + =
2 2 2
Hence,
d 2 2 2
EIIVII + Y Av[|® < esollV[” + €31 (29)

A simple calculation shows that
1
Iv? < ZIIAV||2~
It then follows from (29) and the above inequality that
LI+ (e - es0) V1P < ca
dt -

where y is sufficiently large, it satisfies ¢’y — c3p > 0. Using Gronwall’s inequality, we derive

that
/ C
V)% < e Pty () |* 4 ——1—
c'y —cs30
9 (30)
< croe @res0lt) 631 cs1
B 'y —c30 ¢y —cs0
forallt> 5 + —~—In €19(r=c30) Then the proof is complete. O
Y—¢30 €31

Lemma 2.6 Suppose that uy € H,,(Q2) and the functions ¢(r) € C*(R), ¥ (r) € C*(R) sat-
isfy

(>0, oV =<clr*T+c, YD) <corye' () e,
where k < 3 is a positive constant and i = 0,1, 2. Then, for problem (1)—(3), we have

|A2v ()| < M5, Ve=Ts.

Here, Ms is a positive constant depending on y, c;, c; (i =0,1). Ts depends on y, c;, c;

1
(i=0,1) and R, where ||u0||f_[1 <R%.
per

Proof Multiplying (27) by Av, integrating the resulting relation over €2, we obtain

1d
E%||V1/||2+)/||VAV||2 :—/Q[Ago(u)]tAvdx—/S~/Q[VW(M)]:Avdx. (31)
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By Sobolev’s embedding theorem, we get

—/[Ago(u)]tAvdx—/S~/[V1ﬁ(u)]tAvdx
Q Q

=—/ (p’(u)|AV|2dx—/ (p”(u)vAuAvdx—/ " (u)v|Vul*Avdx
Q Q Q

+2/ ©"(u)VuVvAvdx + B / v (u)VvAvdx + B / Y (u)vyVulvdx
Q Q Q

< o' @| Navi*+ [o" @ | NAulllAviliviie + |@" @) N VullZ Il Aviv]
+2] " @) Vel VYAV + 18] ¥ @) VIl Av]
+ 1B v" @) | N Vulol AvivI

4 €32
<c(lavi® +llAvilivi+ Vvl Avi) < EIIVAVII2 + TIIVVIIZ.
Summing up gives
d
d—IIVVII2 +yIVAV® < el V)%
t
Using Nirenberg’s inequality, we obtain

2 1 2 2 2
el VI < caa(CLIVAVIB VIS + cylvll)” < SV AV + css.

o=

Adding the above two inequalities together gives

d 2 2
&”VV” + e ||Vy[I” < 2¢s3.

By Gronwall’s inequality, we can obtain

VP < s | vu) |+ 22
€32

2 4 (52
2e _ fdexn

< 0296—632(f—t2) + <
C32 C32

forall £ >ty + é In % Then the proof is complete. O

Lemma 2.7 Suppose that uy € H,,,(Q) and the functions ¢(r) € C*(R), ¥/ (r) € C*(R) sat-
isfy

P(r>0, @<l v, Y <corVe' () +
where k < 3 is a positive constant and i = 0,1, 2. Then, for problem (1)—(3), we have
”Azu(t) H <Mg, Vt=>Ts.

Here, M is a positive constant depending on y, c;, c; (i = 0,1). Ty depends on y, c;, c;
(i=0,1) and R, where ”M()”if}er <R2,

Page 13 0of 17
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Proof For equation (1), by Lemmas 2.1-2.6, we deduce that

|a%ul < —(Ilutll +[ae@] + 181 V¥ @)

<c(lluell + ||@' @) Nl Aull + [ @" @) | NVulloolIVull + 1B @) I Vul)

<cs, VE=T.
On the other hand, by Sobolev’s embedding theorem, it yields that
[Aulleo < 35
which completes the proof. O

3 Proof of Theorem 1.3

Suppose that M; and Mg are the constants in Lemma 2.2 and Lemma 2.7, respectively.

Denote
B ={ueH,: |A2u| <M}, (33)
By ={ucHy, : |A%u| < Mg} (34)

Using Lemmas 2.2 and 2.7, we easily obtain that B, is a bounded (H pe,,H;er) -absorbing

set for {S(¢)}:>0 and B, is a bounded (H; 4 )-absorbing set for {S(¢)};>0. Note that

the embedding H per < H! is compacted. Applying Lemma 2.3, we obtain {S(¢)},>0 is

per
(F,.,H, )-asymptotically compact. Hence, {S(t )}t>0 has an (H,,,,

per’~ “per
A. In the following, we show that A is actually an (H,

er’~ “per

per) -global attractor
4 )-global attractor for {S()};0.

per’ per

Lemma 3.1 Suppose that uy € H, () and the functions ¢(r) € C3(R), ¥ (r) € C*(R) sat-

isfy

[JEV

P r)>0, oD <cplr e, Y(r) <corye'(r) + ¢,

where k < 3 is a positive constant and i = O 1, 2 Then for the solution u(x,t) of problem

(1)—(3), the dynamical system {S(t)}s>0 is (H, 4 )-asymptotically compact.

per’ per

Proof For (1), we have
YA u = —u; + Apu) + B - V(). (35)

Assume that {u,, ]}, is bounded in H ! () and ¢, — o0. In the following we prove that

{S()uo )52, has a convergent subsequence in Hpe,(Q) Denote

du,
dt t=t,

un(t) = S(t)u(),n and Vn(tn) =

Note that {u,}52; is bounded in H ! . Then there exists R > 0 such that

|top + Aduo,|| <R, Vn=1,2,....
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By Lemmas 2.6 and 2.7, there exists T > 0 such that

Wl 3y <M Nitallouey <M, ¥e=Ton=1,2,.... (36)

Since t, — 00, there exists N > 0 such that t, > T for all n > N. Therefore, by (36), we get

”Vn(tn)”D(A%) <Ms, ”un(tn)”D(A2) <Ms, Vn=N. (37)

Note that the embedding D(A %) < H and D(A?%) < D(A) are compacted. Hence, by (36),
there exist v e D(A%), Aue D(A),Vue H; ~andu e H;fe, such that, up to a subsequence,

e

vu(ty) = v strongly in H,

Au,(t,) > Au strongly in D(A%),

(38)
Vu,(t,) > Vu strongly in D(A),
tn(tn) > u  strongly in 13, .
By (37) and Sobolev’s embedding theorem, we obtain
|n(t)]| oo <C, Vm=N.
It then follows from (36) and (38) that
||un(t,,) - uH — 0, ||vy,(ty,) - 1/||2 — 0, ||Aun(t,,) - Au”2 — 0,
and
| A@ () = M)
= [ (tn(E0) Dttn(t) = &' W) At + 9" (4 (t0)) | Vit (8:)]” = ¢ @) Vurl? |
= C(“go/(un(tn)) [Aun(tn) - Au] || + “ Au[w/(un(tn))Aun(tn) - 90/(M)] ||
4@ (n (@) [|Vitn &) = 1Vl + |1V [0” (1t)) - 0" @] )
< c|@ (un(t)) | || Asin(tn) — Aue| + cll Akl o | @ (s (1)) Attn(ta) — ' (W) |
+ o (un(tn) || | Vitutn) + Ve | [ Vit (B) = Ve
+ el VulS [ ¢ (un(tn) - ¢ @) (39)

< |l (un(tn) | o | Aventn) = Aue]
+cllAutlloo || " (Bran(tn) + (1= O)u) | || n(tn) — ]
+ el (wnlt) | || Vitntn) + Vir | | Vitu(5) - Vi
+ |\ VullZ || @” (Bautn(tn) + (1= 02)us) | [ n(ta)ue]

< c([|Aten(tn) - Aue|) + | Vetn(8) = Via | + || tn(t) - )
-0

’
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where 61,0, € (0,1). Using the same method as above, we also have
[V (ua(t)) = VY ()| — 0.

Therefore
yA%u,(t,) — —u; + Ap(u) + B - Vir(u), strongly in H,

that is, {u,,(£,)}°2, converges to A=2(~v+ Ag(u) + B - Vi (u)) in Hﬁer(Q). Then we complete
the proof. d

Now we give the proof of the main result.

Proof of Theorem 1.3 Note that {S(¢)};>0 has an (H;EV,H;W)-global attractor A. By
Lemma 2.7, B, is a bounded (H; H;‘e,)-absorbing set for {S(t)}s>0. On the other hand,

by Lemma 3.1, we can obtain {S(¢)};> is (H;

er?

er’

Hjer)-global attractor for {S(t)};>0. The proof of
Theorem 1.3 is complete. d

Hﬁe,)-asymptotically compact. Then, by
Proposition 1.2, A is actually an (H;

er?
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